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Disclaimer 
This report was prepared as an account of work sponsored by Carnegie Mellon University and 
an agency of the United States Government. Neither Carnegie Mellon University, the United 
States Government, nor any agency thereof, nor any of their employees makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference therein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or 
favoring by Carnegie Mellon University, the United States Government, or any agency thereof. 
The views and opinions of authors expressed therein do not necessarily state or reflect those of 
Carnegie Mellon University, the United States Government, or any agency thereof. 
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Executive Summary  
What Were the Workshop Goals? 
This report summarizes findings from the “Real-Time Decision-Making for the Subsurface” 
workshop hosted by Carnegie Mellon University's Wilton E. Scott Institute for Energy Innovation 
in July 2018. Several dozen technical experts from industry, universities, national laboratories, 
and the Department of Energy (DOE) convened for two days to discuss the current state of 
technology that could enable autonomous monitoring and control of subsurface systems, to 
identify potential short-term and long-term opportunities, and to discuss gaps and challenges 
that need to be overcome to make this transformational technology a reality. Two primary 
technology applications were covered at the workshop: unconventional oil and gas recovery 
and carbon storage. However, the approaches and techniques discussed have utility for a broad 
range of subsurface activities, such as geothermal energy, subsurface energy storage, and 
enhanced oil recovery (EOR).  

The timeliness of this effort is supported by several recent technological advances. Machine 
learning (ML), data analytics (DA), and data management (DM) have expanded rapidly in many 
commercial sectors, providing an array of resources that can be leveraged for subsurface 
applications. Novel sensors can now provide temporal and spatial resolution not available a 
decade ago, and technologies under development now may provide the ability to revolutionize 
how the subsurface is imaged in the coming decade. Developments in sophisticated physics-
based simulators, coupled with high performance computing capabilities, enable better 
prediction of subsurface systems than ever before. Finally, ML, computational speed, and the 
ability to handle very large data streams have markedly advanced. In short, it is the ideal time 
to pursue the development of real-time decision-making capabilities that could transform 
approaches used to develop subsurface energy systems.  

What is Real-Time Decision-Making? 
Real-time decision-making applicable for engineered subsurface energy systems, which is 
closely tied to autonomous control of subsurface systems, is a long-term, transformational goal 
that is likely to take a decade or more to achieve in any broad way. Nonetheless, several 
technologies that can enable better decision-making and lead to increased productivity and 
reduced risk by leveraging potentially large and disparate datasets are ready for development 
in the near-term. Collectively, these approaches have the potential to completely change the 
way that oil and gas and other subsurface fields are operated. Higher resolution sensors and 
faster computational platforms are enabling technologies. Novel DM and analytics approaches 
must be developed to ensure that such advances can be optimized. In light of this, several 
topics were covered during the workshop that have both near-term and long-term applications, 
including the identification of  
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1) use cases for technologies related to ML, DA, and DM, including current and near-
term applications as well as transformational opportunities;  

2) data types and opportunities to use and strengthen existing datasets;  

3) potential DA and ML approaches; and  

4) research and development (R&D) challenges. 

Because of the broad applicability of these tools and techniques to many aspects of carbon 
storage operations and unconventional oil and gas exploration and recovery, encompassing 
surface, near-surface, and deep subsurface applications, the workshop participants identified a 
handful of priority use cases with the greatest potential benefits. These high-value use cases 
include 

• Safety: Protecting workers, the public, the environment, and equipment from 
potentially significant incidents through technologies that can improve early warning for 
potential failures, as well as augment or provide context for the information that 
decision-makers must use when making rapid-fire decisions regarding such incidents 

• Drilling/Geo-steering: Enhancing resource utilization by speeding up and otherwise 
improving the drilling process, as well as by improving the placement of wells within the 
targeted formation 

• Completions and Well Operations Optimization: Improving recovery and storage 
efficiencies with next-generation completion design; optimizing injection and 
production rates; and managing stress states, fracture formation, and fracture growth 

• Reservoir Management/Operations: Optimizing recovery and storage efficiencies by 
improving reservoir characterization; designing strategies for more efficient and longer-
term approaches to injection and production; ensuring no leakage of the resource 
outside of the reservoir; and limiting induced seismicity 

Making advances in these areas will lead to the achievement of significant progress in 
unconventional oil and gas recovery, such as significantly improved hydrocarbon recovery 
efficiency from domestic resources, and in carbon storage, through development of the 
resources needed to demonstrate safe storage of injected fluids to non-operators and the 
broader public. More detail on each of these use cases can be found in the body and 
appendices of this report. 

Given the data-driven nature of the approaches being discussed, several conversations at the 
workshop focused around data availability, data needs, and data quality, as well as the ML and 
DA tools and techniques that can be used to make the most of this valuable information. The 
body of this report describes several tools and techniques that can be used to analyze the types 
of data that can be collected by operators, service companies, and contractors in the field to 
best facilitate analyses that could generate improvements aligned to the use cases outlined 
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above. The breakout session summaries in the 
appendices also cover many of the data types 
needed for the different use cases. Publicly-available 
datasets, as well as those curated by vendors (i.e., 
DrillingInfo and IHS Markit), are one potential 
avenue where readily-available data could expedite 
foundational analyses. However, publicly available 
datasets alone are often considered insufficient to 
achieve targeted solutions to all the issues 
addressed here, but such data often exist and can 
help augment site-specific field data. Finding and 
acquiring this data are also sometimes difficult; 
creating tools that would enable potential users to 
search for and identify such publicly available 
resources would improve the ability to use “big 
data” (i.e., advanced analysis of very large, diverse 
datasets) approaches for developing data-driven 
insights. 

What are Some Key Challenges? 
The workshop participants identified several key challenges or barriers that could inhibit the 
development and use of real-time decision-making tools for subsurface applications. The most 
notable challenges include 

• Missing or incomplete datasets: In many cases, the data that are collected by operators 
is insufficient to perform the analyses needed to make significant improvements in 
operational efficiencies. Because of cost considerations, operators typically collect the 
bare minimum amount of data required to sustain operations, or data required to 
satisfy regulatory reporting requirements; for some of the same reasons, the data 
quality is also often lacking or datasets are absent from important parameters that were 
not recorded/collected that may provide useful insights.  

• Incompatibility of data formats: Proprietary data formats are common across the oil 
and gas and carbon storage industries. Because of this, when multiple operators, service 
companies, or vendors work together on the same site, there are significant barriers to 
common use of the data that are collected. Additionally, data from disparate sources, 
including operators working in the same field, could be out of sync in terms of 
timestamp, format, completeness, etc. As a result, data interpretation, preprocessing, 
and potential importation of missing values becomes a substantial task. 

• Limitations on storing, transmitting, and managing large data volumes: As novel 
sensing technologies have evolved and volumes and rates of data that are collected 

Data analytics (DA) is a process used to 
identify hidden patterns and relationships in 
large, complex, and multivariate datasets. 
The application of data analytics involves 
three key elements:  

• Data organization and management: 
ensuring that the right data is collected, 
retrieved, and stored for given analyses 

• Analytics and knowledge discovery: 
software-driven modeling to capture 
input-output relationships 

• Decision support and visualization: 
sharing results with decision-makers, 
as well as streamlining repetitive 
tasks  

Machine learning (ML) refers to a set of 
algorithms, based on advanced statistics and 
computer science for model building, that 
underpin the analytics and knowledge 
discovery aspects of DA. 
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continue to grow exponentially, the computational tools required to store and transmit 
such data volumes in real time have often not kept pace, such that some data that are 
currently collected are not used in a meaningful way. Methods for keeping track of data 
as it moves through a system that allows storage, backup, and analysis are lacking. 

• Lack of appropriate or useful signals: In some cases, it is unknown whether signals exist 
within the collected data or not. Particularly, data that have often been categorized as 
“noise” (i.e., corrupted, distorted, or otherwise meaningless data) can sometimes 
contain useful information but because of prior classification as noise, it is either 
discarded, not collected, or not analyzed. 

• Hesitance to adopt new technologies by decision-makers: Cultural biases based on 
personal experience can cause decision-makers in some organizations to not adopt ML 
and DA approaches to improve their organizational performance. 

• Limitations in labeled datasets for ML applications: Labeled datasets are required for 
supervised ML. Often geophysical and geoscience datasets are not labeled or poorly 
labeled. An example is an earthquake catalog—some events may be mis-identified, 
seismic wave phases may be mis-picked, etc. Many geoscience datasets suffer from 
similar problems, leading to errors in the supervised learning procedure.   

More information regarding these and other challenges or barriers can be found in the body of 
the report and the breakout appendices. 

What Key Recommendations Came from the Workshop to Address the R&D Challenges? 
Successful application of ML algorithms and big data approaches to the subsurface requires 
the involvement of subject matter experts (SMEs) and an outcomes-based approach. It is not 
uncommon for data scientists who have little to 
no geologic or reservoir engineering expertise to 
take broadly applicable datasets collected by the 
oil and gas industry and apply mature DA and 
ML tools to these datasets. Unfortunately, such 
exercises often end in failure or reflect only 
marginal success. When data scientists and 
SMEs who have experience in modeling and/or 
characterizing the subsurface collaborate (see 
Figure 1), the chances of success are much 
higher. Because subsurface problems are so 
complex and have high dimensionality in terms 
of the number of independent and dependent 
parameters, geoscience experts are needed, at 
the very least, to help shape and constrain the 
initial algorithms used.  

Figure 1. Geoscientists engage with data scientists to 
make DA and ML endeavors successful. 
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Additionally, engaging SMEs can help ensure that such work is outcome-driven—i.e., that the 
recommendations generated from the application of ML tools are focused on improved 
outcomes useful to operators. Having clear outcomes as drivers of the data collection and 
analysis process can help identify what ML approaches are needed to solve the problem (see 
Figure 2), and SMEs can help identify data sources that were not originally planned as part of 
the effort.  

 
Figure 2. Multiple data sources from the field, laboratory, and simulations can be combined through strong DM 
tools to develop DA and ML tools that achieve targeted outcomes. 

Field data should be supplemented with physics-based simulation to enable successful big 
data DA and ML approaches. It’s often the case in subsurface applications that the amount and 
type of data collected are not comprehensive enough to do a complete analysis based on 
limited data streams alone. Analyses that rely on too little data, or on low-quality data, can 
easily produce misleading or erroneous results. Modeling may be needed to sample subsurface 
cases that are not sampled by well data alone. When the physical properties and chemistry of a 
subsurface reservoir can be modeled with high-fidelity, physics-based simulators, then the 
results from such simulations can be used to augment field data in ML applications (see Figure 
2). In some cases, this is done by using the simulated data to help constrain the inputs, 
combination of inputs, or boundaries of the DA algorithms that are used. In cases where some 
of the data that have been collected is of questionable quality, reservoir simulation can help 
provide a quality control check on the data. Additionally, reservoir simulations can generate 
synthetic data that can be used to train and validate ML algorithms in similar ways regarding 
how field data are used. Some recent studies have shown that this approach is useful and 
sometimes necessary to get meaningful results from ML applications [1, 2]. Similarly, laboratory 
studies, including those focused on the physical properties and chemistry of a reservoir, could 
be used for training and validation procedures in the same way simulations are used. Further, 
laboratory studies can also be used to ground truth simulations and to test basic physics when 
it is unfeasible in situ. 
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Through the use of physics-based models and approaches, it will be possible to use ML 
approaches to significantly extrapolate from a mature and well-understood formation and into 
a new one within the same play or basin. By their very nature, DA approaches are only 
guaranteed to perform well when they are used for interpolating. However, with the 
combination of physics-based modeling and DA, it may be possible to use these approaches to 
infer key information within a given play area where limited exploration and data collection has 
occurred. 

Access to large datasets, often owned by more than one operator, will be necessary to 
perform meaningful ML analyses. In the oil and gas industry, site characterization data are 
often held tightly and not shared with others because of the value that it is perceived to have. 
However, in many cases, a single operator might not have sufficient data assets in a single field 
or play to justify the use of ML and advanced DA. Recent studies have shown that, for some 
applications, data from several hundred to a thousand wells may be needed before DA can 
inform the operator in a meaningful way [3]. When it makes sense, data sharing or data pooling 
should be encouraged to create larger datasets that can provide significant new insights to field 
operators. Even when data pooling among operators is not necessary, researchers are going to 
require access to significant volumes of data from operators; for this to be successful, operators 
must be willing to share resources but should also expect to receive some type of ancillary 
benefit as a result of the research performed. Secure agreements that can allow researchers 
access to data while ensuring that proprietary data remain secure will be necessary as new 
techniques are applied and developed for specific use cases. The use of open-source software 
and platform agnostic approaches are likely to create the easiest and fastest environment for 
sharing such data and for the subsequent analysis, as long as those tools remain secure. Open-
source software is also attractive because it can allow oil company clients to append reservoir-
specific code. 

