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SBI: Quick Review

Two different tasks:

» Construct confidence sets (without regularity conditions)
» Estimate the likelihood function

These often get mushed together (for example ABC).

Complex models may fail to satisfy standard regularity conditions
which means that the usual (asymptotic) methods can fail.
Fortunately, SBI methods don't rely on these regularity conditions.

Note: I'll focus on frequentist inference. Not discussing Bayesian
inference.
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Setting

We have data YVgps.
Could be scalars, vectors, functions, images, etc

Model:
P=(pg: 0€0O), © c Re.

Want to infer 8. (Infer = uncertainty quantification)

In particular, we want a confidence set C such that
Py( € C)>1—a, forall@.

Main assumption: it is easy to simulate from py

5/50
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Recall: Confidence Sets by Inverting a Test

For each 0: test Hp: O4ye = 0 at level «
Test statistic T = T(Y,0).
Reject Hy if T > q(0) where Po(T > q(0)) = o
Invert: C = {6 : not rejected}
then
Py(feC)=1-a

for all 0
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Inverting a Test

» p-value version:

C={0: p(0) > a}
where

P(g) - PG (T(y(0)79) Z T(yob570)>

and Y(0) ~ Ps.
» Quantile version:

C={0: T(Vobs, 0) < q(0)}

where

Po (T(y(G),H) < q(9)> =1-a.

> Dalmasso et al (2020, 2024) proposed using simulation to do this
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> Define Z; = I(T(yobsagj) > T(y(ﬁj),ﬂj))
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» Regress Zj on 6 (nonparametric regression) to get
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SBI Confidence Sets: Version 1: inverting a test

v

Draw 64,...,0n ~ 7. (Not a prior!)

Draw Y(6;) ~ Pe,.

Let T; = T(Y(6)),0;). (Could be one dataset or many.)
Define Z; = /(T(yobs,ej) > T(y(ﬂj),ﬁj))

We have (01, Z1), ..., (On, Zn).

Regress Z; on 8; (nonparametric regression) to get
p(0;) = E[Z0}]
which is the p-value for testing
Ho 10 = gj.

Invert the test:
C=1{0: p6) > a}.
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SBI Confidence Sets

0 01 0 e On
y Y1) Y(62) --- YV(bwn)
T()(0),0) T1 T> . Twn
Z 4 Z> . Zn
5 B0 B0 - B

C= {9 s P(Voss, 0) > 1 — a}.
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SBI Confidence Sets: version 2: Quantile Regression

Draw 6y,...,0y ~ 7.

Draw y( i) ~ Po,.

Let T; = T(V(0)),9)).

Now we have: (61, T1),...,(0n, Tn)

Perform quantile regression of T; on 6; to estimate g(¢#) where

Po(T(V(0),0) < q(0)) =1—av.

» Return C = {H: T(Vobs, 0) < @ }

vvyVvyvVvyy
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Quantile Regression

» Does not have to be done using neural nets.

» Local linear quantile regression: g(6) = 5y where we minimize

> " o(T; = Bo — BT 0;)Kn(0; — 0)
J

where Kj, is a kernel with bandwidth h and and p is the check loss:
p(u) =u(l—a—I(u<0)).

» This is easy and only has one tuning parameter h. And we can get
standard errors for g(6) easily.
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No regularity conditions on the model.
No need to use asymptotic approximations.
To clarify: the coverage is

1

PQ(QEC)Zl—Oé-‘v-OP(N)

where ~y is the smoothness of g(6) and d is the dimension of 6.
Note that it is N (number of simulated 6;'s) not n (number of data
points).

The statistic T(Y,0) can be anything. This gives us great freedom.

Taking T(Y,0) to be the likelihood £(6,)) = pg()) is common but
not necessary. Not always the best choice.

Can include prior information while retaining coverage (later).
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Estimating the Likelihood

0 H 91 92 s 9N ‘ 0N+1 9N+2 02N

Y | Y1) Y(2) --- Y(n) | V(1) V(b2) Y(On)

w 1 1 1 0 0 0
» Ongi1,-..,02n are a permuted version of 61,...,0y

» Now do binary regression:
h(0,Y) = P(W =1/6,)).

