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Applications: Recovery from perturbations

Introduction

Biological data suggest that legs regulate energy production and
removal via muscle activation: in this work we consider the
active SLIP model , an energetically non-conservative version of
the SLIP model with series actuation.

We propose a strategy for actuator displacement in order to:

» add/remove energy from the system,
» analytically solve part of its dynamics,

» online computation of actuator displacement and leg positioning
to drive the system to a desired state, even Iin the presence of
terrain perturbation

Active SLIP model

Passive SLIP model:

» Point mass, M, attached to a massless spring leg, with length ¢
and spring stiffness constant k.

» Piston-like actuator /5. added in series with the spring

» Running dynamics consist of two phases: the flight phase and
the stance phase
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» Equations of motion during stance not analytically solvable:

(t) = —5(@@) — lo — Lact(t)) — g SinG + 67, (1)
. 0 g
0 = —229 — zcos 0. (2)

Approximating the stance phase dynamics through partial

feedback linearization

Divide total actuator displacement in two parts: lact = £ + £c,
such as:

» Ui (1), has the purpose of cancelling the nonlinear terms in (1):

(a(t) = 1 [g sin6(t) — ((0A)?].

» We drive the second term, /¢, to a constant value ¢, moving with
constant velocity.

» We are then able to solve analytically the e.o.m of the leg length
/(t), and we use an approximation for the dynamics of the angle

a(t).
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What are the benefits of having a partial analytical solution
to the stance phase?

We compute the error reduction as a percentage of the distance
to the desired apex state:

PEy = 100 || Yreal — Yappr || /Co,
and as a function of the relative spring stiffness v = KA—%’
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Quadrupes and bipeds: v ~ 10 — 20 per leg.

Choice of Actuator Constant Value

» Divide the stance phase In two parts, separated by the point of
maximal leg compression

» Chose two constant values for /.. one for the first part, /.1, and
one for the second part /.,, of the stance phase.
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» Using optimization algorithm, chose best actuator values and
touch-down angle to reach a desired apex state.

» In presence of unexpected sensing error on terrain: upon
touching the ground, recompute the actuator value for the second
part of the stance phase based on the new terrain information.

Applications: Hopping on Rough Terrain

» Goal: maintain the same forward velocity and the same distance
from the terrain with respect to the last step.

» Assume that the terrain measurements are faulty
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We test the recovery capabillities of our controller for unexpected
(positive or negative) perturbations on the terrain height of up to
50% of the leg length.

step height =-0.2
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Foothold Placement Control

» Terrain where only a specific set of N footholds Is allowed:
minimizing the distance between the landing points and the
desired footholds.

» The longer the horizon N, the better the performance . The
horizon length affects computational time.
Compute optimal path via approximation reduces computational
time — possible to extend the planning horizon. But the
approximation, as such, carries an error.

» Trade-off between horizon length/computation time, and
foothold error.
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average time during flight:
t ~ 0.5sec
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