New DM tools and approaches will be needed to enable broad application of DA and ML to 
subsurface applications. A wide variety of datasets need to be brought together (e.g., well logs, 
production logs, seismic surveys) to perform meaningful analyses. Unfortunately, data, even 
when of the same type, are often held in proprietary formats that are not easily accessible by 
others outside that organization. The challenge here is that the format for each of these types 
of data is wildly inconsistent by nature. Moreover, even similar data types (for instance, well 
logs) may vary in constitution, albeit subtle, from one organization to the next, and even within 
the same organization when collected at different times or by different groups. This 
predicament is a significant impediment to successful data mining and ML absent of diligent 
data preprocessing. If each data type had a standard format or even a few standard formats, 
that would make it much easier to meaningfully share data and information from one 
organization to another (e.g., operators, service companies, consultants, researchers). 
Standardization would also likely enable faster development of useful ML tools that can be 
more broadly tested and applied to industry problems.  
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In addition to formatting issues, there is also the concern about data volumes and transmission 
rates. With the rapid advances in sensing technologies that produce more and more data, it 
becomes much more challenging to transfer the high volumes of data collected at the wellhead 
onto the cloud to perform analyses. Several possible solutions to this problem have potential. 
For example, lossless data compression or similar techniques have a big impact when the 
techniques can reduce the massive datasets to just a few meaningful numbers. Edge computing 
(i.e., decentralized data processing) is another important tool to consider, as it brings the 
analytical power to the well, so that a significant portion of the analyses can be performed 
directly at the wellhead to extract only meaningful data for additional processing in the cloud. 
For example, an early warning signal can be identified at the wellhead from potentially several 
data parameters, and only a simple warning indicator can be passed back to the control room.  
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General Background, Scope, and Focus 
The ability to monitor the subsurface for decision-making purposes is crucial to understanding 
and ultimately optimizing the exploration for and utilization of subsurface resources, as well as 
effectively monitoring operational safety, and diagnosing potential risks like wellbore integrity 
issues. This ability is critical not only for operators in the oil and gas industry and in carbon 
storage applications, but also for United States (U.S.) energy security and environment and 
public protection.  

ML, DA, and DM have expanded rapidly in many commercial sectors, providing an array of 
resources that can be leveraged for subsurface applications. In addition, novel sensors, such as 
fiber optics-based sensors that measure distributed acoustics, temperature, and strain, are now 
able to provide signals in parts of the reservoir and at a temporal and spatial resolution not 
possible a few years ago. Nanosensors that can be injected into reservoirs, either as part of 
stimulation procedures or during drilling or injection operations, are also under development, 
providing the promise of an unprecedented look inside reservoirs at distances away from wells. 
Global positioning systems, interferometric synthetic aperture radar (InSAR), strain meters, 
continuous gravity measurement, continuous source seismic, and other approaches provide 
additional avenues for continuous and repeated sensing and imaging approaches that generate 
large volumes of data and can be broadly distributed across fields. Finally, developments in 
computational power and sophisticated physics-based simulation platforms have opened a 
pathway to physics-informed ML for complex subsurface systems, in turn enabling new 
strategies for the signature discovery and training of new algorithms that can provide the 
backbone for autonomous systems. In short, it is time to focus more stringently on the 
development of real-time decision-making capabilities that could transform the approaches 
commonly used for subsurface energy systems. Such transformational approaches may play an 
important role in supporting the goals of a broad range of stakeholders, including the DOE’s 
Office of Fossil Energy. These goals include doubling resource recovery from unconventional 
systems, improving carbon storage capacity estimates, and ensuring the safe operation and 
long-term performance of all fossil energy-related subsurface activities.  

However, while a high-resolution description of the subsurface enables better characterization 
of the phenomena and processes occurring in the subsurface, it also presents a challenge due 
to the large amounts of data that must be collected, transmitted, stored, and processed. 
Additionally, due to the complexity of these systems involving hydrologic, chemical, 
mechanical, and other processes, traditional physics-based computational models tend to 
struggle with the ability to fully capture all relevant physical/chemical phenomena in a timely 
manner. DA methods and ML approaches can support advancements in this area; the potential 
impact that this could have in subsurface monitoring and signal interpretation for real-time 
decision-making is significant. 



 

REAL-TIME DECISION-MAKING FOR THE SUBSURFACE REPORT  15 

The need to coordinate related R&D activities—to identify recent advancements, knowledge 
gaps, and beneficial future directions—has led to several recent activities by a variety of 
interested parties spanning industry, academia, and government. For instance, DOE’s Office of 
Science held a workshop in February 2019 on scientific ML to define the challenges and 
opportunities for applied mathematics research and to increase the rigor, robustness, and 
reliability of ML for DOE mission requirements [4]. Early in 2018, the Center for Nonlinear 
Studies and the Center for Space and Earth Sciences at Los Alamos National Laboratory 
sponsored the Conference on ML in Solid Earth Geoscience, which focused on modern 
applications of ML in geoscience problems, including earthquakes, faulting, Earth imaging with 
a multitude of data types, geological characterization, and subsurface flow and transport. A 
second conference occurred in March 2019. In July 2018, the U.S. Energy Association hosted a 
workshop to identify how big data and ML can be leveraged to enable the advancement of coal 
energy systems, including carbon capture and storage [5]. This report applies to the “Real-Time 
Decision-Making for the Subsurface” workshop hosted by Carnegie Mellon University’s Wilton 
E. Scott Institute for Energy Innovation in July 2018 and focuses on the R&D challenges inherent 
to big data approaches and analytics for subsurface energy applications.  

Big data DA has the potential, through data mining and ML approaches, to help increase 
operational efficiencies by gathering actionable information and understanding hidden patterns 
and relationships in large, complex, multi-dimensional datasets. There are many challenges in 
this area, including the handling of large volumes of data, the velocity at which the data are 
generated and collected, and the variety of different data streams. Data-driven modeling and 
ML apply statistical techniques to construct predictive models that “learn” based on data 
streams from real-world activities without explicit modeling/programming of the underlying 
causal relationships. This is an important technique when sufficient domain knowledge (such as 
physics) is lacking to build a theoretical model capable of supporting computational 
simulations, or when a rapid predictive capability is needed. It also has many benefits, as it can 
often capture non-linear relationships between variables, avoid explicitly defining variable 
transformations/data models, automatically handle correlation between predictors, and 
support guided/automated tuning of model parameters. 

ML is often successfully used when developing reduced-order models (ROMs). When a process 
or multicomponent system is particularly complex and computationally expensive to model (as 
is often the case for many subsurface phenomena), the system can be divided into discrete 
components, which can be validated separately against field and lab data. At this point, ML 
approaches can be applied to create a ROM that can rapidly reproduce the component model 
prediction. In subsurface applications, this method can be used to develop surrogate reservoir 
models, which are approximations of full-field models developed to accurately represent a 
given full-field reservoir simulation model. These models address many time-consuming 
operations performed with reservoir simulation models and have the potential to reduce the 
amount of time needed for reservoir simulations from days (via traditional physics-based, full-
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field model) to seconds (via ROM). Additionally, these models can be trained with a relatively 
small number of reservoir simulations or field/lab data, which is critical when time and 
resources are constrained. An example of a recently developed surrogate reservoir model can 
be found within the paper by Shahkarami A., Mohaghegh S. and Hajizadeh, Y. [6] In this work, a 
developed surrogate reservoir model using artificial neural networks (ANNs) was shown to have 
high accuracy in mimicking the behavior of a full-field reservoir simulation model. 

Examples of successful application of ML techniques in oil and gas are rapidly growing, 
particularly in the areas of exploration and production, digital oil field management, predictive 
maintenance, and natural language processing. A few examples related to optimization of well 
placement include the study from Montgomery and O’Sullivan [7]. This study highlighted the 
importance of using the appropriate model in characterizing the impact of well location and 
spacing on well productivity gains—a factor that was highly underestimated in previous 
analyses. Similarly, Shahkarami and Wang [8] have coupled a data-driven predictive model with 
an economic model to evaluate influencing factors in net present value, such as well spacing 
and well interference, specifically for horizontal well spacing scenarios and hydraulic fracturing 
design.  

A successful application of a purely DA approach with production well history matching for oil 
and gas production in the North Sea [6] has enabled faster prediction of reservoir behavior than 
traditional reservoir models. In theory, this approach, which relied on information from other 
wells in the formations and early production data, captures as much or more of the underlying 
physics as the physics-based models. In other instances, DA techniques have been used on 
specific processes in oil and gas production. An example includes a plunger lift optimization 
process where the addition of real-time acoustic monitoring was used to supplement available 
data, and a statistical DA approach was used to optimize timing of artificial lift operations to 
maximize recovery.  

The detection of induced seismicity events has also benefitted from DA approaches. Skoumal et 
al. [9] developed a Repeating Signal Detector, a computationally efficient algorithm that uses 
agglomerative clustering to identify waveforms buried in years of seismic recordings using a 
single seismometer. Rouet-LeDuc et al. and Hulbert et al. [10, 11, 12, 13] showed that 
continuous seismic data processed by ML techniques can reveal information about a fault’s 
physical properties, such as friction and/or displacement in laboratory and field studies. They 
also showed that the timing of upcoming failures can be bounded by the information contained 
in the signals [10]. These are a very limited number of the large group of examples that can be 
currently found within the open literature. Additionally, several projects are currently ongoing 
at many of the national laboratories, particularly projects on novel ML techniques for reservoirs 
production prediction, fractures development, and induced seismicity management. 

As this field of study evolves, it is important to identify the goals specific to subsurface 
applications. Near-term goals should aim to incrementally (e.g., by 10%) improve resource 
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recovery and storage potential and should include the reduction of interference in hydraulic 
fracturing stages, reduction of operational costs by removing, for example, costly low-
performing stages, clusters and/or perforations, and the improvement of plume tracking 
capabilities. This will require the use and further development of current and novel sensing 
technologies as well as computational techniques and methods. Continuing to apply and find 
innovative ways to integrate existing DA approaches, as well as current computational 
capabilities, will also be needed. This is the first step needed to achieve the ultimate, more 
ambitious goals of the applications of DA to subsurface, which could include doubling oil and 
gas recovery from unconventional reservoirs, doubling carbon storage resource potential, and 
increasing EOR potential by 25% within the next 10 years. These transformational approaches 
will require the incorporation of novel continuous and distributed (e.g., distributed acoustic 
sensing [DAS], nano) sensing and the leveraging of high-performance computing technology 
(e.g., exascale).  

The achievement of these goals relies on the ability to overcome a series of challenges, 
including the lack of access to data, especially labeled data; the need for better approaches to 
combine high-performance models, ROMs, DA, and ML; and the need for improved 
visualization of large multi-dimensional subsurface datasets. Additionally, challenges in data 
fusion will need to be resolved by combining multiple types of datasets into a single analysis 
(discrete, continuous, point, distributed), and by integrating continuous monitoring 
measurements with periodic measurements and reservoirs simulations. 

The rapid integration of big data DA and ML in subsurface applications requires a coherent 
strategy and a clear definition of the questions surrounding the field with new, information-rich 
datasets. Part of the effort should go into understanding how researchers can use data and 
complex models to answer these questions. 

The remainder of the main body of this report focuses of information and themes that were 
common among the three sub groups included in the workshop, specifically 

1. Tools and approaches available for DM and analysis;  
2. Methods for selecting and applying such analytical tools; and 
3. Data needs, and challenges to be overcome. 

A great deal of information was covered during the workshop within the three breakout groups 
(i.e., resource recovery and utilization, autonomous monitoring, and stress and seismicity), but 
because of the significant variability regarding the applications, data needs, and challenges 
among these three groups, their summaries are presented separately in appendices 1–4. 
Appendix 5 summarizes the attendees at the workshop; Appendix 6 provides the workshop 
schedule. 
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Enabling Tools and Approaches  
In the oil and gas industry, hydrocarbon production from unconventional formations has 
skyrocketed in the past decade. Despite the prolific production, the vast majority of oil and gas 
remain in the ground. For both unconventional oil and gas exploration and production and 
carbon storage, the risk or perception of risk can be the biggest barrier to success. Additionally, 
a significant impediment to full development in both areas is the cost of operating and 
managing these fields. The focus in unconventional reservoirs has customarily been to produce 
large volumes as quickly as possible, ensuring a short payback period for capital expenditure. In 
return, the rapid subsequent decline in production in outbound years has resulted in these 
projects being overall less profitable than comparable deep-water conventional reservoirs. 
Often, the unconventional wells are shut-in or abandoned after only a few years of production. 
A considerable challenge for DOE is to develop and deploy technology to increase the longer-
term production of such wells. 

Given the recent and continuing advances in sensing and computational capabilities, there will 
be opportunities for transformational changes in oil and gas production and carbon storage 
activities through the use of DA and ML. Such technologies have the potential to enable a 100% 
or greater increase in oil production from unconventional formations, to detect safety or 
containment issues before they occur, and to significantly improve efficiencies in operations 
and reduce their overall costs. 

In the previous section, several use cases in both unconventional oil and gas and carbon storage 
were discussed. More specific examples are outlined in further detail in the following 
subsections, as well as in the appendices of this document. In the following subsections, several 
of the potential tools and techniques that can be used to meet these challenges are addressed 
with examples from specific use cases from subsurface energy system applications. 

Tools and Techniques 
Analysis of subsurface systems using data-driven modeling (like ML) provides capability, tools, 
and approaches that facilitate new developments pertaining to: (1) acquiring and managing 
data in large volumes, of different varieties, and at high velocities; and (2) the use of statistical 
techniques to “mine” the data and discover hidden patterns of association and relationships in 
large, complex, multivariate datasets [14, 15, 16]. The ultimate goal is to develop data-driven 
insights for understanding and optimizing the performance of engineered subsurface systems 
[16]. The development of such data-driven models typically follows a process of distinct and 
iterative steps that consists of problem classification through data collection, algorithm 
selection, validation, and execution. At the data acquisition and processing stage, there are 
possibilities for integrating a multitude of data sources typically common to disparate 
components associated with understanding the behavior and performance of engineered 
natural systems. For instance, geologic characterization data (i.e., cores, logs, and seismic 
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survey data), fluid/geochemical sampling data, monitoring-based data, as well as production 
(i.e., water, hydrocarbons) and injection data are all relevant types of data being generated at 
both commercial and pilot field sites (across both the oil and gas spectrum and CO2 storage 
field projects) that could inform data-driven model development. A typical process outline for a 
ML application is presented in Figure 3, which highlights prominent stages [17, 18, 19]. 
However, despite the relatively sequential setup of Figure 3, the process in general is likely to 
be highly iterative. 

 
Figure 3. Schematic depicting stages pertaining to the development of data-driven ML models [17]. 

