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SBI: Quick Review

▶ Two different tasks:
▶ Construct confidence sets (without regularity conditions)
▶ Estimate the likelihood function

▶ These often get mushed together (for example ABC).

▶ Complex models may fail to satisfy standard regularity conditions
which means that the usual (asymptotic) methods can fail.
Fortunately, SBI methods don’t rely on these regularity conditions.

▶ Note: I’ll focus on frequentist inference. Not discussing Bayesian
inference.
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Setting

▶ We have data Yobs .

▶ Could be scalars, vectors, functions, images, etc

▶ Model:
P = (pθ : θ ∈ Θ), Θ ⊂ Rd .

▶ Want to infer θ. (Infer = uncertainty quantification)

▶ In particular, we want a confidence set C such that

Pθ(θ ∈ C ) ≥ 1− α, for all θ.

▶ Main assumption: it is easy to simulate from pθ
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Recall: Confidence Sets by Inverting a Test

▶ For each θ: test H0: θtrue = θ at level α

▶ Test statistic T = T (Y, θ).
▶ Reject H0 if T > q(θ) where Pθ(T > q(θ)) = α.

▶ Invert: C = {θ : not rejected}
▶ then

Pθ(θ ∈ C ) = 1− α

for all θ
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Inverting a Test

▶ p-value version:
C = {θ : p(θ) ≥ α}

where

p(θ) = Pθ

(
T (Y(θ), θ) ≥ T (Yobs , θ)

)
and Y(θ) ∼ Pθ.

▶ Quantile version:

C = {θ : T (Yobs , θ) ≤ q(θ)}

where

Pθ

(
T (Y(θ), θ) ≤ q(θ)

)
= 1− α.

▶ Dalmasso et al (2020, 2024) proposed using simulation to do this
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SBI Confidence Sets: Version 1: inverting a test

▶ Draw θ1, . . . , θN ∼ π. (Not a prior!)

▶ Draw Y(θj) ∼ Pθj .

▶ Let Tj = T (Y(θj), θj). (Could be one dataset or many.)

▶ Define Zj = I

(
T (Yobs , θj) ≥ T (Y(θj), θj)

)
.

▶ We have (θ1,Z1), . . . , (θN ,ZN).

▶ Regress Zj on θj (nonparametric regression) to get

p(θj) = E[Zj |θj ]

which is the p-value for testing

H0 : θ = θj .

▶ Invert the test:
C = {θ : p̂(θ) ≥ α}.
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SBI Confidence Sets

θ θ1 θ2 · · · θN
Y Y(θ1) Y(θ2) · · · Y(θN)

T (Y(θ), θ) T1 T2 · · · TN

Z Z1 Z2 · · · ZN

p̂ p̂(θ1) p̂(θ2) · · · p̂(θN)

C =
{
θ : p̂(Yobs , θ) ≥ 1− α

}
.
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p-value Version
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SBI Confidence Sets: version 2: Quantile Regression

▶ Draw θ1, . . . , θN ∼ π.

▶ Draw Y(θj) ∼ Pθj .

▶ Let Tj = T (Y(θj), θj).

▶ Now we have: (θ1,T1), . . . , (θN ,TN)

▶ Perform quantile regression of Tj on θj to estimate q(θ) where

Pθ
(
T (Y(θ), θ) ≤ q(θ)

)
= 1− α.

▶ Return C =
{
θ : T (Yobs , θ) ≤ q̂(θ)

}
.
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Quantile Regression

▶ Does not have to be done using neural nets.

▶ Local linear quantile regression: q̂(θ) = β̂0 where we minimize∑
j

ρ(Tj − β0 − βT θj)Kh(θj − θ)

where Kh is a kernel with bandwidth h and and ρ is the check loss:

ρ(u) = u(1− α− I (u < 0)).

▶ This is easy and only has one tuning parameter h. And we can get
standard errors for q̂(θ) easily.
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SBI Confidence Sets

θ θ1 θ2 · · · θN
Y Y(θ1) Y(θ2) · · · Y(θN)

T (Y(θ), θ) T1 T2 · · · TN

q̂ q̂(θ1) q̂(θ2) · · · q̂(θN)

C =
{
θ : T̂ (Yobs , θ) ≤ q̂(θ)
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With Repetition
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MSE with and without repetition
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SBI Confidence Sets

▶ No regularity conditions on the model.

▶ No need to use asymptotic approximations.

▶ To clarify: the coverage is

Pθ(θ ∈ C ) = 1− α+ OP

(
1

N

) γ
2γ+d

where γ is the smoothness of q(θ) and d is the dimension of θ.
Note that it is N (number of simulated θj ’s) not n (number of data
points).

