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= Transportation sector accounts for 28% of the total U.S. GHG emissions, of
which 23% comes from Medium- and Heavy-Duty Trucks (MHDV) (EPA 2018).[1

Transportation electrification is driven by plug-in electric vehicle (PEV) policies:

= CARB's Advanced Clean Trucks (ACT) program requires truck manufacturers to
transition from diesel to electric trucks beginning in 2024, with all new truck
sales having zero tailpipe emissions by 2045.

= Biden’s Climate Day executive orders highlight a $2T plan to achieve a carbon-
free electricity sector by 2035 and nationwide net-zero emissions by 2050.

= Amazon committed to The Climate Pledge to achieve net-zero carbon across
operations by 2040, switching to an all-electric delivery fleet.

= Battery-electric trucks are more expensive to purchase, have limited range and
payload capacity, and take longer to refuel, requiring additional logistical
planning for charging, operations, and fleet sizing. However, PEVs also have
unique potential for fleet owners, offering lower operating and maintenance
costs and the possibility for additional revenue via electric grid services, such
as vehicle-to-grid (V2G) energy arbitrage and peak-shaving at facilities.
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Figure 1. 2018 U.S. emissions by sector (left) and transportation sector GHG emissions by source (right).["!

Research Question

How can fleet operators evaluate MHDPEV delivery fleets to (1) improve
economic competitiveness with diesel vehicles; (2) coordinate operational
decisions, accounting for the reduced payload and increased refueling (charging)
requirements of PEV trucks; (3) leverage the revenue potential of grid services
using controlled charging and V2G operations; and (4) leverage the potential of
using EV trucks to shave peak power demand at operator facilities to reduce
the electric demand charge costs?
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Figure 2. Representation of the Electric Vehicle Routing Problem (EVRP)
with duplicate charging station nodes and roundtrips to central depot.

Model & Methods

We leverage recent developments in vehicle routing and advance these models to
capture PEV truck delivery, V2G, and peak shaving.>3! The resulting modeling and
computational tool (1) supports planning decisions for EV acquisition and
operational planning for fleet operators and policy analysts; (2) determines the
degree to which grid services may improve economic viability of PEV trucks
relative to diesel trucks and (3) characterizes conditions under which PEV
trucks are most competitive, including delivery network characteristics, and
cost and regulatory parameters.
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where:

O(x) = OL(x) + Op (x) + Oy (x)
OpEx = Wages + Maintenance + Cycling Costs

R(x) = Rg(x) + Re(x) + Rp(x)
Revenues = Peak Shaving + Energy Arbitrage + Delivery

e

subject to:

EV route DAG I
(a) *

EV SOE
over time

(b)

a a a a a a x4 x4 x4
EpY XEv.d XEV my x_lﬁV,ms XEV mg XEV 51, XEV 55, “EV.m "EV.mg “EV.d,
(VR X 48 v —)
AxS,, & dgy m, & dpmy ms & g mg X dpy s, & x’,’f,,‘slbl_, xdy, 5, & ix‘l’fv,:z_.,t o< ds,, m A - & dped,
© EV payload
over time xEq xEq xEq xEq xEq XEq Eq Eq XEq
QAF,I';‘X . EV .do EV.,m4 _EV.ms EV.mg EV 511 EV,s21 XEV my XEV.mg “EV.d_,
0 T ] Y X X X
E
AXE‘II/ : _qm4 _qms _qm,, —qm7 —qu
Ew Ew Ew Ew Ew Ew Ew Ew Ew
XEV dy XEVm, XEV ms XEV.mg XEV 51, XEV 52 XEV.my XEV ms YEV.d_
B . .t . LA [0 B [ BhEnEN .0
(d) EV over time L )
AxE o dgy m, & dpyy ms & dpg mg & dp s, xdy, 5, < dy,, m & Ay g < dmga, i,
XEy - (15, + rg,) (15, + rgﬁ) x5, +12) < (15, + X, X5y, ) < (15, + X, X5y, ) xS +12) o (15, +12)
A A A B B B A A B B
Customer time windows tmy » Ums Tmg Tmg > Uims Tmg Ty > Tmg Iy > Umg
T == == T T
(e) j( i
A 4A tB tB
Station time -1~ %2 sl_la_ 5
windows
| >
t=0 t=tr

Figure 3. Graphical representations of (a) routing constraints; (b) energy constraints; (c) payload
constraints; (d) time constraints; and (e) customer delivery time windows.