Since the development and coding of advanced statistical algorithms, there has been an 
increased reliance on the use of commercial packages (such as SAS) and open-source packages 
(R and Python). As a result, ML algorithms are readily available to the larger community. 
However, there remains the need to implement sound approaches for integrating these types 
of algorithms as part of any application, not just specifically for subsurface-related applications. 
Mishra and Datta-Gupta [14] have identified the following items as critical considerations in this 
regard: (1) choosing the right algorithm(s) for the problem as opposed to using a preferred one 
for all cases, (2) applying the algorithm(s) with the proper choice of user-defined parameters, 
(3) avoiding the problem of data over-fitting and resulting bias in fitted model predictions, and 
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(4) ensuring that the data-driven model makes physical sense in terms of variable selection and 
parameter importance. In the following subsections, commonly used data-driven modeling 
tools and techniques applicable for petroleum geosciences and subsurface applications are 
discussed. As indicated in Figure 3, a typical process of creating a model that applies the best 
tools and techniques to effectively evaluate the specific problem case consists of several stages. 

Classifying and Defining the Problem 
The first stage is classifying and defining the specific problem, which involves determining the 
objectives, success criteria, and constraints used in the modeling process. Building and 
operating an end-to-end ML-based system also requires stakeholders comprising SMEs, data 
scientists, and possibly information technology operations personnel [17]—all of which provide 
unique perspectives to effectively evaluate and address the problem of interest [20]. 
Depending on the problem evaluated, the mix of stakeholders engaged, and the approaches 
considered could vary significantly.  

Several recent studies have successfully demonstrated the use of ML and DA in subsurface 
applications. These studies have explored topics pertaining to predicting hydrocarbon 
production in unconventional reservoirs [21, 22, 23], lithofacies identification and 
characterization [24, 25, 26], CO2 storage monitoring design [2], and CO2 storage monitoring 
anomaly detection [27], to name a few. However, other possible uses for data-driven models in 
subsurface-related applications could include risk assessment, informing real-time decisions in 
the field, understanding seismicity and dynamic stress state in the subsurface, well design and 
completion optimization, informing drilling and geo-steering, and tracking CO2 and pressure 
plumes in the subsurface [20]. Ultimately, the problem being addressed will directly influence 
the types (and possibly the quantity) of the data needed, the algorithm(s) selected, the types of 
SMEs best suited to inform decisions, and the approaches toward validation. 

Acquiring and Processing Data 
Given its inherent data-driven nature, the quality of any ML effort is based on the quality of the 
data it uses. The quality and quantity of data gathered will directly impact how well the 
predictive model developed will ultimately perform [28]. Once the specific problem of interest 
has been defined and objectives of the effort established, the next step would involve assessing 
available data sources and understanding the available data volume and composition. 
Depending on the specific application, project stakeholders can begin to gain insight regarding 
the pertinent ML approaches, given the set of data fields and parameters and volume of 
historical data available or that could become available [18]. For subsurface applications, 
possible data types for a given project may include some combination of the following: (1) data 
from field projects, (2) exploratory and laboratory-generated data, (3) simulation-derived data 
(from physics-based or ROMs), and (4) synthetic datasets [20]. One key difference in data 
produced by ML applications when compared to more conventional data analysis is that its 
most valuable data are typically raw data absent from excessive aggregation [18]. However, 
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there are noted approaches for normalizing, imputing, transforming, and dealing with outliers 
in datasets when needed to make datasets more palatable for ML [29, 30]. Subsurface datasets 
are expected to be large and possibly continuous in nature (as field projects progress and 
models and laboratory experiments generate new data). To provide an example for data types 
relevant in subsurface applications, the parameter sets from studies performed by Shih et al., 
[22] and Schuetter et al. [21] are highlighted in Table 1 below. These studies are similar in that 
the authors utilized ML algorithms to build predictive models during the first 12 months of 
cumulative production (gas in western Marcellus Shale in Shih et al., and oil in Delaware Basin 
in Scheutter et al.) in unconventional reservoirs based on well completion datasets and geologic 
properties in the associated study areas. The datasets from these two studies share several 
commonalities in the parameters of interest; however, there are also unique fields associated 
with each study (which could be from the variability of available data across study regions).  

Parameter Type Parameter In Shih et al. 
2018 

In Scheutter 
et al. 2015 

Response First 12 months cumulative production X X 

Technology Perforated lateral length X X 
Total water used for hydraulic fracturing X X 
Proppant amount X X 
Additive used for hydraulic fracturing X X 
Well azimuth trajectory X X 
Well spacing X  
Pad drilled (Y/N) X  
Well completion year  X 
Stages  X 
Drift angle  X 
Proppant concentration  X 
Non-disclosed operator parameter  X 

Geology True vertical depth  X X 
Location data (latitude and longitude) X X 
Thickness X  
Gas to oil ratio cumulative at 12 months X  
Gamma ray (GR) X  
Thermal maturity  X  

Table 1. Comparison of data parameters used in two subsurface ML application studies. 

It is important to note that both studies were built around achieving similar objectives but 
utilized different configurations of data. In the Shih et al. study specifically, the data spanning 
production, well design, and reservoir geology were merged from disparate sources to form the 
finalized dataset [22]. Schuetter et al. additionally included several operator-specific data 
parameters used as predictor variables likely not available from public datasets. However, 
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those parameters were masked and given non-descriptive identifiers. In subsurface 
applications, particularly related to oil and gas, a majority of potentially useful and viable data is 
often not publicly available. Collaboration with industry is one way to potentially expand the 
availability of existing datasets moving forward. 

Once data are gathered, it typically requires some level of preparation and processing for 
efficient integration into ML algorithms. Additionally, analysis of the existing dataset can be 
performed, including visualization or statistical evaluation to help gain insight into relevant 
relationships between the different variables, as well as determining if there are any data 
imbalances present [22, 21, 28]. These steps typically comprise a substantial portion of the 
overall effort in an ML application and necessitates considerable human intervention as part of 
the process.  

Finalized datasets can then be partitioned into training, testing, and in some cases, validation 
(or calibration) groups [22]. The training group is intended to train the model using a given ML 
algorithm and develop a preliminary “trained” predictive model. The test group is used to 
evaluate the predictive accuracy performance of the trained model against unseen examples of 
data for which the model was trained. The validation dataset group provides another set of 
unseen example data separate from the training set that can support the tuning and 
optimization of algorithm hyperparameters and other components of a given algorithm(s) 
architecture. This dataset can also be used to validate models to avoid over-fitting or under-
fitting [22, 28] (discussed in Model Evaluation and Validation). The validation step typically 
occurs after initial model training, and prior to model testing. Approaches to data splitting tend 
to vary across published studies and may likely vary depending on the application. However, 
two general rules apply to this process: (1) ensure dataset groups are large enough to yield 
statistically meaningful results, and (2) ensure each grouping be representative of the dataset 
as a whole [31]. The Shih et al. [22] and Schuetter et al. [21] studies each provide additional 
insight into approaches to data splitting for subsurface-related ML applications. For the 
approach utilized by Shih et al. (Figure 4), the finalized dataset, containing 1,418 wells, was split 
into training, validation, and testing groups in a 60/20/20 percentage split that was randomly 
determined. Schuetter et al. utilized a “k-fold” cross-validation approach, schematically 
depicted in Figure 5 [21]. In this approach, the training group is randomly split into different “k” 
groups or “folds.” Next, each of the “k” groups are held out one at a time, and the model is 
trained on the remaining “k-1” groups. The trained model is then used to make predictions on 
the group that was omitted. After cycling through all “k” groups, there will be a single cross-
validated prediction for every observation in the dataset, in which the predictions are made 
using a model whose observation was not included in the training set [14]. 
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Figure 4. Regression modeling and sensitivity analysis framework used as part of the Shih et al. study supported by 

the National Energy Technology Laboratory [22]. 

 
Figure 5. Conceptual representation of k-fold the cross-validation with k=5 [21, 14]. 

It is important to note that this type of cross-validation procedure can be extended by 
repeating the entire process with a different random selection of training and testing/validation 
groups, as performed by Schuetter et al. [21]. The result of repeated cross-validation using 
different repeated runs of randomly selected groups will yield several unique predictions on 
each of the observations. These can not only be aggregated to compute statistics on quality-of-
fit metrics, but they also give important insight into the variability in model predictions 
depending on the characteristics of the training set [14]. 

The examples here are not fully inclusive of all the possible approaches to processing data but 
provide a perspective of examples implemented in subsurface applications. The next step 
involves choosing the range of ML algorithms that best suits the objective of the project.  
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Selecting the Right ML Algorithm and Modeling the Problem 
Given the ML algorithms available, there is typically no standalone solution or singular 
approach that fits all applications. This is especially true in the subsurface arena, where there is 
growing interest in using DA to improve upon the currently established best practices. There 
could be several factors that can affect decisions regarding algorithm selection, which are 
dependent on the nature of the problem investigated. However, once the objectives of the 
project have been clearly defined and a strong understanding of the data has been gained, 
decisions toward algorithm selection should be more straightforward. Some of the factors 
affecting the choice of an algorithm are [30] 

• Alignment to project objectives and goals 
• Volume of pre-processing required 
• Prediction accuracy 
• Model speed, both in time needed to construct and to make predictions 
• Model scalability 

ML typically falls under three prominent categories: supervised learning, unsupervised learning, 
and reinforcement learning. Prominent ML algorithms and approaches available are aligned 
specifically to these categories [32]: 

 
Figure 6. Schematic of the ML concept with associated categories and example applications [33].  
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Supervised learning utilizes training datasets comprising input-output labeled data pairs that 
are analyzed through ML tasks to predict an expected outcome. Data labels need to be assigned 
under human supervision, giving this category its namesake. Supervised learning can be further 
subdivided into (1) regression problems, where the response variable is continuous; or (2) 
classification problems, where the response variable is categorical. For both cases, predictor 
variables may be continuous and/or categorical [14].  

As mentioned in the bullets above, the appropriate algorithm(s) ultimately selected will be 
based on several factors. Figure 12 in Appendix 4 provides further insight into selection of the 
most appropriate algorithm based on problem definition and data available/expected. 

Selected candidate algorithms can be utilized for the creation of a trained model that will best 
translate to new input and response data. Essentially, training datasets are assigned to an 
algorithm in order to develop a model capable of making reliable predictions on both new or 
untrained (i.e., testing datasets) data. Once models have been developed from training, model 
evaluation and validation steps are needed to assess overall performance and effectiveness 
(discussed in more detail in Model Evaluation and Validation) [17].  

ML algorithms that hold the most application potential can be selected for modeling training on 
project data, run either in parallel or series, and at the end evaluate the performance of the 
algorithms to select the best one(s) [30]. Bhattacharya, et al. [24] implemented such an 
approach by using four ML algorithms to develop models that would predict specific lithofacies 
from well logs in the Bakken and Mahantango-Marcellus Shale formations. A similar approach 
was performed by Shih et al. [22], in which nine different ML algorithms were tested to gauge 
performance in predicting gas production in a selected area in the Marcellus Shale (Figure 7).  

 
Figure 7. Evaluation of model performance trained using different algorithms (using R2 for actual vs. predicted 

values) against testing data as part of the Shih et al. study [22]. 
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Overall, this stage of a ML project is inherently intertwined with model validation and 
evaluation, ultimately because the selected model must perform effectively. The specific ML 
application and associated data, objectives, and priorities will ultimately help inform the 
selection of an appropriate algorithm, but evaluation and validation are needed to ensure 
model efficacy. 

Model Evaluation and Validation 
Once training is complete on selected algorithms, developed models can be evaluated for 
overall utility (specific approaches and examples presented in Appendix 4). Evaluation and 
validation allow the testing of the model against representative datasets of real-world 
phenomena the model is attempting to mimic or predict [28]. For model validation, a common 
approach pertains to quantifying the quality-of-fit for a model prediction against datasets not 
used as part of model training, such as the testing dataset or a separate independent test set 
(possibly derived from a physics-derived model).  

If the developed model underperforms, it might be necessary to utilize more advanced 
strategies to improve the performance of the model, utilize a different algorithm or algorithms, 
and possibly supplement datasets with additional data (either in quantity or complexity). 
Further improvement can possibly be accomplished by tuning certain model parameters. 
Examples of such tuning parameters include: (1) number of variables randomly sampled as 
candidates at each split and number of trees for the random forest algorithm, (2) number of 
trees for the gradient boosting regression algorithm, (3) cost parameter for the support vector 
machine algorithm, and (4) number of hidden layers and hidden units for the ANN algorithm 
[16, 14] (discussed in more detail in Appendix 4).  

Fitting data-driven models with large, multivariate datasets often results in complex 
interactions of variables with one another that are often nonlinear. As a result, there is an 
inherent challenge in developing a straightforward understanding of input-output relationships 
and key sensitivities based on a simple evaluation of model results [14]. As part of this 
validation and evaluation phase, one can begin to investigate the importance of variables on 
the predicted responses to target key factors for further investigation. There are several 
possible approaches available for investigating parameter importance [16, 14], but a 
straightforward approach for variable importance that is not tied to any particular model is 
based on the concept of R2-loss. This method works for regression-based models and is 
centered on removing a predictor parameter from the training dataset and noting the accuracy 
loss of that model [14]. The accuracy loss is a change in the R2 value between actual and 
predicted values from the finalized model and the test model when one data parameter is 
removed. Parameters of greater influence, in theory, will have a larger noted effect on accuracy 
loss. Alternatively, if a superfluous predictor is removed from the model, there should be little 
to no impact on the accuracy (Figure 8). 
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Figure 8. Example R2-loss parameter impact evaluation from Scheutter et al. [21] (left) Shih et al. [22] (right). 

