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1. Motivation. How do humans walk and run
stably without falling down? How do humans walk
without deviating too much from a roughly periodic
steady motion, say, when walking on a treadmill?
There are many hundred articles with mechanics-
based mathematical models of bipedal walking and
running, that demonstrate stable periodic motion, ei-
ther due to passive dynamics or due to active con-
trol. Such theoretical work provide insight into how
one might stabilize locomotion. However, it is not
yet settled which among this zoo of stabilizing con-
trol schemes yield dynamics most similar to that of
humans during locomotion.

Our goal is characterize, using appropriate hu-
man walking experiments, the dynamics near steady
state walking motions. We seek a model of the dy-
namics that will be able to predict the transients back
to steady state, not just reproduce the steady state
motion. Aside being of general scientific interest, a
characterization of walking dynamics might enable us
to design prosthetic devices with human-like dynam-
ics, or exoskeletons that do not fight these natural
dynamics.

2. State of the art. One natural approach to
this system identification problem is to apply exter-
nal perturbations to the walking human, and then fit
dynamical or control models to the transients back
to steady state. There is a considerable literature
on perturbation experiments (e.g., [1]). While most
such experiments have not been mined for detailed
dynamics, some have been examined for some con-
trol aspects. For instance, At Hof et al (e.g., [2])
show how sideways perturbations are controlled by
sideways step width modulations, as has also been
argued by Kuo and others.

As an alternative to perturbation experiments,
Hurmuzlu [3], Dingwell [4], Revzen [5], and others
have pioneered the use of steady state locomotion
data to infer the dynamics. While this seems oxy-
moronic, the idea is that steady walking is not quite
exactly periodic, and every step is slightly different
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from every other step. If this non-periodicity is at-
tributable to process noise (whether of motor or sen-
sory or external origins) — this process noise provides
the ‘perturbations’ that let us explore the dynamics
in the neighborhood of the periodic motion.

3. Our approach .

Experiments. We used treadmill motion capture of
human walking at three speeds, for five subjects (so
far), with at least three markers on each of seven body
segments (two feet, two shanks, two thighs, and upper
body). Subjects walked for a few minutes at each
speed, corresponding to a few hundred steps. Joint
centers and 2D joint angles were estimated, and we
noted that step-to-step variability is systematically
greater than the obvious sources of measurement or
model errors, suggesting that there may be dynamical
information in this step-to-step variability.
Dynamics representation using Factorized
Poincare maps. Because linear time-periodic ODEs
are susceptible to drift errors due to noise, and a
Poincare map for a single transverse section only gives
a slice of the dynamics, we represent the dynam-
ics near the periodic motion by considering a large
number of Poincare sections and the mappings from
one section to the next: in other words, a factorized
Poincare map (an idea very closely related to that in
[5, 6]).
Inferring linear mappings. Given nearly periodic
noise-driven data, we can construct well-conditioned
Poincare sections, compute the successive intersec-
tions of the trajectory with the Poincare sections,
and then estimate section-to-section mappings. We
mostly use linear least squares, but we have also
used an approximate maximum likelihood estima-
tions, when biased estimates due to correlated noise
were a concern (see [7, 8] for more details).

4. Current results

Simulating model for the whole body dynam-
ics. Using about 20 Poincare sections, we estimated a
factorized Poincare map representation of the walk-
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ing dynamics, using a 2D model of a human, with
5 segments (no foot). Because this is a dynamical
model, we can now simulate the dynamics from ar-
bitrary initial conditions near the periodic motion.
The model has the property that having a too-high
forward speed during mid-stance increases the next
step length, as does starting with too high swing leg
speed (see Figure 1). This could be interpreted as
using step lengths to (partly) control forward speed,
as has previously been suggested.

We performed some ‘self-imposed transient’ hu-
man experiments in which the subjects took a longer
or shorter step of heir own volition, and returned back
to steady state. Starting from an initial condition
at the middle of such a transient, we compared ex-
perimentally observed motions to the corresponding
model predictions: we found that while a large frac-
tion of the transient is explained by the model, the
match is not perfect.
Top-view step to step dynamics. As a simpler
calculation, we also computed linear mappings that
capture the step to step dynamics of walking. We
then estimated a linear mapping to the next foot fall
position from the upper body state at mid-stance rel-
ative to current stance foot position. This mapping
suggests what has been observed in the At Hof ex-
periments, that a larger-than-usual sideways speed or
sideways position during mid-stance gives rise to in-
creased step widths and decreased step lengths: sug-
gesting (but perhaps not exclusively) step-width con-
trol of side-to-side dynamics. A larger than usual
forward speed increases the next step length, with-
out affecting the step width significantly. (All es-
timates statistically significant, after assumption of
model structure).

5. Best possible results

Many open problems remain. All our statistical es-
timates come with large error estimates (computed
by bootstrap resampling), which perhaps cannot be
reduced without increasing the ‘signal’ by applying
external perturbations instead of relying on small in-
ternal perturbations. Of course, even small error es-
timates are reliable only so far as we have assumed
the correct model structure and model order to fit to
the data: we may be missing delay terms, significant
state variables like foot angle, or even, dynamics that
cannot be linearized, like dead-bands. Our eventual
hope is to perform perturbation experiments that can
then be used to independently perform such system
identification, and perhaps compare with steady state
derived dynamics. We are now fitting to the data a
mechanics-based model of the human body, so we can
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Figure 1: A transient simulation from the ‘factorized
Poincare map’ model, estimated from the not-quite peri-
odic walking data.

estimate the driving joint torques or muscle forces,
and then infer a mapping from body state to muscle
forces; that is, inferring a controller.
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