

Introduction

Biological data suggest that legs regulate energy production and removal via muscle activation: in this work we consider the active SLIP model, an energetically non-conservative version of the SLIP model with series actuation.

We propose a **strategy for actuator displacement** in order to:

- add/remove energy from the system,
- analytically solve part of its dynamics,
- online computation of actuator displacement and leg positioning to drive the system to a desired state, even in the presence of terrain perturbation

Active SLIP model

Passive SLIP model:

- ▶ Point mass, M, attached to a massless spring leg, with length ℓ and spring stiffness constant k.
- Piston-like actuator ℓ_{act} added in series with the spring
- Running dynamics consist of two phases: the flight phase and the stance phase

Equations of motion during stance not analytically solvable:

$$\ddot{\ell}(t) = -rac{k}{M}(\ell(t) - \ell_0 - \ell_{act}(t)) - g\sin heta + \ell_0$$

 $\ddot{ heta} = -2rac{\ell}{\ell}\dot{ heta} - rac{g}{\ell}\cos heta.$

Approximating the stance phase dynamics through partial feedback linearization

Divide total actuator displacement in two parts: $\ell_{act} = \ell_{nl} + \ell_c$, such as:

 $\ell_{nl}(t)$, has the purpose of cancelling the nonlinear terms in (1):

$$\mathcal{E}_{nl}(t) = \frac{M}{k} [g \sin \theta(t) - \ell(t) \dot{\theta}(t)^2].$$

- We drive the second term, ℓ_c , to a constant value $\overline{\ell}_c$, moving with constant velocity.
- ► We are then able to solve analytically the e.o.m of the leg length $\ell(t)$, and we use an approximation for the dynamics of the angle $\theta(t)$.

Actuated SLIP Model: Partial Feedback Linearization and Two-Part Control Strategy Giulia Piovan and Katie Byl

Robotics Laboratory, University of California, Santa Barbara

(1)

(2)

Error Reduction

to the stance phase?

to the desired apex state:

Choice of Actuator Constant Value

- maximal leg compression