Model parametric impact interpretability is best explained when model response changes as 
the value of all of the predictor variables are changed/omitted. This is similar to a standard one-
parameter-at-a-time (OPAT) sensitivity analysis [14]. Other strategies include performing 
conditional sensitivity analysis to quantify the model response for a specified variation of any 
given predictor, when other possibly correlated inputs are varied, and the uncorrelated input 
parameters are fixed at some reference values [14]. This approach helps to determine 
collinearity among data parameters, which presents an advantage over OPAT analysis. For 
example, both the Shih et al. and Scheutter et al. studies identified strong collinearity between 
proppant and fluid used in well completions [22, 21]. In clustering-based approaches, 
classification trees and partitioning plots are not necessarily explicit parametric impact 
quantification approaches, but are example approaches which depict parameters and 
associated threshold values that separate pre-defined groups (i.e., high- vs. low-producing 
wells).  

Execution and Deployment 
Models that perform satisfactorily can be deployed for their intended task and ultimately help 
generate useful insights. ML technologies offer the benefits of speed, power, and efficiency 
through learning from data and trends without having to explicitly program these 
characteristics into an application [17]. Developing and deploying ML technology in subsurface 
applications has the potential to provide more efficient and accurate analytical methods that 
can ultimately transform petroleum geoscience into a much more data-driven science and 
enable better understanding of engineered subsurface system performance.  
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Understanding and utilizing the information gained from such approaches, tools, and/or new 
functionality is an important next step. For instance, deployed outputs could take the form of 
reported insights, supplemental data for existing physics-based models, or information to be 
stored or fed into other systems. Regarding the latter point, ML applications have enormous 
potential to integrate with other capabilities, including visualization (critical for enabling 
“human-in-the-loop”), optimization of modeled systems [22], and potentially autonomous 
monitoring systems [20].  

One last key consideration relates to the amount of processing power that will be needed to 
effectively execute ML routines. Depending on the specific ML routine, the computational 
performance needed could be significant. For example, a simple neural net with only four or 
five inputs would be expected to handle comfortably using a regular central processing unit on 
a desktop server or laptop computer. However, a net that has numerous features—designed to 
perform advanced, "deep learning" routines—will likely need high-throughput computing 
power on the execution platform in the form of high-performance computing clusters, or 
compute kernels executing on high-powered graphics processing units [17]. 

Strategies to Address Barriers and Missing Data 
Even with the best standard DA and ML practices, it is often the case that there is insufficient 
data to capture all of the physical, mechanical, and chemical processes that occur in the field. 
Several barriers were identified that may need to be overcome before transformational goals 
can be achieved. These barriers range from organizational and logistical issues to significant 
technical challenges, including lack of data on key processes or the inability to share data; 
insufficient bandwidth for transmitting data; heterogeneity of hardware, software, and data 
formats; and insufficient labor resources with regard to subject matter expertise and data 
science experience. Several different strategies can be used to overcome these potential 
barriers. 

One of the key strategies that was identified to help with missing data or incomplete datasets 
was the incorporation of physics-based models into the process. In some cases, disparate 
outcomes seem to relate to the same inputs, and physics-based models can be used to help 
better sort data that comes from the subsurface into different categories, as well as better 
constrain the ML algorithms. In addition, physics-based models can be used to directly train ML 
algorithms to generate rapid predictive capabilities. Incorporation of physics-based models can 
bring its own challenges, such as having the computational resources available to generate the 
training datasets with such high-fidelity models. High performance computing capabilities, 
where available, can help alleviate this challenge. 

In addition to physics-based models, several other approaches can be used to help address 
these areas. Data fusion is needed to integrate multiple datasets, but this can be challenging 
when the data are of different types (e.g., temporal, spatial) and come in different formats. 
Developing data standards can go a long way to addressing some of these problems, but to 
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date, such efforts have been unsuccessful. Edge computing and data compression can also be 
powerful ways of addressing some of the bandwidth issues inherent to transmitting large 
volumes of data. Data compression can reduce the volume of data that is needed, and edge 
computing can reduce the need to transmit data by performing the necessary computations in 
or near the wells themselves. This can introduce its own challenges associated with getting the 
appropriate algorithms and updates from a central location to the edge. 

Data organization and management can be improved with numerous approaches. Although it 
may not be necessary, using an open-source and platform-agnostic approach ensures that the 
final products will be available to a wide range of users. Data collectors should be encouraged 
to generate better descriptions of the ontology of their data. Additionally, generators of 
platforms and algorithms should encourage findable, accessible, interoperable, and reusable 
(FAIR) principles.   
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Appendix 1. Breakout Session: Resource Recovery and 
Utilization 
Background 
The focus questions posed to this breakout group are listed below. These can be treated as 
the end-points of a study involving DA and ML techniques:  

• How do we increase (e.g., double) the recovery efficiency of oil and gas production from 
unconventional formations?  

• How can we improve the ability to track plume migration in the reservoir (following 
hydraulic fracturing in unconventional wells, and CO2 injection for EOR associated 
storage in depleted oil fields)? 

• How can completion and stimulation techniques (such as hydraulic fracturing) be 
optimized? 

• How do we optimize the storage and recovery efficiencies for associated carbon 
storage?  

• How can enhanced recovery techniques improve resource recovery efficiency?  
• What key signals need to be measured?  
 

A broader set of questions regarding the process of applying DA and ML was identified as a 
prelude to offering specific R&D topics: 

• Do we have the required computing power to tackle these problems? Does the 
necessary code need to be developed, and personnel trained, to write/support these 
types of ML problems?  

• How are the features that go into the ML process selected? For example, how does one 
determine the appropriate completion parameters to develop solutions for completion 
optimization problems?  

• Optimizations will be site-specific. Is there a methodology that can be proposed as an 
overarching strategy? 

• How can ML be used to optimize completion and monitoring without interfering with 
existing optimization?  

• How must researchers address the scale, uncertainty, resolution, and 
environment/economics (SURE) challenge?  

• How can researchers improve and employ physics-based models to employ useful 
synthetic data?  

• Could ML be used to tease out more information from time-lapse data?  
• How can researchers examine model form uncertainty to build better physics-based 

models?  
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Use Cases and Stretch Goals 
Several areas were identified where there is a clear need for R&D involving DA and ML toward 
resource recovery and utilization. The topical areas, as well as the associated key research 
questions (and the suggested time horizon), are listed below. 

1. Completions and Well Operations Optimization: (High-Priority R&D Need)  
• Given geology/economics, can DA and ML be used to inform optimum spacing and 

completion design to maximize value? (Short-Term) 
• How can DA and ML be used with real-time data to improve recovery efficiency (in 

unconventional reservoirs or storage efficiency in carbon capture, utilization, and 
storage [CCUS] projects) by automating operations and tailoring completions to site-
specific and dynamic conditions? (Short-Term, bigger improvements in the Long-Term)  

• Can DA and ML be used with unstructured data (e.g., field drilling/production reports) to 
learn from the past and avoid complications and unforeseen situations? (Short-Term, 
bigger improvements in the Long-Term)  

• How can DA and ML be used for developing next-generation completion design (via 
reduction/replacement of water use, new proppants, improved chemistry, etc.)? (Long-
Term)  

• Can DA and ML help track physical/chemical properties/features that work well in 
current conditions and have the potential to be optimized with novel approaches? 
(Long-Term)  

 
2. Reservoir Management/Operations: (High-Priority R&D Need)  

• In reservoir characterization, how can DA and ML be used to automate and improve 
interpretation efficiency for routine tasks such as core analysis, well logging, 3D/4D 
seismic data analysis, and upscaling of static models? (mostly Short-Term, upscaling 
challenge could be a Long-Term) 

• How can ML be used with time-lapse seismic, pressure, and/or temperature data to 
identify/predict saturation front and subsurface fluid movement? (Short-Term for 
individual data types; more significant improvements with multiple data streams for 
Long-Term)  

• Can DA and ML be used to identify the optimal EOR strategy following primary 
production in unconventional wells in addition to CCUS projects? (Short-Term)  

• How can ML be used to tackle the SURE challenge? (Long-Term)  
• How can ML be applied to optimize injection/production in mature fields? This could be 

for conventional reservoirs as well as for CCUS applications where pressure 
management is employed using brine production wells. (Short-Term)  

• How can ML be applied to optimize injection/production in emerging (unconventional) 
fields—using information from previous plays and via transfer learning? (Long-Term)  

• How can scenario-based models for forecasting (incorporating 
environmental/economic/operational potential changes) be developed? (Long-Term)  
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3. Drilling/Geo-steering (for better landing of wells): (High Priority R&D Need)  
• How can researchers create an automated geo-steering system using DA and ML based 

on experience in previous wells? The goal would be to reduce time between receipt of 
information and decision by reducing positional uncertainty (vertical and horizontal) and 
improving drilling efficiency (rate of penetration). (Short-Term)  

• How can DA and ML be used to identify best locations to drill and the optimal well 
orientation/spacing/design? (some Short-Term, but mostly Long-Term)  

 
4. Exploration: (Low Priority R&D Need)  

• Can DA and ML be used with data from legacy oil and gas operations to determine 
subsurface heat flux and identify sweet spots for locating geothermal wells? (Short-
Term) 

• Currently, DA and ML techniques are routinely used to fill in gaps in well logs, and to 
create synthetic data. What is the potential for more innovative approaches (e.g., 
combining well-log signatures, using standard well logs as a proxy for advanced logs, 
etc.)? (Long-Term)  

 
Data Needs  
1.   Types 
Today’s existing data needs consist of (1) drilling data, (2) completion data, and (3) reservoir 
data, as described below.  

a. Drilling data includes electronic drilling records (rate of drill bit penetration, revolutions 
per minute of the drill bit, weight on the drill bit, passive GR emissions, etc.), survey 
data, wellhead location, measurement-while-drilling/logging-while-drilling (other 
measurements taken while drilling), cuttings, drilling mud properties, and bottom hole 
assembly.  

b. Completion data includes hydraulic fracture stage-level post-job reports (i.e., fluid and 
proppant volumes, stage/cluster details, treatment pressure history) and re-frac data. 

c. Reservoir data includes all fluid production (and injection as appropriate) 
rates/volumes, pressure tests and surveys, open hole logs, time-dependent 
surface/borehole/cross-well seismic/micro-seismic surveys, distributed acoustic 
sensing/distributed temperature sensing, diagnostic fracture injection test, surface 
resistivity surveys, borehole gravity surveys, etc. The ability to visualize different types 
of data, spanning various scales, on a common platform can present challenges. 

2. Availability 
While data availability is always an issue, there is a need to catalogue the data currently 
available in the public domain for potential use in DA and ML-related research projects. In 
general, data related to drilling and production from existing fields is more readily available. 
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However, data related to predicting/characterizing undeveloped fields is not as readily available 
for proprietary reasons. There is also a need to anticipate the data available in the future.  

Several sources exist that house public data, including state agencies and websites such as 
FracFocus, RS Energy, Digital Rocks, Drilling Info, and IHS Markit. A comprehensive data 
catalogue that can help ascertain what datasets are easily available from such sources, and thus 
increase broader access to important datasets, would be a valuable resource for the research 
community. 

A significant portion of intellectual property is developed within oil and gas companies and is 
unpublished. This limits the amount of data available for developing DA and ML-based models. 
DOE does not have large amounts of data available from any single play. However, there are 
DOE projects that may be valuable sources of data as a starting point for any given play. It could 
be beneficial to solicit industry to contribute data to add to the DOE data on a play-specific 
basis (via a Joint Industry database type arrangement) that could become a rich source for 
future research projects. 

3. Opportunities  
It is important to ascertain what data types and datasets operators are willing to share with 
DOE and/or place in the public domain. Derivative datasets from operators are possible. 
However, a clear case needs to be made regarding the potential use of data for DA and ML-
related research projects, and the benefits that would be derived by companies contributing 
data. In this context, it is useful to note that data consortia for both conventional and 
unconventional reservoirs have been put in place by companies such as Core Labs, which could 
be a useful data-sharing model going forward. 

4. Strategies  
One compelling argument for companies to share their data is that doing so allows for the 
greater academic/governmental community to approach problems faced by the company doing 
the data sharing (i.e., “open-sourcing” the problem). This situation is only feasible for 
companies having little existing competition in a particular play.  

There is a heavy economic pressure for operators to share their data with a broader 
community, with the objective of attracting greater intellectual capital to open-source complex 
problems. This is particularly effective in plays where there is little competition for new leases 
(operators have moved into manufacturing-style development). This allows cost-effective 
solutions to be developed for problems that benefit the entire industry, without harming any 
one company’s competitive advantage. 

5. Data Formats and Integration Issues 
There is a need for standardized data formatting. To facilitate standardization, there is also a 
need for long-term partnerships between DOE and producers. This will enable DOE to identify 
valuable data for enhancing technology that producers have not identified. Additionally, there 
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are efforts at a non-profit organization called Digital Rocks to standardize the format of 
available data to enable use for ML.  

A discussion was had concerning DOE’s role in data collection/sharing for the purposes of using 
it for ML applications. Producers posed that they have data among themselves and have hired 
(or are hiring) data scientists to leverage it. If all the necessary data exists today, DOE has no 
role to play in the data aggregation space. However, this is not entirely the case. If there is 
useful data that the producers are unaware of that can advance the technology, it can be DOE’s 
role to fill the gap. It was agreed that DOE’s primary role is to enable identification of these 
types of value-adding data types to advance the current state of the technology. To support this 
function, long-term partnerships between DOE and producers are far more useful than short-
term.  

