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Introduction

Biological data suggest that legs regulate energy production and
removal via muscle activation: in this work we consider the
active SLIP model , an energetically non-conservative version of
the SLIP model with series actuation.

We propose a strategy for actuator displacement in order to:

I add/remove energy from the system,
I analytically solve part of its dynamics,
I online computation of actuator displacement and leg positioning

to drive the system to a desired state, even in the presence of
terrain perturbation

Active SLIP model

Passive SLIP model:
I Point mass, M, attached to a massless spring leg, with length `

and spring stiffness constant k .
I Piston-like actuator `act added in series with the spring
I Running dynamics consist of two phases: the flight phase and

the stance phase

!k

!act !
stance

flight

I Equations of motion during stance not analytically solvable:

῭(t) = −
k
M
(`(t)− `0 − `act(t))− g sin θ + `θ̇2, (1)

θ̈ = −2
˙̀

`
θ̇ −

g
`

cos θ. (2)

Approximating the stance phase dynamics through partial
feedback linearization

Divide total actuator displacement in two parts: `act = `nl + `c,
such as:

I `nl(t), has the purpose of cancelling the nonlinear terms in (1):

`nl(t) =
M
k
[g sin θ(t)− `(t)θ̇(t)2].

I We drive the second term, `c, to a constant value ¯̀
c, moving with

constant velocity.
I We are then able to solve analytically the e.o.m of the leg length
`(t), and we use an approximation for the dynamics of the angle
θ(t).

Error Reduction

What are the benefits of having a partial analytical solution
to the stance phase?

We compute the error reduction as a percentage of the distance
to the desired apex state:

PEy = 100 ‖ yreal − yappr ‖ /`0, PEẋ = 100τ ‖ ẋreal − ẋappr ‖ /`0,

and as a function of the relative spring stiffness γ = k`0
Mg.
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Quadrupes and bipeds: γ ' 10 − 20 per leg.

Choice of Actuator Constant Value

I Divide the stance phase in two parts, separated by the point of
maximal leg compression

I Chose two constant values for `c: one for the first part, `c1, and
one for the second part `c2, of the stance phase.

!act = !nl + !c2

!act = !nl + !c1
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I Using optimization algorithm, chose best actuator values and
touch-down angle to reach a desired apex state.

I In presence of unexpected sensing error on terrain: upon
touching the ground, recompute the actuator value for the second
part of the stance phase based on the new terrain information.

Applications: Hopping on Rough Terrain

I Goal: maintain the same forward velocity and the same distance
from the terrain with respect to the last step.

I Assume that the terrain measurements are faulty
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Applications: Recovery from perturbations

We test the recovery capabilities of our controller for unexpected
(positive or negative) perturbations on the terrain height of up to
50% of the leg length.
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Foothold Placement Control

I Terrain where only a specific set of N footholds is allowed:
minimizing the distance between the landing points and the
desired footholds.

I The longer the horizon N, the better the performance . The
horizon length affects computational time.
Compute optimal path via approximation reduces computational
time −→ possible to extend the planning horizon. But the
approximation, as such, carries an error.

I Trade-off between horizon length/computation time, and
foothold error.

average time during flight:

t ! 0.5sec
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