39-613 Energy Transport & Storage Course Syllabus, Fall 2018

Time:	Tuesdays & Thursdays, 9:30-11:20AM	
Place:	5409 Wean Engineering Hall	
Instructor:	Dr. Paul Ohodnicki	
Office:	(Offsite, Please Email or Call)	
Phone:	412-386-7389 (Office), 412-973-4416 (Cell)	
Email:	pohodnic@andrew.cmu.edu	
Office Hours:	Roberts Hall 149	
	Tuesdays & Thursdays 8:00am - 9:30am, Before Class; Also by appointment.	
Required Text Book:	NONE (See CANVAS for required and supplemental reading assignments)	
Evaluation:	Homework Assignments 30%	
	Class Participation 10%	
	Quizzes 10%	
	Comprehensive Final 25% (at time scheduled by registrar)	
	Project Poster Presentation 15% (individual evaluation)	
	Project Poster 10% (group evaluations)	
Admission & Prerequi		
	BS degree and the permission of the instructor.	
Communications:	CANWAS postings and amail approximate will be the primary	
Communications:	CANVAS postings and email announcements will be the primary communications medium. You are responsible to read your Andrew account	
	email announcements and to check the course CANVAS site.	
Attendance:	Attendance and class participation is required. Active participation in class is an	
	essential component of the course and your grade. This includes energy news / topics discussions, course subject matter discussions, and project presentation	
	Q&A. You are responsible to contact the instructor in advance regarding	
	excused absences.	
Acadamia Integrity:	Students in 20,612 must adhere to all EST&P. CIT and University policies on	
Academic Integrity:	Students in 39-613 must adhere to all EST&P, CIT and University policies on academic integrity. You are advised to pay strict attention to rules and penalties	
	regarding plagiarism, cheating, and unauthorized assistance. Homework must be	
	your own individual work; project reports / presentation materails must be yours and your team members' work with proper reference citations. TurnItIn.com	

	may be used by the instructor to evaluate any and all written reports submitted for credit. <u>http://www.cmu.edu/academic-integrity/index.html</u> <u>http://engineering.cmu.edu/current students/graduates/policies academic integrity.html</u>				
Other:	reasona	All Carnegie Mellon academic policies will be followed in 39-613, including easonable accommodations for students with disabilities who are registered with he EOS office.			
Learning Objectives:	benefit: include	ts will gain a fundamental understanding of technologies, costs, and s involving various alternatives for energy transport and storage. These energy carriers (hydrogen and electricity) as well as traditional fossil fuel newable energy delivery alternatives. In addition, students will be able to:			
	i)	Perform technical / economic analysis of the transport and storage of fossil and nuclear fuels for energy generation; including infrastructure costs and options in fuel transport & storage and storage / disposal costs for combustion byproducts and spent fuel;			
	ii)	Identify the various components of electric power transmission and distribution systems; calculate the effects of power factor on transmission / distribution sizing and delivered power costs;			
	iii)	Perform tradeoff analysis comparing long distance High Voltage AC vs. High Voltage DC transmission and given requirements and constraints, calculate the optimal low cost solution for power transmission;			
	iv)	Can identify the appropriate electric storage technologies for applications including frequency regulation, day / night load shifting, upgrade deferral, and smoothing of intermittency with renewables (Given system constraints on cost, location, size, intermittency, and cycle time). Perform tradeoff analysis considering cost and performance of specific technology solutions using electric power storage methods including pumped hydro, CAEO, and batteries (Lithium-Ion, Lead-Acid, redox-flow, etc.);			
	v)	Can explain the fundamentals of Smart Grid technology in electric power transmission and distribution, and the role that smart grid plays in managing electric power storage. Can explain the benefits of distributed energy resources and microgrid technology and where it is feasible to be applied;			
Team Projects Assign	iment: Evaluate regional energy Transport & Storage infrastructure & status for an assigned region. Make projections of future regional T&S needs, challenges and shortfalls (~25 years). Evaluate options (qualitatively and quantitatively) and recommend optimal new and modified energy transport & storage infrastructure and practices needed for the assigned region.				
An important message	best to avoidin This wi	CMU's Provost (and your instructor) : "Take care of yourself. Do your maintain a healthy lifestyle this semester by eating well, exercising, og drugs and alcohol, getting enough sleep and taking some time to relax. Il help you achieve your goals and cope with stress. All of us benefit from t during times of struggle. You are not alone. There are many helpful			

resources available on campus and an important part of the college experience is learning how to ask for help. Asking for support sooner rather than later is often helpful.

If you or anyone you know experiences any academic stress, difficult life events, or feelings like anxiety or depression, we strongly encourage you to seek support. Counseling and Psychological Services (CaPS) is here to help: call 412-268-2922 and visit their website. Consider reaching out to a friend, faculty or family member you trust for help getting connected to the support that can help."

Date	No.	Торіс	Assignment	Instructor
Tuesday, 10/23	1.	Overview, Motivation, and Context		Ohodnicki
-		What happens between supply and demand?		
Thursday, 10/25	2.	Centralized vs. Distributed Energy	HW #1 assigned: (fossil +	Ohodnicki
•		Fossil, renewables & micro-grids	HOMER intro),	
Tuesday, 10/30	3.	TRANSPORT & Storage: Coal and Natural Gas	Project team + region	Ohodnicki
		Processing, transportation & storage	assignments	
Thursday, 11/1	4.	TRANSPORT & Storage: Nuclear & Petroleum		Ohodnicki
•		Processing, transport & storage, fuel cycle		
Tuesday, 11/6	5.	Electricity TRANSPORT I : Electrical Grid,	HW #1 due	Landis
-		Power Transmission / Distribution, Smart Grid	HW #2 assigned ; Pwr. Dist.	(Guest Lecture)
Thursday, 11/8	6.	Electricity TRANSPORT II: Issues Connecting	Quiz #1?	Ohodnicki
•		Renewables to the Grid e.g. solar, hydro, wind,	-	
		geotherm, biomass – variable; intermittent		
Tuesday, 11/13	7.	Project PDRs (5 min, designated facilitator)	Project PDR: 2-3 slide due	Ohodnicki
		STORAGE : overview: alternatives, options,	11/12 5pm: scope + preview	
		physical / electrical characteristics, tradeoffs		
Thursday, 11/15	8.	STORAGE: grid scale and distributed storage		Viswamanathan
-		state-of-the-art		(Guest Lecture)
Tuesday, 11/20	9.	Micro Grids: distributed generation & storage;	HW #2 due	Williams
-		distributed energy resources	HW #3 assigned (HOMER)	(Guest Lecture)
Tuesday, 11/27	10.	Smart Grid (power + information flow)	Quiz #2?	Ohodnicki
		Stakeholders; T&D, AMI, energy informatics		
Thursday, 11/29	11.	Special Topics in energy transport and storage	HW #3 due	Ohodnicki
•		(CCUS, Hydrogen, others)		
Tuesday, 12/4	12.	Final Poster Session for Project Teams	All poster pptx files	Ohodnicki
			due Friday 11/30 by 5pm	
Thursday, 12/6	13.	Course Final Exam		Ohodnicki

Course Topics- Tentative Schedule