Other Topic-Specific Information  
1. Barriers/Missing Data  

• Completion and Well Operations Optimization: The cost associated with acquiring 
data means that operators typically collect the bare minimum of data to sustain 
operations. The overall quality of data is low, since there is typically surface data and 
not data at depth, where stages are isolated. For these reasons, there is often not 
enough data to use in ML analyses to improve completion performance. However, 
given an appropriate data storage substrate, it is possible to generate synthetic data. 
For example, operators could train neural networks on real data at a well-monitored 
site or utilize high-fidelity simulators to generate synthetic data and then turn those 
data over to collaborators. Some suggested research topics regarding this subject 
are 

i. Use of a suitable model to generate synthetic data  
ii. Identification of additional data needed by determining the value that data 

can add 
iii. Identification of cost-effective sensor(s) that can be applied at all wells  

• Reservoir Management/Operations: As previously mentioned, there are not 
enough complete datasets from public sources to acquire the specific and detailed 
level of information to diligently investigate all of the R&D challenges presented 
throughout this document. Putting non-disclosure agreements (NDAs) in place may 
facilitate public and private companies to share issues, data, and key findings while 
protecting intellectual property rights. Exclusivity to work on a study with DOE or the 
national laboratories within a given basin should not be granted to any oil company 
operator. 

There is a need for one or more universal datasets that can serve as benchmarks as 
DA and ML become mainstream technologies. For many years, the Society of 
Petroleum Engineers had a comparative problem-solving challenge in reservoir 
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simulation using standardized datasets for a variety of problems. The National 
Energy Technology Laboratory’s Carbon Storage program performed a similar 
exercise called Sim-SEQ, where multiple teams from different organizations 
conducted a model comparison initiative involving both model-to-data and model-
to-model comparison at a common CO2 storage field site [34]. A similar approach 
could be adopted, with DOE taking the lead in formulating several DA and ML 
application problems, selecting the appropriate dataset with industry collaboration, 
and collating the solutions as a knowledge sharing exercise.  

Another challenge here is that insufficient quantities (and perhaps quality) of data 
being collected in-between wells (pressure, state of stress, porosity, permeability, 
chemistry) can be an issue. Can DA and ML-assisted model validation studies be 
helpful in this regard? Are there remote sensing technologies that can be used in 
conjunction with DA and ML approaches for such problems?  

Currently, proprietary data formats are a barrier to entry, which potentially could be 
overcome through the use of a third party. It is also important to develop pathways 
to manage the data that exists, including compression, visualization, and 
standardization.  

Some regulatory agencies are also barriers to data collection and sharing because 
they prescribe data types that should be collected and shared in the public domain. 
A common data standard, adopted across multiple state jurisdictions, would make it 
easier for companies to collaborate in plays crossing several state lines.  

• Drilling/Geo-steering: More data should be collected to ensure that with the well 
surveys, the positional uncertainty along the wellbore is better quantified. This may 
enable improved targeting of so-called “sweet spots,” with higher porosity, total 
organic carbon, higher density of natural fractures, and more brittle rock. 

 
• Missing Data: There is a need to measure/estimate properties between wells (e.g., 

pressure, stress, permeability, minerology, chemistry). This could be done by 
improving the resolution of seismic surveys, integrating multiple data streams (to 
generate surrogates for missing data), etc. Potentially, DA and ML could play a role 
by combining physics-based models with data-rich signals that can help infer 
characteristics of unsampled regions. 

The use of DA and ML to facilitate integration of models that represent different 
physical processes (e.g., mechanics/fracking, production, kinetics) also has 
interesting potential with respect to both model validation and development of 
proxy (surrogate) models. 

A big challenge in data-driven modeling is the role of overlooked or missed data. 
Thus, there is a need to identify such data by developing methods for automated 
data discovery or smart searches in the public domain. This could include both 
structured (numeric) and unstructured (text, image) data types. 
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Often, the frequency of data collection is irregular or sparse (both in space and time) 
and hinders the development of improved-resolution models. To this end, DA, ML, 
and multivariate correlation techniques could be applied to generate denser sets of 
data. 

A meta-analysis of different types of data could be carried out to determine why 
more of certain data types don’t exist (e.g., cost, lack of technology). This would 
involve a combination of data mining and abstraction of subject matter expertise. 

There has been a greater proliferation of downhole sensors, which provides the 
opportunity to build data-driven models that could offer better ways to accurately 
convert surface data to downhole data. A related challenge is the possibility of 
starting with only a limited set of dense downhole measurements and converting 
them into additional parameters.  

 
2. Tools and Techniques  

• Data organization/management: The use of open-source and platform agnostic 
approaches would likely contribute to better data organization and management. In 
line with FAIR principles, it is unclear if existing platforms are sufficient or if industry 
needs application-specific capabilities.  

With the help of professional societies, industry could establish standardized data 
formats. Industry would also benefit from the application of graph databases to 
accelerate the data wrangling process. 

There is a need to better describe the ontology of the data being created (using a 
framework such as the application program interface standard for ontology). 

• Analytics/knowledge discovery: Physics-based models could be used to effectively 
constrain open-source ML models. Another interesting possibility is the 
development of novel constitutive models using general DA and ML approaches, 
perhaps to enable production from more clay-rich ductile reservoirs industry has 
struggled to produce or has simply dismissed as not being easy to hydraulically 
fracture and prop open.  

The use of ensemble methods can add to modeling confidence. This involves 
incorporating multiple DA and ML approaches and aggregating the results, as 
opposed to using a single technique. Some open-source applications/tools are 
already available for this purpose. 

Fusing disparate data streams could provide additional insights. Some financial 
service companies have extensive experience with non-stationary time series data 
and could provide best practice examples.  

One approach to involve Silicon Valley startups in mainstreaming oil and gas DA and 
ML applications would be for the industry to provide synthetic data generating 
models. This would remove the burden of having NDA agreements that generally are 
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an impediment. The availability of anonymized datasets or artificial streaming of 
sensors for others to test tools would help in testing the applicability of new and/or 
emerging technologies that have not been applied in the oil industry. 

Efforts are needed to promote moving from correlation-based models to causation-
based models. The use of Bayesian Networks has been a starting point, but more 
needs to be done on this topic. 

Knowledge abstraction from “soft” (i.e., unstructured) data remains a relatively 
unexplored topic in oil and gas DA and ML applications. A key imperative will be to 
combine written logs and subject matter expertise to abstract the domain-specific 
knowledge from experienced professionals into a useful form that can help train the 
next generation of engineers/scientists and to automate routine tasks. Can 
crowdsourcing play a role?  

• Decision support/visualization: It is important to validate models and convey 
information with visualizations. To enhance current visualizations, oil and gas 
companies should involve tools/learnings from the entertainment and gaming 
industry. There are also many open-source game engines available for use in this 
space. 
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Appendix 2. Breakout Session: Autonomous Monitoring 
“Smart wells” and “intelligent fields” have been a stated goal of many subsurface operations 
(notably oil and gas operations) for several years, but the promise of such systems has not yet 
been fully realized in the field. With recent improvements in the resolution and accuracy of 
monitoring systems, as well as recent advancements in DA and reservoir simulation, the real-
time use of downhole and other sensor data to inform operational decisions is close to 
becoming a reality. A key enabler of intelligent fields is the development of autonomous 
monitoring platforms, which consist of sensors coupled with ML-based algorithms that convert 
data to knowledge. In resource recovery applications, autonomous monitoring can enable new 
options for reservoir operations with improved efficiency, recovery, and safety. In carbon 
storage applications, autonomous monitoring can help in tracking the carbon dioxide and 
pressure plumes over time, identify signs of a wellbore or seal leak, and locate signs of potential 
induced seismicity. Overall, the time is opportune for the realization of autonomous monitoring 
systems that could transform approaches to subsurface energy systems. 

This section presents an assessment of opportunities and needs related to autonomous 
monitoring in the subsurface, as identified by an expert group spanning DA subject matter 
expertise in the subsurface, as drawn from the hydrocarbon industry (majors and 
independents), the service industry, national laboratories, and academia. In addition, this group 
reflected expertise in conventional reservoirs, unconventional reservoirs, CO2 storage, and 
geothermal systems. 

Background 
Autonomous platforms—i.e., based on the coupling sensors to ML algorithms that extract and 
analyze signals—are transforming the ability to gain critical knowledge about subsurface 
environments. Autonomous platforms can reduce monitoring costs significantly and speed up 
the path from data to knowledge by removing protracted and laborious analysis. In addition, 
machine-based interpretation of data can reduce bias in signal interpretation, leading both to 
the identification of new signatures and to the extraction of knowledge from noisy signals. ML 
algorithms can handle continuous data from sensors, opening a wider use of data, and can 
incorporate multiple datasets in an analysis, leading to a deeper understanding. 

Consequently, autonomous monitoring is an enabling technology for many future subsurface 
operations. In long-term CO2 storage, post-injection site care costs can double the cost of an 
operation based on conventional monitoring platforms, but autonomous monitoring could 
provide cost-effective solutions to ensure that a site is performing well. In unconventional 
reservoirs, only a small fraction of the original hydrocarbon in place is recovered using current 
reservoir management strategies, but autonomous monitoring could provide the rapid insights 
into reservoir behavior that are needed to optimize recovery. Finally, in all subsurface 
operations, autonomous monitoring can lead to increased safety and decreased probability of 
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unwanted events by providing real-time information on critical changes in a subsurface system 
ranging from the state of stress to fluid pressures. 

Autonomous monitoring involves the conversion of data to knowledge via analysis and 
visualization. Near-term goals for autonomous monitoring focus largely on improving decisions 
made by a person (i.e., human-in-the-loop), but long-term goals include fully automated 
systems (i.e., autonomous monitoring and control). 

Autonomous platforms range from those that function at the edge (of the network) to those 
that operate in the cloud. In an edge configuration, data from the sensor are analyzed at the 
collection point, typically resulting in either a decision or in a winnowing of the full spectrum of 
the continuous data into a smaller set of key information. In a cloud configuration, analysis is 
done on data that have been transferred from the sensor array to centralized storage where it 
can be analyzed in full, perhaps in conjunction with other datasets. 

Physics-based ML adds a critical dimension to autonomous monitoring for subsurface systems 
(Figure 9). Specifically, the ability to predict the behavior of and signals associated with a wide 
range of processes helps to address the generally limited availability of labeled datasets from 
real, natural systems as needed to apply ML algorithms. Data availability, which is discussed in 
greater detail below, is only one root cause of the limitation in labeled datasets for subsurface 
systems. Two other root causes plague all subsurface operations. First, the complexity and 
variability of subsurface systems is rarely probed at sufficient detail to provide many of the 
labels that might be needed, leaving imprecise empirical relationships with significant 
uncertainty; the system characteristics used in generating physics-based synthetic data, 
however, can be completely captured in the labels, allowing machine-based algorithms to learn 
more precise empirical relationships and, potentially, enabling the extraction of information 
from the empirical scatter. Second, subsurface operations are expensive and must meet 
permitting requirements, inhibiting the ability to establish field-test sites for many scenarios of 
interest; thus, limited access to real field data exists for these scenarios, which is needed for 
discovering signatures to monitor and for developing and testing autonomous systems. 
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Figure 9. Venn diagram showing opportunities for physics-based ML in the context of autonomous monitoring for 
subsurface operations. Coupling of physics-based prediction and ML algorithms can lead to a virtual learning 
environment for discovering new signatures to monitor system behavior and for (pre-)training ML algorithms prior 
to field deployment. Coupling of physics-based ML with sensors can lead to new autonomous monitoring platforms 
that speed the conversion of data to knowledge as needed for various decisions. 

Use Cases 
The identification and consideration of use cases helps in evaluating the needs and 
opportunities for autonomous monitoring. Several categories emerge, based on the time scale 
of the decisions that need to be made.  

Use-Case 
Category 

Time-Scale  
of Decision 

Drivers for Decision 

Safety Seconds to Hours Protection of Workers, Public, Equipment, 
Environment 

Wellhead 
Operations 

Hours to Days Drilling Optimization 
• Minimizing bit wear 
• Maximizing rate of penetration 
• Controlling bit trajectory/position 
• Logging while drilling 

Well-Operations Optimization 
• Optimizing production rate for recovery 
• Optimizing injection rate for controlling sweep 

efficiency, pressure management, etc. 

Reservoir 
Management 

Days to Months Resource Recovery/Utilization 
• Designing strategies for secondary/tertiary recovery, 

re-stimulation, infill drilling, etc. 
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Use-Case 
Category 

Time-Scale  
of Decision 

Drivers for Decision 

• Controlling/exploiting evolution of reservoir state of 
stress 

Long-term Monitoring 
• Ensuring containment (no leakage) 
• Demonstrating conformance in reservoir performance 

Avoiding Induced Seismicity 
• Optimizing rate of extracting co-produced fluids 
• Identifying changes in state of stress outside of 

reservoir 

Table 2. Autonomous monitoring targets fall into three use-case categories based on the time scales of decisions. 

Safety decisions often have an immediate need for a decision, perhaps on the order of seconds 
to hours. Examples of safety-related issues include well blowouts, containment failure (at the 
wellbore), and cyber-attacks. Autonomous monitoring platforms offer the potential to address 
a range of safety-related research needs: 

• Better/new monitoring systems to detect conditions of concern during drilling 
• Data integration to detect precursor events, sequences of concern, and patterns of 

failure 
• Autonomous monitoring based on an internet of things 

Research tied to this use case must also consider how an autonomous monitoring system 
interfaces with decisions, particularly for those scenarios that involve human-in-the-loop. 
Finally, safety-related applications will require demonstrating that an autonomous monitoring 
platform is sufficiently reliable, which could include a research strategy for certifying such 
platforms. 