Case Study: California Tesla Semi Fleet

We demonstrate our model capabilities on a realistic MHDPEYV fleet scenario for intrastate
transport in CA using current vehicle specifications and prices (Tesla Semi, 500 mile range),
current utility EV electricity rates (see Table 2), actual estimated travel distances, and

approximations of wages and maintenance costs. Four scenarios are presented:

= (A) Baseline: Minimize distance; no V2G in objective; start and end SOE must be full

= (B) Charge Only: Maximize net profit; V2G in objective; charge only; start and end SOE must be full
= (C) V2G: Maximize net profit; V2G in objective; charge and discharge; start and end SOE must be full

= (D) V2G Opt.: Maximize net profit; V2G in objective; charge and discharge; optimize start/end SOE

Table 1. Benchmarks of our model on seminal VRP test instances demonstrate our ability to reproduce
and improve on fleet designs and optimal routes to minimize distancel?), though the problem scale due
to our time-indexed decisions hits computational limits in achieving best known partial charging
results.B! Distance and fleet size results are produced using Gurobi's commercial MILP solver with a
computational time limit of two hours on a 2015 Macbook Pro 2.8 GHz Quad-Core Intel Core i7.

C103-5 176.05// 1 EV 175.37// 1 EV 175.37 // 1 EV (0.0%)
R103-10 207.05// 2 EV 206.12// 2 EV 206.12 // 2 EV (0.0%)
C101-10 393.76 // 3 EV 388.25// 3 EV 393.56 // 3 EV (1.3%)
RC105-5 241.30// 2 EV 233.77 /1 2 EV 241.30 // 2 EV (3.1%)

) \
) ) )
.....
\\\\\

\\\\\

B
!
! )
)

........
b | y

Table2. cA (S
case study I 0o, 01,50 51, M1 52, M2 53, M3 54, M4 S5, M5 56, M6
graph data. SCETOU-EV-8 SCETOU-EV-8 SDG&ETOU-M PGBEBEV-1 ~PG&E BEV-1 PGREBEV-1  PG&E BEV-2
IMWHPCCV  60kW Level 3 1MW HPCCV  60KW Level 3 60KW Level 3 60kW Level3 1MW HPCCV
(A) Baseline (B) Charge Only (C)V2G (D) V2G Opt.

Dist.: 1790 km, Gap: 0%  Dist.: 1790 km, Gap: 0% Dist.: 1790 km, Gap: 262% Dist.: 1801 km, Gap: 337%

$423 $64 $0 $1,79Q

$1.zol

$381 $52...$0-$1,738

mm.

$1,212
$1,204
I $17 $0 $759
$(562)
$7 $0 $409
$199 (1,010)

$100 $100 $100 -
[ | [ | [ |

CapEx OpEx EA DCM Cycle Total CapEx OpEx EA DCM Cycle Total CapEx OpEx EA DCM Cycle Total CapEx OpEx EA DCM Cycle Total

Chart 1. Waterfall of fleetwide daily amortized profits with costs (+) and revenues (-), excluding
delivery revenues. The total shown represents the daily amortized delivery revenue required for
the fleet to breakeven. are shown relative to the Baseline (A).
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Figure 4. Results (A, B, C) demonstrate the same minimal distance—though different charging
behaviors (power, kW)—with a fleet size (routes) of two Tesla Semis (only (C) is shown above). Result (D)
optimally modifies routes and determines an optimal start and end SOE to take advantage of large
energy arbitrage opportunities in SCE TOU-EV-8 (LA, Irvine) that justify “stationary storage”. The optimal
fleet size of four Tesla Semis is limited due to only two SO node instances.

Conclusions

= Qur model is a novel extension of the E-VRP, co-optimizing routing, scheduling and V2G
energy arbitrage and peak shaving with a net amortized profit objective, enabling fleet
operators or policymaker to plan the operation and design of MHDPEYV fleets.

= Qur CA case study shows >77% improvement in amortized profit from the standard E-VRP
baseline methodology!?, primarily due to significant energy arbitrage opportunities on
commercial electric retail EV tariffs.
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