Note: binary regression not classification.

» Then ho.Y)

L£(0,Y) x Toh0.))
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Choice of Statistic

A virtue of SBI based confidence sets is that we can use any statistic
T(Y,0).

The maximum likelihood estimate is optimal for large sample sizes
and under very strict regularity conditions.

But in general, the likelihood is not optimal.
Likelihood inference is very sensitive to model misspecification.
More on this later.
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Choice of Statistic

Carzon et al (2025) suggested

J LW, V) () dy

T(),0) = £, 0)

Here, the prior f allows us to focus on part of the parameter space.

Bayesian flavor, but still has frequentist coverage:
iren‘Pg(OE O)=1-«

Smaller confidence intervals if f is focused near the true value.

These can be seen as a SBI version of FAB (Frequentist Assisted
Bayes); see also Hoff (2020, 2023).
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Choice of Statistic

Masserano et al (2023) introduced WALDO

Use posterior (based on a prior)

T=0-6)Tv0-0)

Here:

9 = E[0|data]

V = Var[f|data]
Now use the SBI algorithm with this statistic

Allows prior information but preserves frequentist coverage
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Nuisance Parameters

Often 6 = (v, y) where v is the parameter of interest and +y is a
nuisance parameters.

Can use profile likelihood sup., L£(%, 7).
Can use integrated (focused) likelihood | L£(v,~)f()d~.

Projection: find confidence set B for (1,~) and take
C={¢: (¢,v) € B for some ~}.

Berger-Boos (1994): first infer nuisance parameter and use
restricted projection. See Stanley et al (2025).
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Diagnostic

Draw new samples (67, Y(01)), ..., (05, Y(05)).

Use W; = I(0 € C]) to estimate the coverage Py(¢ € C).

This can also be used to assess other features of the method such as
size of the confidence sets.

We could also use this to help choose between different test
statistics.
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Walchessen, Lenzi, Kuusela 2024

Spatial models can have intractable likelihood functions.

Set of spatial locations S.

Process {Y(s) : s € S}.

Two examples: Gaussian process and the Brown-Resnick process.

Even the Gaussian case can be hard since exact likelihood
calculations involve inverting a large matrix

The Brown-Resnick process is intractable

24 /50
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Spatial Statistics |

Walchessen, Zammit-Mangion, Huser, Kuusela (2025)

Now suppose we want to simulate new observations from the
estimated process.

Want to draw

~

Y ~p(ylY:0)
Method: diffusion model
Have data Yi,..., Y,
Evolve the data to noise 71, ..., Z,

Estimate the reverse process

sample from noise and evolve backwards
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Inverse Problems
Batlle et al 2024, Stanley et al 2025

Y =1f(x)+e€ e~ N(O,X)
x is high dimensional
Constraints: x € X

Infer ¢(x)

infxex Plp(x) € C) > 1—a

simulation used to estimate certain quantiles
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Parameter space

Constraint set,

Observation space ]R”‘

Forwdrd model

X CRP

FunActional of @: R’ >R
interest
'y 1)

R

R™

Interval (obserued)

construction

: Q@ (x‘) (unllmown)

Functional space

Goal: small (in length) confidence interval

for ¢ (X‘) with frequentist coverage 1 —a

29/50



Omnifold

Andreassen et al (2020) and Zhu et al (2024)

30/50



Omnifold

Andreassen et al (2020) and Zhu et al (2024)

» Observe
Yireo s Yo~ ply) = / k(y|x)F (x)dx

30/50



Omnifold

Andreassen et al (2020) and Zhu et al (2024)

» Observe
Yireo s Yo~ ply) = / k(y|x)F (x)dx

» k(y|x) is unknown.

30/50



Omnifold

Andreassen et al (2020) and Zhu et al (2024)

» Observe
Yireo s Yo~ ply) = / k(y|x)F (x)dx

» k(y|x) is unknown.
> Also observe (X7, Y1), ..., (Xy, Yn) ~ k(y|x)r(x)

30/50



Omnifold

Andreassen et al (2020) and Zhu et al (2024)

» Observe
Yireo s Yo~ ply) = / k(y|x)F (x)dx

» k(y|x) is unknown.
> Also observe (X7, Y1), ..., (Xy, Yn) ~ k(y|x)r(x)
> Want to infer f(x) or v(x) = f(x)/r(x).