Wellhead operations decisions often have a need for a quick decision, perhaps on the order of 
hours to days. Examples of decisions-at-the-well include real-time drilling-and-completion 
operations (optimization of drilling dynamics, steering, and optimization of stimulation) and 
reservoir-management operations (optimization of production and recovery). Autonomous 
monitoring platforms offer the potential to address a range of decisions-at-the-well research 
needs: 

• Rapid data integration to elucidate subsurface conditions and behavior 
• Better/new monitoring systems, especially for conditions far from well 
• Higher value of information  

 Data to knowledge that maximizes user understanding and confidence in results 
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 Dynamic identification of the types and timing of new data needed to improve 
understanding by lowering uncertainty 

Reservoir-management decisions can often be made on a longer time scale, perhaps on the 
order of days to months. Examples of reservoir-management decisions can occur both during 
active reservoir operations (e.g., modifying injection/extraction rates to optimize 
recovery/sweep and to minimize potential for induced seismicity) and following active reservoir 
operations (e.g., during a post-injection site care phase for long-term storage of CO2). 
Autonomous monitoring platforms offer the potential to address a range of reservoir-
management research needs: 

• Rapid data integration to forecast subsurface conditions and behavior 
• Dynamic coupling of autonomous monitoring with autonomous updating of predictive 

models for improved forecasting 
• Signal processing—to speed analysis and to remove bias 
• Uncertainty quantification 

Stretch Goals for Autonomous Monitoring R&D 
In consideration of the needs/potential summarized above, stretch goals were identified for 
autonomous monitoring R&D for each use case. Both short-term (3 years) and long-term (10 
years) goals were considered. 

Safety: Development and demonstration of platforms for real-time detection of anomalies (or 
sequences of concern) for health, safety, and environment purposes with high (near 100%) 
reliability 

An area of particular need/opportunity for autonomous systems is safety associated with 
failures at a well, including 

• Prevention of blow-outs and loss of well-pressure control during drilling 
• Prevention of wellbore failure in pressurized reservoirs (e.g., gas storage reservoirs) 

Wellhead Operations: Development of platforms for (1) enabling “manage by exception” for 
subsurface reservoirs and (2) real-time conversion of data to knowledge for field operations 

Areas of need/opportunity for autonomous systems associated with decisions at a well 
include 

• Real-time updating of well data (e.g., pressure, volumes/compositions of produced 
fluids, etc.) with near-term forecasting of reservoir behavior (as needed to manage 
injection/production rates for optimized recovery) 

• Real-time interpretation of geophysical data (e.g., microseismic data) as needed to 
manage the stimulation operations to optimize subsequent production from an 
unconventional reservoir 
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Reservoir Management: Discovery of new signatures (and associated autonomous monitoring 
systems) for (1) monitoring the subsurface far-afield from the well and (2) monitoring the 
subsurface outside of the reservoir 

Specific areas of need include 

• Identification of (changes in) the fluid/pressure/stress distribution within a reservoir to 
improve sweep efficiency, recovery efficiency, etc. 

• Identification of changes in state of stress outside of a reservoir to avoid induced seismic 
events 

• Identification of leakage outside of the primary reservoir to ensure containment of a 
stored fluid/gas 

• Identification of long-term wellbore degradation and aging (both casing and cement) 
that foretell a weakening of primary or secondary well containment 
 

Data Availability 
Data availability is central to ML, with many challenges that are common across the subsurface 
research space. Several challenges, however, are worthy of specific consideration in the context 
of autonomous monitoring: 

• Failure-related data are particularly important for training of safety-related 
autonomous systems, and these data may have limited availability. These data could 
include, for example, signals associated with an event of concern labeled appropriately 
relative to the details (e.g., timing, location) of the event of concern. In addition, these 
data include information on events/conditions that are precursors to failure. There is a 
particular challenge associated with training data needed for low-probability but high-
consequence events, which are unlikely to be observed in high enough frequency to 
train a ML algorithm with high enough accuracy for reliable safety decisions. One 
strategy may be to develop algorithms that incorporate other types of prior knowledge 
(e.g., regional geology) and that have the capability to learn/adapt from data over time. 

• Data are needed for signature discovery and training/testing of autonomous 
monitoring platforms, yet data are limited for some applications. 

 Data on unconventional reservoirs: Data on the behavior of unconventional 
reservoirs are limited in comparison with conventional reservoirs, in part due to 
the wide range in site-specific properties that can impact behavior and, in part, 
due to the proprietary nature of many datasets. An operator may have sufficient 
data to train an autonomous monitoring system for conventional reservoirs, 
using a combination of owned proprietary data and the wealth of publicly 
available data amassed over decades. However, operators are unlikely to have 
sufficient data to train an autonomous monitoring system for unconventional 
reservoirs based solely on their own proprietary datasets and on the limited 
publicly available information. 
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 Data on subsurface systems outside the reservoir: For example, data on leakage 
impacts outside a reservoir are needed to train an autonomous system for post-
injection monitoring for CO2. By design, storage operations are intended to be 
devoid of leaks, so they do not result in datasets that can be used for training. 

 Data on well integrity (static and dynamic): This type of information is not 
consistently collected and/or available. 

A strategy for addressing the need for failure-related data could include public partnerships 
with industry, perhaps using a consortium model (e.g., joint industry project) to pool data, 
thereby achieving larger datasets and minimizing any potential risk to individual entities 
associated with sharing sensitive data. However, the need for a relevant field site to 
demonstrate and certify autonomous systems used for safety applications will likely necessitate 
the development of a test site/facility that can produce engineered failures. 

The use of synthetic data could be a powerful option for autonomous monitoring needs, both 
for signature discovery and training datasets, and particularly for unconventional reservoirs and 
subsurface systems outside of the primary reservoir. The coupling of physics-based simulators 
with empirical models (e.g., ML algorithms and other ROMs) could be exploited to capture the 
behavior of even complex subsurface systems, generating a virtual subsurface environment 
that could subsequently be coupled with physics-based platforms to simulate relevant potential 
signals. This approach relies on physics-based simulators that have been adequately validated 
and calibrated with real data to ensure a high quality of the resulting synthetic data. Capturing 
full physics of the system is essential for this approach, which can pose a computational 
challenge for generating sufficient realizations to build the virtual reality environment; 
however, ML algorithms can be developed to identify strategic sets of high-fidelity simulations 
needed to improve the synthetic dataset for training and to elucidate artifacts in synthetic data 
generated by ROMs relative to deterministically derived synthetic data. Once a sufficient 
dataset is generated for potential signatures, ML algorithms can be used to explore the virtual 
environment for signatures or utilize it for training of an algorithm that will be incorporated 
into an autonomous platform. The incorporation of synthetic noise can at least partially mimic 
the challenge of detecting signals in variable and noisy natural environments. 

The use of data from real sites is always preferable to synthetic datasets for both signature 
discovery and (final) training of autonomous systems, inasmuch as they embody the complete 
physics of the system as well as site-specific characteristics (including the natural variability and 
complexities). However, it can be useful to initiate efforts with synthetic data, which are less 
susceptible to challenges associated with uncertainties in ground truth and which can be 
generated to produce a range of signal/noise ratios. Efforts can then transition from synthetic 
to real datasets. 

The coupling of real and synthetic datasets (i.e., data fusion) can be incorporated as a strategy 
in data analysis, addressing limitations in each type. Data fusion will require addressing several 
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technical challenges, including temporal synchronization, variability in data quality/relevance, 
etc. 

An additional strategy for signature discovery and training/testing data is the use of analog 
sites. As an example, some natural CO2 reservoirs may offer conditions to study signatures 
associated with leakages. 

Legacy data also offer a potential opportunity for training and testing of autonomous systems. 
In many cases, however, these datasets may require additional investments in DM to archive 
(and consolidate) datasets and to convert data into standardized digital formats that can be 
used by the research community. This poses a challenge of handling disparate types of file 
formats ranging from non-digitized data formats (e.g., images, well logs, seismic data) to 
information embedded or embodied in text form (e.g., in reports). These challenges present an 
additional ML opportunity. 

Finally, some autonomous systems may require development of engineered field sites that can 
provide the conditions necessary to develop and test platforms. 

Tools and Techniques 
Several existing tools and techniques can be adapted for use in autonomous monitoring 
applications: 

1. Coupled physics-based and empirical-based learning to train and evolve autonomous 
platforms 
• Physics-inspired ML 

 Using physics-based models to train ML algorithms 
 In autonomous monitoring, this includes end-to-end multiphysics models 

(source to signal) 
• ML embedded models 

 Can be used to speed physics-base simulations 
 

2. Visualization platforms (including augmented reality platforms), such as for 
• Data (attributes); Topology 
• Model Parameters 
• Predictions/Outcome/Consequences (”regrets”) 
• Confidence/Uncertainty (including value of information) 
• Continuous datasets; large volumes of data; multi-dimensional (>3D) 
• Multi-variate, spatial detection/visualization of outliers/anomalies 

 
Effective visualization of information from autonomous monitoring systems will be critical for 
human-in-the-loop applications. Although tools exist, they may require investments in 
adaptations as needed for subsurface applications, specific types of decision-makers, etc. 
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3. Data compression, particularly for continuous data streams. Specific additional needs for 
autonomous monitoring include 
• Handling, visualizing, and curating large amounts of data 

 
4. Forward deployment should be a key stated goal for R&D efforts in autonomous 

monitoring, emphasizing the need for such systems to be economically deployable in the 
relevant field scenarios and conditions. 
• Raspberry pi is one recent technology that could be exploited by autonomous systems 

for the subsurface, providing a low-power, portable (credit-card sized) platform to 
couple ML algorithms to analyze sensor data at the edge. 
 

Barriers and Challenges 
Several potential barriers and challenges should be considered in the development of 
autonomous systems for subsurface operations: 

• Adoption of new technology by decision-makers in their decision processes: Cultural 
biases may exist among different groups based on differences in personal experiences 
on how to approach a problem (e.g., deterministically vs. empirically vs. 
probabilistically), based on comfort-level with new technology, based on educational 
traditions, etc. R&D efforts to design autonomous systems consider these factors from 
outset to ensure 

1) effectiveness of integration of new platforms into decision-workflow 
2) understanding of need/value of data collection and data curation 

Autonomous systems must fit within the decision workflows established for specific 
applications. 

• Limitations on data volumes (e.g., bandwidth, or data storage, as needed to handle 
continuous data streams from sensor arrays) and on required response time for 
information: Utilization of edge computing (e.g., via Raspberry pi platforms) is one 
possible strategy to address these barriers, by pre-processing continuous data at the 
source to produce a smaller volume of derivative data of interest. This pre-processing 
can be designed to produce key information as needed by decision-makers, thereby 
speeding the timeline of data collection to knowledge. But, the effective use of edge 
computing will need to overcome several technical challenges: 
 Ability to migrate new algorithms from the cloud (where they are developed) 

to the edge (where they are needed for continuous improvement). This 
capability would allow edge-based algorithms to remain current as new 
information is developed, for example, on the nature of a specific site or as new 
signals are identified. 

 Ability to integrate combine distributed analysis at edge in conjunction with an 
individual sensor with integrated analysis at cloud, which can incorporate 
information from multiple sensors and other dynamic site-specific information. 
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 Ability to accommodate the heterogeneity of various hardware/software 
platforms that exist at a site. 
 

• Lack of appropriate or useful signals: This relates to (1) signals that have not yet been 
identified, and (2) small signal-to-noise ratios: 
 For example, data collection is often focused on signals relevant to success, but 

some use cases (e.g., safety) require data/signals on failures and data/signals on 
rare events. As noted above under Data Availability, strategy is needed to 
address this gap. 

 For small signals buried in noise, ML algorithms could be developed to improve 
extracting signals from existing data/sensors. In addition, the use of physics-
based models can be used to discover new signatures that may be buried in 
existing datasets, thereby guiding the development of new autonomous 
platforms. 
 

• Need for database management protocols: 
 Databases must be maintained current at a sufficient refresh rate to allow 

autonomous monitoring/analysis in the cloud. 
 A chain of custody must be established, including the identification of any 

manipulation (preprocessing) of data that has occurred prior to cloud/storage. 
 Metadata and other non-numerical data need to be archived and made available 

in a useable form as needed in training autonomous systems and/or as might be 
needed in autonomous analysis. These data types could include non-numerical 
data from reports, operations, logs, etc. 
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Appendix 3. Breakout Session: Seismicity and Dynamic 
Stress States 
A key question for which more definitive answers are needed is how to determine the physical 
and mechanical mechanisms that allow induced seismicity to occur. It has been generally 
accepted that changes (typically increases) in pore pressure due to injection (or extraction) are 
responsible for changes in effective stress that lead to fault slip. However, there are likely other 
physical mechanisms such as poroelastic stress changes that can influence fault slip as well. In 
addition, the pervasiveness and configuration of faults and rock lithology that allow for seismic 
slip likely control the distribution of induced seismicity. Fortunately, there is a growing number 
of publicly available datasets and improving geomechanical simulation strategies that can help 
to test the proposed mechanisms and discern the primary factors. Continuing to improve the 
collective knowledge of rock rheologies and the imaging of faults in the subsurface should 
ultimately lead to a better understanding of which faults represent higher hazard. 

Ultimately, the goal is to enable forecasting of induced seismicity, such that the necessary data, 
signals, and processing workflows are considered. Seismic recordings are critical, so a 
transparent public seismic network is necessary, but unfortunately, data are currently much 
sparser in the target regions of the Central and Eastern U.S. than in areas like California. 
Improving seismic networks will not only improve event detection, but new imaging techniques 
can utilize them to look at changes in reservoirs over time. Publicly available active seismic 
datasets are scarcer, but will be critical for analyzing microseismicity patterns, and can also be 
used to construct high-resolution images of the reservoir. Beyond seismic data, the most 
pressing data need is for pressure monitoring, both in the near field and far field, and 
preferably downhole. Additional monitoring and estimation of poroelastic stresses (i.e., 
deformation relative to pressure applied) is also needed. There is also a need to incorporate 
more information from both natural system, land use, and operation/engineering. Other 
datasets of interest include structural geology (for faults), geochemistry, electromagnetic, and 
lab measurements. This creates a rather long list of data and signal types that would be 
beneficial to have on hand, but ML approaches can help to understand the relative importance 
of the different contributions and prioritize future efforts.  

