
May 23, 2019
The Wilton E. Scott Institute for Energy Innovation at Carnegie Mellon University addresses the world’s most important energy-related challenges by enabling collaborative research, strategic partnerships, public policy outreach, entrepreneurship, and education.

As one of CMU’s only university-wide institutes, we seek to optimize energy resources, reduce the environmental impacts of energy production and use, and develop breakthrough technologies and solutions that will have meaningful global impact.
Support and Promote Faculty Research
• More than 145 faculty
• CMU Energy Fellows program
• Fund Seed Grants & Faculty Fellowships

Foster Entrepreneurship
• CMU Energy + Cleantech Investor Forum & Startup Showcase
• DOE American-Made Solar Prize - Power Connector
• CMU VentureWell Energy Hackathon

Form Strategic Partnerships
• Distinguished Lecture & Seminar Series + Events
• 2019 CMU Energy Consortium for industry

Engage with Industry and the Public Sector
• Collaborations with NETL, NREL, City of Pittsburgh, DOE

Host Strategic Initiatives
• Power Sector Carbon Index: emissionsindex.org
• District-scale Pilots
• House Centers for specific interest areas
Energy Technologies of the Future
• High-Performance Renewables
• Transportation Energy, EVs, Infrastructure, and Electrification
• Energy Storage, Batteries, Fuel Cells, and Internet of Things
• Decarbonization, Carbon Capture, Sequestration and Utilization

Resource Efficiency, Policy, and Analysis
• Efficiency of Traditional Fuels and Resource Recovery
• Environmental Monitoring, Sensing and Treatment
• Energy Policy, Economics and Community
• Enhanced Water Resources

High-Tech Energy and Computational Solutions
• Grid Modernization, Energy Planning, System Reliability, and Resiliency
• Building Performance, Urban Planning, Design and Analytics
• Machine Learning, AI, Autonomous Vehicles, and Robotics for Energy Systems
• High-Performance Computing and Data Centers
Expert Assessments of Fuel Cell Cost, Durability, and Viability

Michael M. Whiston, Postdoctoral Researcher
Engineering and Public Policy
Carnegie Mellon University

Inês L. Azevedo, Professor
Engineering and Public Policy
Carnegie Mellon University

Shawn Litster, Professor
Mechanical Engineering
Carnegie Mellon University

Constantine Samaras, Associate Professor
Civil and Environmental Engineering
Carnegie Mellon University

Kate S. Whitefoot, Assistant Professor
Mechanical Engineering
Engineering and Public Policy
Carnegie Mellon University

Jay F. Whitacre, Professor
Engineering and Public Policy
Materials Science and Engineering
Carnegie Mellon University

Supported by: Alfred P. Sloan Foundation
Fuel cells and DOE targets

Expert Elicitation

Interview

Fuel Cell Vehicle Assessments

Solid Oxide Fuel Cell Assessments
Outline

Fuel cells and DOE targets

Expert Elicitation

Interview

Fuel Cell Vehicle Assessments

Solid Oxide Fuel Cell Assessments
What is a fuel cell?

Fuel cells generate electricity

- Efficient, quiet: No combustion or moving parts (uses an electrochemical reaction)
- Scalable: Produce energy for small and large applications
Research focus: PEMFCs and SOFCs

- Proton exchange membrane fuel cells (PEMFCs): Low-temperature (<100 °C), fast start-up, compact
- Energy security and environment (hydrogen)
- Market for FCEVs: Toyota, Honda, Hyundai (3–5 minute refueling, 350+ mile range) (Honda, 2019)

- Solid oxide fuel cells (SOFCs): Temperatures > 600 °C, power and heat, fuel-flexible
- Continuous, clean, distributed power (Bloom Energy)
- “Bridge” from fossil to low-carbon fuels; new jobs
PEMFC challenges: Cost and durability

“Cost and durability are the major challenges to fuel cell commercialization.” (DOE, MYRD&D Plan, 2017)

▪ **Cost** = System cost/power output ($/kW)

▪ **Status (2017)** = $53/kW (James et al., 2017)

▪ **Target** = $30/kW (compete with ICEVs) (DOE, 2017)

▪ **Durability** = Time until 10% power reduction

▪ **Status (2015)** = 2,500 hrs (DOE, 2017)

▪ **Target** = 8,000 hrs (150,000 miles) (DOE, 2017)

Excludes H₂ storage, power electronics, electric drive, battery
SOFC challenges: Cost and degradation rate

“...efficient, low-cost electricity with intrinsic carbon capture capabilities....” (Vora, SOFC Project Review Meeting, 2018)