30/50



Omnifold

Andreassen et al (2020) and Zhu et al (2024)

Observe
Viooo Yo ply) = [ Ky

k(y|x) is unknown.

Also observe (X{, Y{*), ..., (X5, Ya) ~ k(y|x)r(x)

Want to infer f(x) or v(x) = f(x)/r(x).

Iterative solution (Multhei, Mainz, Schorr 1987, Kondor 1983, Shepp
and Vardi 1982)

30/50



Omnifold

Andreassen et al (2020) and Zhu et al (2024)

Observe
Viooo Yo ply) = [ Ky

k(y|x) is unknown.

Also observe (X{, Y{*), ..., (X5, Ya) ~ k(y|x)r(x)

Want to infer f(x) or v(x) = f(x)/r(x).

Iterative solution (Multhei, Mainz, Schorr 1987, Kondor 1983, Shepp
and Vardi 1982)

0 = 1009 [ ey 9
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Omnifold

> Andreassen et al (2020) invented a simulation-based version

> r(y) = % = [v(x")k(y|x")dx’

> v(k“)(x):v(k)(x)% g (x) = [ rO(y)k(y|x)dx
» These density ratios are estimated using classifiers
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Omnifold

Andreassen et al (2020) invented a simulation-based version

r(y) = % = [v(x")k(y|x")dx’

P (x) = v(k)(x)% g (x) = [ rO(y)k(y|x)dx
These density ratios are estimated using classifiers

Zhu et al (2024) includes nuisance parameters
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Model Mispecification

Tomasselli , Ventura, Wasserman (2025)

Model P = {py : 6 € ©}.

Do not assume that P € P.

Choose a discrepancy d(p, q).

Projection parameter: 6, which minimizes d(p, pg) i.e.

0. = argminyd(p, pp)

The model is an approximation

32/50
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Kullback-Leibler: d(p,q) = [ plog(p/q)

When the model is misspecified, the maximum likelihood (and
Bayes) estimate converges to the Kullback-Leibler projection

But this is very non-robust
Suppose

p=(1—¢€)N(0,1)+ €Q,
where @, is centered at a and € is tiny.
Projection is N(u(a), 1).
As a — 00, u(a) — oo.
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Kullback-Leibler Projection
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Better Discrepancies

Hellinger: d(p,q) = [(\/P — /4)?
Density Power Divergence (DPD):

dp.0) = [ [0~ (142 ) sa e+ 2 [000)

where 0 < v < 1.

Gives KL as v — 0.

Becomes [(p — q)? when v =1

~ trades off efficiency vs robustness
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Which Discrepancy?

robust efficient avoids no tuning
density estimation  parameter
KL X X
Hellinger X
DPD X X
Kernel X X
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Model Misspecification: Inference

» Recall that the projection parameter as:
0, = argmingd(p, ps).

» Goal: get a confidence set for 6,

» We cannot get a confidence set by inverting a test. The hypothesis
Hp : 0 = 04 is always false.

» Inverted sets can get smaller and smaller as sample size increases.
Due to rejecting all 6 eventually. False impression of accuracy.
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» To be concrete, let's use DPD with v = 1 which is
(o) = [ (pulox) = P
= /pg(x)dx -2 / po(x)p(x) + constant = ¢(6) + constant

» Draw Wi, ..., W, ~ g, and use a classifier to estimate
ro(y) = po(y )/g( ) for a reference density g.
» Estimate:
—~ 1 N 2 -
W(0) = — D H(Yi(0)e(Yi(0) - ~ > _T(Y)e(Y)

)

> 6. minimizes 12)\(91-).
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» The usual confidence set is
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where V=n"1=BMBT, B=n"1=Y Y], A=—n"13,¢;
and v; is gradient of discrepancy estimate.
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Confidence Set

» The usual confidence set is
{9 H(0-0)TVHO-0) < xf,,a}
where V=n"1=BMBT, B=n"1=Y Y], A=—n"13,¢;

and v; is gradient of discrepancy estimate.