In all cases of data that vary over time, the more continuous the time series collected, the 
better. The desire for more critical data highlights the needs for improved data sharing by 
targeting key new data collection efforts and promoting open data access. There will also be 
increasing DM needs that require better management systems and promoting uniform data 
standards. A variety of new processing workflows will likely be developed to analyze these 
increasing datasets, so there will be a corresponding need to apply statistical approaches to the 
observations, simulations, and models to assess confidence in the new information.  
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With improved data and processing workflows in hand, one can consider strategies for how to 
implement forecasting of induced seismicity during injection and production operations. While 
seismicity directly induced by pore pressure changes from injection/extraction is the focus of 
this development, forecasting will ultimately need to consider triggering relationships between 
earthquakes as well. Utilization of seismic data for forecasting shows promise (see Case Study 1 
below), but it is important to have a two-pronged approach that incorporates both enhancing 
traditional seismicity catalogs and processing the continuous seismogram data to look for new 
clues of fault behavior. ML has been successfully applied to both approaches but needs to be 
applied to a broader set of data types as the success will depend on which data types are 
available and incorporated. For example, the impacts of production and extraction operations 
need to be considered, not just for injection operations. This also highlights the need to 
develop geomechanical models via simulations that feed back into forecasting. Real-time 
forecasting is the near-term goal, but the more transformational goal is to forecast before 
injection or production at a proposed well. Further evaluation of the regions that are not 
experiencing induced seismicity despite operation activity is key to improving the assessment of 
the relative hazards. 

As the capability to identify and forecast the induced seismicity hazards improves, it will be 
necessary to consider how to manage these hazards and reduce the risks, seeking the long-
term goal of avoiding any damaging seismicity. A component of this is recognizing that different 
areas have different risks even if hazards are similar (e.g., offshore vs. onshore operations). The 
central strategy is via pore pressure management, but this can be separated into a variety of 
approaches: (1) reducing the amount of fluid being disposed, (2) changing the rate of 
injection/extraction, (3) adjusting where the pore pressures are being changed, (4) changing the 
viscosity of fluid injection (i.e., fluid engineering), and (5) improving understanding of the 
properties of the injection interval. These approaches all need further evaluation to improve 
management strategies. Yet one also needs to consider what influences the risks, including 
what amount of time matters in the estimation of hazard, how much the duration of operations 
influences what is induced, and how much time is needed for an efficient response (likely 
depends on type of operation).  

Primary Targets for Investigation 
From the primary issues associated with induced seismicity and understanding dynamic 
changes in the stress state of the subsurface, the research community can work on several 
near-term and transformational targets that have been identified. The primary near-term target 
identified was to provide a replacement for the Traffic Light Protocol (TLP), which is a common 
strategy to manage induced seismicity. This can be replaced by a more nuanced understanding 
of hazard and ramifications/risk that is properly placed in the context of how the situation is 
developing over time. In essence, the goal is progress toward operators being able to make 
changes to their operations in real-time to limit/reduce/prevent induced seismicity. This will 
likely require improved utilization of seismic recording to establish reliable statistical likelihoods 
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of earthquakes of given magnitudes. It will also require progress on developing a pore pressure 
management system that involves improved measurement of downhole pressures, 
understanding of how changing viscosity of injected fluid changes the likelihood of seismicity, 
and strategies for reducing injected fluid (i.e., improved recycling) volumes. Applying ML to a 
broader set of data types can improve forecasting. Currently, there is a hope that ML will 
provide improved understanding of key variables (i.e., which data types are most important for 
forecasting) based on preliminary work that demonstrates ML can provide new insight into 
factors leading to induced seismicity. However, there is a need to clarify which aspects of ML 
are well designed to tackle this problem, and which datasets are optimally designed for 
incorporation. Ultimately, in transitioning from a TLP to a real-time forecasting approach, the 
regulators need to be included more frequently in the scientific discussion. Communication will 
be crucial to keep forecasting technology in line with policy and applicability. There are 
opportunities to refine regulatory policies to be efficient, but studies need to be well vetted to 
convince regulators that new technology is trustworthy. Even something as basic as deciding on 
the regulatory thresholds can be improved by comparing societal risks with scientific 
discernment. Moreover, social scientists and economists can be brought into the discussion to 
better understand the impacts on society and how to mitigate risks.  

The long-term transformational targets for future investigation can be loosely collected under 
the idea of engineering the subsurface to manage induced seismicity. The ultimate goal would 
be to entirely prevent damaging seismicity, but there are a variety of issues to investigate on 
the pathway to this goal. These would include the potential for autonomous long-term 
monitoring that could be used to provide feedback into a controlled engineering system for the 
operator. It would also include identification of key changes to make before even starting 
operations to avoid/prevent seismicity from reaching a regulatory threshold. Improving physics-
based models of forecasting would likely require better understand of earthquake physics, the 
initial subsurface stress state, and how stress states change dynamically. Regardless of how the 
forecasting strategy develops, a long-term goal would be to consider practicality in the science 
and eventual policy to ensure that regulators can implement findings. Moreover, gains in 
understanding of these processes in the subsurface would also have the potential to improve 
the development of reservoirs. For example, these developments would present opportunities 
for improved reservoir characterization that could ultimately improve recovery and production. 

Data Availability 
Achieving success for both near-term and transformational targets will undoubtedly be 
influenced by data availability. Of the currently available types of data, foremost is continuous 
seismic data recorded at the surface, sometimes in small local networks around operations (<10 
km spacing), but often at the regional scale (~100 km spacing). Some operational data are 
currently available, including injection volumes and pressures, as well as production data. 
Injection data are often reported monthly to regulators but may also be reported daily and 
occasionally when there are higher sample rate times series. Production data are typically 
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quarterly or annual. Geologic data are often available, primarily in well logs or as core. Remote 
sensing (e.g., InSAR) and potential field data are often available but rarely utilized. A variety of 
surface datasets are available, such as those related to hydrology, climate, and land use, which 
could be useful in investigations of induced seismicity. Finally, a growing amount of laboratory 
data are available and relevant to this problem, including continuous seismic and deformation 
recordings, direct measurements of slip, shear stress, friction, and a larger control on the 
injection parameters. 

Another important consideration relates to the types of data that are most desired, though it is 
important to consider the steps necessary to accessing this data. The breakout group sought to 
construct a list based on a perceived order of priority, but this is certainly influenced by the 
makeup of the breakout group and may also reflect longer-term prospects being perceived as 
lower priority. Foremost, there is a definitive need for more continuous pressure data, with 
downhole measurements better than those at the surface. There is also a need for better 
monitoring and estimates of poroelastic stress changes. In terms of seismic data, there is a 
need for more downhole continuous recordings, with DAS being a promising technology, to 
improve detection of microseismic sources and imaging of the structures. More detailed 
reporting of injection and production histories is needed, including full stimulation reports. 
Improved and expanded fault data are important, even if it is unclear yet how best to evaluate 
the risk of any given fault identified. A more complete dataset of geologic/lithologic properties 
downhole would provide opportunities for improved understanding of the rock types involved 
in induced seismicity. Laboratory datasets can also be improved through more publicly available 
continuous recordings, estimates of velocity across fault zones and how it changes, and other 
estimates of dynamic moduli. In situ measurements of hydrologic parameters, such as 
permeability and diffusivity, chemical variations such as those involved in reactive flow, and 
direct measurement of slip including displacement and fractures can also be improved. 
Downhole geodetic data, such as that from tiltmeters and decision support systems, could 
substantially improve the understanding of aseismic deformation. Simulation datasets are also 
important and can be particularly helpful in developing a greater understanding of faults, 
fracture, and poroelastic behavior. For example, one could use ML to optimize the simulations 
when comparing with lab data, and the statistical features and insights from ML can be scale 
invariant. While not currently utilized, downhole electromagnetic sensing could be very useful 
for monitoring dynamic changes associated with these processes. InSAR data has only been 
used on occasion to investigate induced seismicity and could be used more extensively to 
assess the impacts of injection and production on induced seismicity.  

Opportunities for ML to Help Achieve Goals 
As discussed in previous sections, ML can help to reach the key targets for dealing with induced 
seismicity (primarily preventing damaging seismicity) through enhancements such as faster 
processing, reducing bias, integrating larger and disparate datasets, and dealing with high-



 

REAL-TIME DECISION-MAKING FOR THE SUBSURFACE REPORT  56 

dimensionality. This section highlights some specifics of how ML can help overcome key 
obstacles. 

The breakout group identified replacing the current TLP strategy (e.g., if mag>X, then do Y 
across a broad region/state) as a primary need for dealing with induced seismicity. The broader 
research community is seeking a more nuanced understanding of hazard during the operational 
phase that is properly placed in the context of how the situation is developing over time. The 
goal is an evolving estimate of the likelihood of a specific scenario (certain size event, certain 
amount of seismicity) depending on what the operator or regulator chooses. Over the short-
term, improvements can be made by employing forecasting using improved microseismicity 
detection along with continuous waveform approaches. ML can improve seismic event 
detection in real-time through faster processing and enhanced clustering analysis. Moreover, 
ML can deal with large continuous waveform datasets to look for changing patterns over time 
to anticipate bigger events (see Case Study 2 below).  

Over the longer term, the TLP replacement should move toward a probabilistic estimate of how 
companies should inject/produce at a given well that is time dependent by combining 
probabilities from the likelihoods derived from different datasets. This approach would seek to 
integrate site-related data and process-related data and a range of temporal input types (static 
vs. dynamic) to help embed the physical processes in the estimation. The potential types of 
information that would be integrated are hypocentral distributions, seismicity rates, frequency-
magnitude patterns, long-term slip rates, short-term stressing rates, estimates of forcing from 
injection and production data, and lithologic and hydrologic data. ML would be needed to 
optimize the integration and evaluate the contributions from the different datasets to 
incrementally improve the forecasts over time. ML can also be used to improve the information 
from each data type, from basic statistical approaches up to topological clustering; deep 
learning should also be considered to help deal with high dimensionality and reduce bias. 
Ultimately, a trust metric will be needed to evaluate the resulting likelihood model. For 
example, a trust metric from deep learning could identify if the model output is not as reliable 
as it should be and how well the model utilizes the input space. Convolutional neural networks, 
committee machines, or adversarial networks (distributed intelligence) could potentially be 
used to evaluate outputs. These efforts are not regularly undertaken now but will be important 
to implement as either the operator or the regulator. 

A different goal where ML can also be applied is to better understand the physical mechanisms 
leading to induced seismicity, particularly as this could lead to improved understanding of 
natural seismic hazards as well. For example, a better understanding of the relationship 
between stress and induced seismicity is needed. The so-called triggering parameters could be 
investigated by evaluating the lag time between stress change and seismic events through ML 
approaches that look for more complex relationships. Since stress measurements are not 
available per se, it will need to be formed from a catalog of different data types such as full 
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stimulation parameters, injection/production histories, microseismicity, and geologic context. 
For ML to help evaluate the contributions to triggering, extensive data from multiple data types 
are needed, such that an Energy Data eXchange-level dataset could help to jumpstart this type 
of analysis. Despite the promise of ML to help with this style of investigation, ML approach 
complexity needs to be evaluated versus the practicality of understanding the results. Another 
example where ML could help to understand physical mechanisms is by using it to improve the 
estimations of bottom hole pressures from surface pressures. There is very limited bottom hole 
pressure data right now, but if high sample rate was available at a few wells or lower sample 
rate at many wells in a focused area, then ML could help establish relationships between 
surface and bottom hole pressures that could be implemented more broadly. Improved ability 
to make real-time measurement of bottom hole pressures/stress, even in a few cases, could 
significantly improve the evaluation of the driving mechanisms of seismicity over broader areas. 
Recent work has proposed that large volume fluid injections can create substantial changes in 
subsurface pore fluid pressures several tens of kilometers away from the well, but the 
downhole measurements to test this idea are very limited.  

Finally, a key long-term goal worth noting is to better understand to what degree the 
relationships between observations and induced seismicity are site-specific versus 
transferrable. This essentially is unknown right now, but a better understanding of this is 
necessary to have any chance at characterizing a site prior to drilling a well or evaluating a well 
that has begun operations but has yet to induce significant levels of seismicity. ML is likely to be 
essential for testing what is site-specific versus what is transferable once the datasets in 
multiple regions reach critical mass for making comparisons.  

Case Study 1: ML to Enhancing Real-Time Evaluation of Induced Seismicity 
Traditional earthquake catalogs employ a network association of detections from elevated 
short-term amplitude relative to long-term amplitude. While this is generally applicable to a 
wide array of source types and the processing is computationally efficient, the approach has 
difficulty detecting smaller events that typically occur in the early stages of injection induced 
seismicity. Matched-filter (template matching) approaches have been used to improve 
sensitivity to the smallest events and it can be computationally efficient for scanning large 
datasets if a modest number of templates are utilized, but it lacks general applicability, as it 
only finds events similar to the chosen templates. Autocorrelation approaches can achieve both 
high sensitivity and general applicability, but they require enormous compute times when 
applied to datasets that extend over a year. Recent research has sought to develop strategies 
that expedite this process, with one example being a repeating seismic detector that employs 
unsupervised ML [9]. Agglomerative clustering of all observed signals of interest in both the 
frequency and time domain can expedite the process of looking for repetitive seismicity. This 
approach results in much improved characterizations of frequency magnitude distributions 
(FMDs) [35], which revealed new patterns for different geological source zones that imply 
differences in fault maturity and hazards depending on which faults get activated by industrial 
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operations (Figure 10). Moving forward, these improved characterizations of induced 
sequences could be implemented in real-time considering how ML has cut the processing speed 
for years of data to less than an hour. More importantly, such rapid detection of small 
magnitude seismicity could enable probabilistic earthquake magnitude forecasts using 
frameworks such as the seismogenic index formulation. 

