
Motivation

Research Question
How can fleet operators evaluate MHDPEV delivery fleets to (1) improve
economic competitiveness with diesel vehicles; (2) coordinate operational
decisions, accounting for the reduced payload and increased refueling (charging)
requirements of PEV trucks; (3) leverage the revenue potential of grid services
using controlled charging and V2G operations; and (4) leverage the potential of
using EV trucks to shave peak power demand at operator facilities to reduce
the electric demand charge costs?

§ Transportation sector accounts for 28% of the total U.S. GHG emissions, of
which 23% comes from Medium- and Heavy-Duty Trucks (MHDV) (EPA 2018).[1]

Transportation electrification is driven by plug-in electric vehicle (PEV) policies:
§ CARB’s Advanced Clean Trucks (ACT) program requires truck manufacturers to

transition from diesel to electric trucks beginning in 2024, with all new truck
sales having zero tailpipe emissions by 2045.

§ Biden’s Climate Day executive orders highlight a $2T plan to achieve a carbon-
free electricity sector by 2035 and nationwide net-zero emissions by 2050.

§ Amazon committed to The Climate Pledge to achieve net-zero carbon across
operations by 2040, switching to an all-electric delivery fleet.

§ Battery-electric trucks are more expensive to purchase, have limited range and
payload capacity, and take longer to refuel, requiring additional logistical
planning for charging, operations, and fleet sizing. However, PEVs also have
unique potential for fleet owners, offering lower operating and maintenance
costs and the possibility for additional revenue via electric grid services, such
as vehicle-to-grid (V2G) energy arbitrage and peak-shaving at facilities.

Figure 1. 2018 U.S. emissions by sector (left) and transportation sector GHG emissions by source (right).[1]
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We leverage recent developments in vehicle routing and advance these models to
capture PEV truck delivery, V2G, and peak shaving.[2,3] The resulting modeling and
computational tool (1) supports planning decisions for EV acquisition and
operational planning for fleet operators and policy analysts; (2) determines the
degree to which grid services may improve economic viability of PEV trucks
relative to diesel trucks and (3) characterizes conditions under which PEV
trucks are most competitive, including delivery network characteristics, and
cost and regulatory parameters.

Model & Methods
We demonstrate our model capabilities on a realistic MHDPEV fleet scenario for intrastate 
transport in CA using current vehicle specifications and prices (Tesla Semi, 500 mile range), 
current utility EV electricity rates (see Table 2), actual estimated travel distances, and 
approximations of wages and maintenance costs. Four scenarios are presented:
§ (A) Baseline: Minimize distance; no V2G in objective; start and end SOE must be full
§ (B) Charge Only: Maximize net profit; V2G in objective; charge only; start and end SOE must be full
§ (C) V2G: Maximize net profit; V2G in objective; charge and discharge; start and end SOE must be full
§ (D) V2G Opt.: Maximize net profit; V2G in objective; charge and discharge; optimize start/end SOE

Case Study: California Tesla Semi Fleet

§ Our model is a novel extension of the E-VRP, co-optimizing routing, scheduling and V2G 
energy arbitrage and peak shaving with a net amortized profit objective, enabling fleet 
operators or policymaker to plan the operation and design of MHDPEV fleets. 

§ Our CA case study shows >77% improvement in amortized profit from the standard E-VRP 
baseline methodology[2], primarily due to significant energy arbitrage opportunities on 
commercial electric retail EV tariffs.

Conclusions

Table 1. Benchmarks of our model on seminal VRP test instances demonstrate our ability to reproduce 
and improve on fleet designs and optimal routes to minimize distance[2], though the problem scale due 
to our time-indexed decisions hits computational limits in achieving best known partial charging 
results.[3] Distance and fleet size results are produced using Gurobi’s commercial MILP solver with a
computational time limit of two hours on a 2015 Macbook Pro 2.8 GHz Quad-Core Intel Core i7.

Chart 1. Waterfall of fleetwide daily amortized profits with costs (+) and revenues (-), excluding 
delivery revenues. The total shown represents the daily amortized delivery revenue required for 
the fleet to breakeven. Profit improvements (%) are shown relative to the Baseline (A).
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Instances[2] SSG[2] KC[3] Our Model (Gap %)

C103-5 176.05 // 1 EV 175.37 // 1 EV 175.37 // 1 EV (0.0%)

R103-10 207.05 // 2 EV 206.12 // 2 EV 206.12 // 2 EV (0.0%)

C101-10 393.76 // 3 EV 388.25 // 3 EV 393.56 // 3 EV (1.3%)

RC105-5 241.30 // 2 EV 233.77 // 2 EV 241.30 // 2 EV (3.1%)
Figure 2. Representation of the Electric Vehicle Routing Problem (EVRP) 
with duplicate charging station nodes and roundtrips to central depot.

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 – 𝐶𝑎𝑝𝐸𝑥 − 𝑂𝑝𝐸𝑥

𝑂𝑝𝐸𝑥 = 𝑊𝑎𝑔𝑒𝑠 + 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 + 𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 = 𝑃𝑒𝑎𝑘 𝑆ℎ𝑎𝑣𝑖𝑛𝑔 + 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑔𝑒 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦

Figure 3. Graphical representations of (a) routing constraints; (b) energy constraints; (c) payload 
constraints; (d) time constraints; and (e) customer delivery time windows.

$100 

$1,204 

$381 $52 $0 $1,738 

CapEx OpEx EA DCM Cycle Total

$100 

$1,204 

$(562)
$17 $0 $759 

CapEx OpEx EA DCM Cycle Total

$199 

$1,212 

$(1,010)
$7 $0 $409 

CapEx OpEx EA DCM Cycle Total

$100 

$1,204 

$423 $64 $0 $1,790 

CapEx OpEx EA DCM Cycle Total

(A) Baseline
Dist.: 1790 km, Gap: 0%

(B) Charge Only
Dist.: 1790 km, Gap: 0%

(C) V2G
Dist.: 1790 km, Gap: 262%

(D) V2G Opt.
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(C) V2G
Dist.: 1790 km
Gap: 262%

Figure 4. Results (A, B, C) demonstrate the same minimal distance—though different charging 
behaviors (power, kW)—with a fleet size (routes) of two Tesla Semis (only (C) is shown above). Result (D) 
optimally modifies routes and determines an optimal start and end SOE to take advantage of large 
energy arbitrage opportunities in SCE TOU-EV-8 (LA, Irvine) that justify “stationary storage”. The optimal 
fleet size of four Tesla Semis is limited due to only two S0 node instances.

Location Los Angeles Irvine San Diego Fresno Bakersfield San Jose San Francisco

Nodes D0, D1, S0 S1, M1 S2, M2 S3, M3 S4, M4 S5, M5 S6, M6

Tariff SCE TOU-EV-8 SCE TOU-EV-8 SDG&E TOU-M PG&E BEV-1 PG&E BEV-1 PG&E BEV-1 PG&E BEV-2

Charger 1MW HPCCV 60kW Level 3 1MW HPCCV 60kW Level 3 60kW Level 3 60kW Level 3 1MW HPCCV

Utility Service

Table 2. CA 
case study 
graph data.
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