» But this depends on regularity conditions and the derivatives might
be intractable.
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For every 0 test: Hp : d(p, pp) < d(p, p3).

> Now
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Relative Test Confidence Set

Park, Balakrishnan, Wasserman (2023), Takatsu and Kuchibhotla (2025) and Chang and

v

Kuchibhotla (2024)

Split data into D; and D,

Dy — é\

Use D, to test:

For every 0 test: Hp : d(p, pp) < d(p, p3).

Now
~ ~ 1 1 2
T= d(P7P0) - d(P,Pg) = EZ Wi — ;Z Vi= N(Nvae)
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Reject if T > z,0¢
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Relative Test Confidence Set

Park, Balakrishnan, Wasserman (2023), Takatsu and Kuchibhotla (2025) and Chang and

v

vvyyvyy

Kuchibhotla (2024)

Split data into D; and D,

Dy — é\

Use D, to test:

For every 0 test: Hp : d(p, pp) < d(p, p3).

Now
~ ~ 1 1 5
T =d(p.ps) = d(p.pg) = = D Wi~ —> Vi~ N(u.0j)
This is &= Normal without regularity conditions on the model.
Reject if T > z,0¢
C = {9 T < Zaag}.
Pl. e C)=1-a.
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Example: Mixture Model

> p(y) = AN(p1,0) + (1 = A)N(p2, 0)
» This model is not identified. Regularity conditions fail.
» Standard methods for confidence sets don't work.

» Also, we want to allow of misspecification

42/50



Mixture Model: Using Discrepancy

1.00
121 075
0 0.8- & 050
041 - 028
0.00
2 1 0 3 2 -1 0 3 2 1 [}
W 2] Il
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Robustness by Tilting

Protect from model misspecification by expanding the model.

Choose basis functions by, ..., bg.
Expand the model py to
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Po.5(y)
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44 /50



v

Robustness by Tilting

Protect from model misspecification by expanding the model.
Choose basis functions by, ..., bg.
Expand the model py to

po(y)eXi it
o f pe(u)ezj Bibi(uw) gy

po.s(y)
SBI can be used to get the profile likelihood

L(0) = sup L£(6,5)

Use L£(6) to get confidence set for 6.

Requires Newton-Raphson to get B\(G) which maximizes supg £(6, 3)
for each 0.

44 /50
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Model Approximation Using a Varying Coefficient Model

» When py(y) is intractable, it may be useful, for interpretability, to

>
>
>

have an approximate, closed form expression for py.

Let by,..., bx be basis functions.
Let £(0) = (A(0),..., f(0)).
Define
p(y;0,f) Zf 0)b,(y
Find f to minimize

/ (Poly) — ply: 6. F))2dly.

Then R 7
f(6;) = B~ by,
where 1
= — be. (Y,
m Z o
Then ?(9) is obtained from ?(91), ey f(HN) by smoothing.
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Active learning

» We want to draw 61,6, ..., sequentially and zoom in on the
confidence set C.

» This is critical when @ is high dimensional.
> Let C={0: pv(f) >a}and C={0: pv() > a}.
> Let
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Active learning

We want to draw 61,65, ..., sequentially and zoom in on the
confidence set C.

This is critical when @ is high dimensional.
Let C={0: pv() > a}and C={0: pv(h) > a}.
Let

s(6)

Minimize R by choosing 61 where e(f) is large.

P(I(G eC)£1(0¢e C)> ~ o (_a‘pvw)> = ().
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Example

N =200 375 475 575 675
s Aty ¥
224+ ¥ ¥
4 + +
10 1 2 31 0 1 2 3-1 0 J1 2 341 0 1 2 31 0 1 2 3
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Goodness of Fit

Test
Ho :infd(p, po) = 0

The p-value is

p = sup p(9)

where
p(0) = Po(Ta(0) > Th)
Tn(e) = 'Zf d(Pw, Pn(e))v T, = ”J}f d(PLZH Pn)

Getting the critical value (while allowing for non-regularity) is
difficult in general.

This can be SBl-ified.

49/50
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