 
Figure 10. Schematic cross-section showing fault surfaces of a strike slip flower structure. Hydraulic fracturing can 
induce different seismicity in shallower sedimentary rocks compared to deeper basement rocks. Brown circles 
show seismic rupture areas based on the average FMDs. Blue arrows show that some hydraulic fracture wells 
(black curves) disturb the younger, immature part of the fault and some wells disturb the older, mature part of the 
fault. 

Case Study 2: ML Predicts Laboratory Earthquakes 
Enhanced detection of small seismic signals through increased instrumentation and improved 
processing provides a new opportunity to investigate whether large earthquakes can be 
anticipated. In a recent study, ML was applied to datasets from shear laboratory experiments, 
with the goal of identifying hidden signals that might precede earthquakes [13]. This study 
found that by listening to the acoustic signal emitted by a laboratory fault, ML can predict the 
time remaining before the fault fails with great accuracy (Figure 11). These predictions were 
based solely on the instantaneous physical characteristics of the acoustical signal and did not 
make use of its history. In fact, when the data points were scrambled in time, the predictions 
remained the same. ML identified a signal emitted from the fault zone previously thought to be 
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low-amplitude noise, which, in turn, enabled failure forecasting throughout the laboratory 
earthquake cycle. The researchers inferred that this signal originates from continuous grain 
motions of the fault gouge as the fault blocks displace [10, 12]. Applying ML approaches to 
continuous seismic data such as this may lead to significant advances in identifying currently 
unknown signals. This holds particular promise in injection induced seismicity where swarms of 
small magnitude seismicity have already been observed, but observations from tectonic 
environments such as subduction zones have revealed more continuously active fault tremor 
[36], which may be analogous to the laboratory acoustic signals. Research efforts utilizing ML to 
better characterize continuous seismic recordings hold the potential to provide new insights 
into fault physics and in placing bounds on fault failure times. 

 
Figure 11. Forecasting quakes in the laboratory from a bi-axial shear device. The figure shows the time remaining 
before the next failure predicted by ML [13]. The red lines show the actual time before failure (y-axis) versus 
experimental run time (x-axis). The red dashed line shows the time remaining before the next failure (derived from 
the shear stress data), and the blue line shows the corresponding prediction of the random forest regression 
model (derived exclusively from the “instantaneous” acoustic data; each blue point is a “now” prediction 
independent of past or future observations). The blue-shaded region indicates the 5th and 95th percentiles of the 
forecast. The inset emphasizes that ML does well forecasting slip times even with aperiodic data. The ML trained 
on ≈150 s of data (≈10 slip events), and tested on the following ≈150 s, shown here. Very recently, similar 
forecasting of failures have been made in Earth of slow slip in Cascadia [9], and in injection experiments in 
southern France [37].   
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Appendix 4. Expanded Content for Enabling Tools and 
Approaches 
As discussed in Enabling Tools and Approaches, supervised learning can be further subdivided 
into: (1) regression problems, where the response variable is continuous, or (2) classification 
problems, where the response variable is categorical. For both cases, predictor variables may 
be continuous and/or categorical [14]. Mishra and Lin outlined an example relevant to 
subsurface applications, where building a predictive model for the cumulative annual 
production in the first 12 months would be considered a regression problem, whereas 
determining the factors responsible for separating the top 25% of the wells (“good”) from the 
bottom 25% (“bad”) in terms of cumulative production is a classification problem [16]. 
Conversely, unsupervised learning algorithms draw inferences from non-labeled data (absent to 
known or labeled outcomes). These algorithms are geared toward discovering unknown data 
patterns and data structures [32]. Reinforcement learning is based on an “agent” rather than a 
classic model [32], learning and gaining insight from an environment through interactions, and 
receiving rewards (positive or negative) for performing different types of actions [38] (Figure 6). 
The appropriate algorithm(s) ultimately selected will be based on several factors. The schematic 
shown in Figure 6 (under Enabling Tools and Approaches) provides insight into selection of the 
most appropriate algorithm based on problem definition and data available/expected. Table 3 
below provides insight into the more commonly used data-driven modeling techniques 
(focused on both regression and classification problems) for the petroleum geosciences [14, 16, 
22]. 

Algorithm Description 

Linear Regression Ordinary least-squares multiple linear regression 

Classification and 
Regression Trees 

Binary decision trees where the predictor space is split into nested rectangular regions, 
each with a constant value or categorical label for the response 

Artificial Neural 
Network 

Connecting inputs through layers of connected nodes to generate final outputs, like the 
human brain and nervous system 

Random Forest  Collective of simple regression trees, each of which is trained using a random 
subset of observations and predictors 

Bayesian Ridge Linear regression using regularization factors that are generated by probabilistic models 

Lasso Linear regression with regularization and variable selection 

Elastic Net Combines approaches used in the lasso and ridge regression methods 

Self-Organizing Map Classifies data in such a way so the multi-dimensional input dataset is converted to a 
lower-dimensional grid space without losing geometrical relationship among data points 

Support Vector 
Machine (SVM)  

Transmutes data into another space in which a linear regression or linear 
classification-style approaches can then be used to model the data 

Gradient Boosting 
Machine (GBM) 

Ensemble of regression trees which are trained sequentially, with each new tree 
designed to address shortcomings in predictions made by earlier trees 
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Table 3. Common predictive modeling techniques for regression and classification problems that could be relevant 
in subsurface applications [22]. 

Working through a decision framework (like the one presented in Figure 12) based on the 
unique considerations of a given project (i.e., objective and data types and volume) should 
provide insight into more promising algorithms to consider for selection moving forward. 
However, more than one decision branch may apply given the specific project, and in other 
instances, none of the branches will align perfectly [39]. Figure 12 below provides insight into 
the more commonly used data-driven modeling techniques (focused on both regression and 
classification problems) for the petroleum geosciences [14, 16, 22]. 

 

Figure 12. Algorithm selection decision flow diagram concept [29, 39] 

Model Evaluation and Validation 
Three common metrics for evaluating the quality-of-fit, per Mishra and Lin, include [16] (1) 
average absolute error (AAE), (2) mean squared error (MSE), and (3) pseudo-R2 [40]. The AAE is 
defined as the average magnitude of the difference between the true response and predicted 
response. MSE measures the average squared difference between observations and their 
corresponding predictions, rather than the absolute value like AAE. A common variant of MSE is 
the root mean square error (RMSE), which is simply the square root of MSE. The third metric, 
pseudo-R2, compares the sum of squared differences between the true responses and 
predicted responses to the overall sum of squares.  

A common approach to evaluating the quality-of-fit for a model is to generate a scatterplot for 
the actual responses or observations from testing or independent datasets, as compared to the 
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corresponding predicted responses. If the points in the scatterplot lie close to the 1:1 line (at 
45°), this indicates a good model fit to the training data [14]. This type of validation step needs 
performed against the testing or independently-derived datasets, which were not used to train 
the model, and would better represent model accuracy against unbiased data and help indicate 
if any overfitting had occurred [16]. 

 
Figure 13. Comparison of the performance of different models using AAE and MSE built in various algorithm 

approaches. A subset of data presented in Schuetter et al., 2015 [21]. 
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Figure 14. Example quality-of-fit of the kernel ridge model comparing predictions to actual well productivity 
(measured as first-year production data in million cubic feet equivalent) from Shih et al., 2018 [22]. In this specific 
example, an R2 score against the training dataset was 0.85 for the kernel ridge model. 

If the developed model underperforms, it might be necessary to utilize more advanced 
strategies to improve the performance of the model, utilize a different algorithm(s), and 
possibly supplement datasets with additional data (either in quantity or complexity). Further 
improvement can possibly be accomplished by tuning certain model parameters. Automated 
processes that rely on cross-validation have been suggested in the literature as an approach to 
quantify the impact of parameter tuning [16, 14, 41]. Examples are provided in Shih et al. [22]. 
In this specific example, an R2 score against the training dataset was 0.85 for the kernel ridge 
model. 
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Figure 15. Examples from cross-validated ML parameter tuning: (top) automatic tuning of SVM model parameters 
using cross-validated RMSE [14]; (bottom) learning curves to evaluate predictive model quality-of-fit convergence 
with cross-validation against training sample sizes from two different regression algorithms [22]. 

For models that are more complex, initial conditions play a significant role in the determination 
of the outcome of training. Differences can be seen depending on whether a model starts off 
training with values initialized to zeroes versus some distribution of values, which then leads to 
the question of which distribution is to be used. Since there are many considerations at this 
phase of training, it is important that what makes a model good is defined. These parameters 
are referred to as hyperparameters. The adjustment or tuning of these parameters depends on 
the dataset, model, and the training process.  
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Appendix 6. Workshop Schedule 

AGENDA 
Real-Time Decision-Making for the Subsurface Workshop 

Wilton E. Scott Institute for Energy Innovation at Carnegie Mellon University 

Pittsburgh, PA 

July 17–July 18, 2018 

TUESDAY, JULY 17 

Plenary Session 
7:30–8:15 a.m.   Registration and Continental Breakfast (Singleton Room in Roberts Hall) 

8:15–9:00 a.m.  Welcome Remarks  

Emcee: Andy Gellman, Lord Professor of Chemical Engineering, co-
Director, Wilton E. Scott Institute for Energy Innovation, Carnegie 
Mellon University 

Speaker: Steve Winberg, Assistant Secretary for Fossil Energy, DOE 

Speaker: Randall Gentry, Deputy Director and Chief Technology 
Officer, DOE NETL 

Speaker: Ramayya Krishnan, Dean of Heinz College of Information 
Systems and Public Policy, Carnegie Mellon University 

Speaker: Jay Whitacre, Director, The Wilton E. Scott Institute for 
Energy Innovation, Carnegie Mellon University  

9:00–10:00 a.m.  Primer Presentations 

Three (3) approximately 15-minute presentations 

1. Resource Recovery and Reservoir Management  
Speaker: Grant Bromhal, Senior Fellow, NETL  

2. Autonomous Monitoring Systems  
Speaker: Charles Gorecki, Director of Subsurface R&D, 
University of North Dakota EERC 

3. Induced Seismicity  
Speaker: Paul Johnson, Senior Fellow, LANL 
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10:00–10:15 a.m. Break 

10:15–11:30 a.m.  Technical Plenary Talks/Industry Case Studies  

Four to five (4–5) approximately 15–20-minute presentations 

Industry examples of approaches currently being used in the field, case 
studies, success stories, future plans, and address-related questions  

Plenary: ML and Big Data Approaches  

Speaker: Srikanta Mishra, Senior Research Leader, Battelle 

Case studies (e. Data Sharing; Missing Data; Successful Techniques, 
Others TBD) 

Speaker 1: Fred Aminzadeh, Research Professor,  
University of Southern California 

Speaker 2: Ryan Tyree, Production Engineering Manager,  
Range Resources 

Speaker 3: Andrea Cortis, Innovation Data Science Manager, 
Pioneer Natural Resources 

Speaker 4: Mike Brudzinski, Geology Post-Doctoral Fellow,  
Miami University 

 

11:30–11:45 a.m.  Charge to Breakout Groups and Split into Groups: 

1. Resource Recovery and Reservoir Management 
Lead: Grant Bromhal, Senior Fellow, NETL 

Co-lead: Lewis Matthews, Data Scientist,  
CrownQuest Operating, LLC 

2. Autonomous Monitoring Systems 
Lead: George Guthrie, Focus Area Lead for Geosciences, LANL  

Co-lead: Alan Cohen, Director, Office of Oil and Natural Gas 
Research, DOE FE  

3. Induced Seismicity 
Lead: Paul Johnson, Senior Fellow, LANL  

Co-lead: Mike Brudzinski, Geology Post-Doctoral Fellow,  
Miami University 



 

REAL-TIME DECISION-MAKING FOR THE SUBSURFACE REPORT  69 

Breakout Sessions 
11:45 a.m.–12 p.m. Walk to Breakout Rooms (Scott Hall) 

12:00–2:00 p.m.  First Breakout Session: TARGETS (working boxed lunch) 

2:00–2:15 p.m.  Break 

2:15–3:45 p.m.  Second Breakout Session: DATA AVAILABILITY 

3:45–4:00 p.m.   Break/Return Walk to Plenary Room (Singleton Room in Roberts Hall) 

Day One Closing Discussion 

4:00–5:00 p.m.  Report Outs from Breakout Sessions 

5:00–7:00 p.m. Reception (Singleton Room in Roberts Hall and adjacent foyer) 

WEDNESDAY, JULY 18 

Plenary Session 

7:30–8:00 a.m.   Continental Breakfast (Singleton Room in Roberts Hall) 

8:00–8:45 a.m.   Discuss Results from Day One and Charge for Day Two Breakouts 

Breakout Sessions 

8:45–9:00 a.m. Walk to Breakout Group Rooms (Scott Hall) 

9:00–11:15 a.m.  Third Breakout Session: BARRIERS & MISSING DATA   

11:15 a.m.–12 p.m. Break 

12:00–2:00 p.m.   Fourth Breakout Session: TOOLS & TECHNIQUES (working boxed lunch) 

2:00–2:30 p.m. Wrap-up Discussion in Breakout Sessions to Prepare Report Outs 

2:30–3:00 p.m.  Break/Return Walk to Plenary Room (Singleton Room in Roberts Hall) 

Day Two Closing Discussion 

3:00–4:30 p.m.   Report Outs from Breakout Sessions 

   30 minutes for each working group 

4:30–5:00 p.m.   Closing Discussion 

5:00 p.m.  Adjourn 
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