- **Cost** = system cost/power output ($/kW)
- **Status (2013)** = $12,000/kW (Iyengar et al., 2013)
- **Target** = $900/kW (compete with internal combustion engines and microturbines) (Vora, 2018)

- **Degradation rate** = Reduction in stack voltage
- **Status (2017)** = 1–1.5%/1,000 hrs (Vora, 2018)
- **Target** = 0.2%/1,000 hrs (Vora, 2018)
Outline

Fuel cells and DOE targets

Fuel Cell Vehicle Assessments

Expert Elicitation

Interview

Solid Oxide Fuel Cell Assessments
Research questions

- What are the current and anticipated **future costs** and **durability** of fuel cell technologies?
- What are the **major barriers** to improving cost and performance?
- How much **RD&D funding** and what **policies** are needed?
Expert elicitation

- **Formal** and **systematic** procedure for gathering experts’ assessments

 - Mitigate biases and **heuristics**
 - 95% CI
 - Lower bound
 - Best guess
 - Upper bound

- **Previous studies** used expert elicitation to assess:

 - Solar: (Curtright et al., 2008)
 - Biofuels: (Fiorese et al., 2013)
 - Wind: (Wiser et al., 2016)
 - Gas turbines: (Bistline et al., 2014)
 - Carbon capture: (Baker et al., 2009)
 - Nuclear: (Abdulla et al., 2013)
Project timeline

2016
Project launch
- Literature review
- Protocol development

2017
Individual interviews
- 64 interviews (in-person, phone)
 - PEMFC: 18 yrs experience
 - SOFC: 19 yrs experience

2018
Elicitation workshops
- Group discussion
 - 16 PEMFC experts
 - 21 SOFC experts

2019
Dissemination
- CMU Energy Week
- Policy Briefing
Outline

- Fuel cells and DOE targets
- Expert Elicitation

Fuel Cell Vehicle Assessments

Solid Oxide Fuel Cell Assessments
Cost and durability targets met by 2035–2050

- **Cost:** 51% of experts said target met by 2050 (median = $30/kW)
- **Durability:** 48% said target met by 2050 (median = 7,500 hrs)

(Whiston et al., 2019a)
Pt loading, instability, and sintering are barriers

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum loading</td>
<td>26</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Bipolar plate cost</td>
<td>4</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Membrane cost</td>
<td>1</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Air compressor cost</td>
<td>1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Gas diffusion layer cost</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

(Whiston et al., 2019a)

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst instability</td>
<td>14</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Pt sintering</td>
<td>13</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pt dissolution</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Carbon support corrosion</td>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Membrane chemical degradation</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

(Whiston et al., 2019a)

- **Reducing cost:** Platinum loading, bipolar plate manufacturing, coating cost
- **Improving durability:** Pre-leaching, annealing, particle size
Governmental actions to advance FCEV viability

- **Hydrogen storage**: Compressed gas viable in 2035; 44% experts anticipated material storage by 2050
- **Refueling stations**: 500 stations by 2030 and 10,000 by 2050
Outline

1. Fuel cells and DOE targets
2. Expert Elicitation
 - Interview
3. Fuel Cell Vehicle Assessments
4. Solid Oxide Fuel Cell Assessments
Cost and degradation rate targets met by 2035–2050

- **Cost:** 25% of experts said target met by 2035; 52% said target met by 2050 (median = $800/kW)

- **Degradation:** 36% said target met by 2035; 58% said target met by 2050 (median = 0.2%/1,000 hrs)
Stack cost and chromium poisoning considerable

<table>
<thead>
<tr>
<th>Cost of material</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of machinery</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Cost of labor</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Cost of scrap</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cost of tooling</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

(Whiston et al., 2019b)

<table>
<thead>
<tr>
<th>Chromium poisoning</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni particle coarsening</td>
<td>14</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Secondary phase formation</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Ni particle agglomeration</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfur poisoning</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(Whiston et al., 2019b)

- **Reducing stack cost**: Operating temperature, production volume
- **Chromium poisoning**: Chromium getters, interconnect coatings
Experts recommended **$70 million (median)** in total funding for FY 2018

Experts identified **medium** and **small-scale** applications as the most favorable entry-level markets
Conclusions

Fuel cells and DOE targets

Expert Elicitation

Interview

Fuel Cell Vehicle Assessments

Solid Oxide Fuel Cell Assessments

Supported by:
Alfred P. Sloan
FOUNDATION

Andrea Lubawy
Toyota Motor North America

Justin Ong
ClearPath Foundation

Dimitrios Papageorgopoulos
U.S. Department of Energy

Grigorii Soloveichik
Advanced Research Projects Agency-Energy (ARPA-E)

Paul Wilkins
Bloom Energy

Constantine Samaras
Carnegie Mellon University
Moderator