▶ The statistic T (Y, θ) can be anything. This gives us great freedom.

▶ Taking T (Y, θ) to be the likelihood L(θ,Y) = pθ(Y) is common but
not necessary. Not always the best choice.

▶ Can include prior information while retaining coverage (later).
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Estimating the Likelihood

θ θ1 θ2 · · · θN θN+1 θN+2 · · · θ2N
Y Y(θ1) Y(θ2) · · · Y(θN) Y(θ1) Y(θ2) · · · Y(θN)
W 1 1 · · · 1 0 0 · · · 0

▶ θN+1, . . . , θ2N are a permuted version of θ1, . . . , θN
▶ Now do binary regression:

h(θ,Y) = P(W = 1|θ,Y).

Note: binary regression not classification.

▶ Then

L(θ,Y) ∝ h(θ,Y)

1− h(θ,Y)
.
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Choice of Statistic

▶ A virtue of SBI based confidence sets is that we can use any statistic
T (Y, θ).

▶ The maximum likelihood estimate is optimal for large sample sizes
and under very strict regularity conditions.

▶ But in general, the likelihood is not optimal.

▶ Likelihood inference is very sensitive to model misspecification.

▶ More on this later.
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Choice of Statistic

▶ Carzon et al (2025) suggested

T (Y, θ) =
∫
L(ψ,Y)f (ψ)dψ

L(Y, θ)

▶ Here, the prior f allows us to focus on part of the parameter space.

▶ Bayesian flavor, but still has frequentist coverage:

inf
θ
Pθ(θ ∈ C ) = 1− α

▶ Smaller confidence intervals if f is focused near the true value.

▶ These can be seen as a SBI version of FAB (Frequentist Assisted
Bayes); see also Hoff (2020, 2023).
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Choice of Statistic

▶ Masserano et al (2023) introduced WALDO

▶ Use posterior (based on a prior)

T = (θ̂ − θ)TV−1(θ̂ − θ)

▶ Here:

θ̂ = E[θ|data]
V = Var[θ|data]

▶ Now use the SBI algorithm with this statistic

▶ Allows prior information but preserves frequentist coverage
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Nuisance Parameters

▶ Often θ = (ψ, γ) where ψ is the parameter of interest and γ is a
nuisance parameters.

▶ Can use profile likelihood supγ L(ψ, γ).
▶ Can use integrated (focused) likelihood

∫
L(ψ, γ)f (γ)dγ.

▶ Projection: find confidence set B for (ψ, γ) and take
C = {ψ : (ψ, γ) ∈ B for some γ}.

▶ Berger-Boos (1994): first infer nuisance parameter and use
restricted projection. See Stanley et al (2025).
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Diagnostic

▶ Draw new samples (θ′1,Y(θ′1)), . . . , (θ
′
B ,Y(θ′B)).

▶ Use Wj = I (θ′j ∈ C ′
j ) to estimate the coverage Pθ(θ ∈ C ).

▶ This can also be used to assess other features of the method such as
size of the confidence sets.

▶ We could also use this to help choose between different test
statistics.
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Spatial Statistics I
Walchessen, Lenzi, Kuusela 2024

▶ Spatial models can have intractable likelihood functions.

▶ Set of spatial locations S.
▶ Process {Y (s) : s ∈ S}.
▶ Two examples: Gaussian process and the Brown-Resnick process.

▶ Even the Gaussian case can be hard since exact likelihood
calculations involve inverting a large matrix

▶ The Brown-Resnick process is intractable
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Coverage Results
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Spatial Statistics II
Walchessen, Zammit-Mangion, Huser, Kuusela (2025)

▶ Now suppose we want to simulate new observations from the
estimated process.

▶ Want to draw
Y ∼ p(y |Y ; θ̂)

▶ Method: diffusion model

▶ Have data Y1, . . . ,Yn

▶ Evolve the data to noise Z1, . . . ,Zn

▶ Estimate the reverse process

▶ sample from noise and evolve backwards
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Diffusion
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Inverse Problems
Batlle et al 2024, Stanley et al 2025

▶ Y = f (x) + ϵ, ϵ ∼ N(0,Σ)

▶ x is high dimensional

▶ Constraints: x ∈ X
▶ Infer φ(x)

▶ infx∈X P(φ(x) ∈ C ) ≥ 1− α

▶ simulation used to estimate certain quantiles
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Omnifold
Andreassen et al (2020) and Zhu et al (2024)

▶ Observe

Y1, . . . ,Yn ∼ p(y) =

∫
k(y |x)f (x)dx

▶ k(y |x) is unknown.
▶ Also observe (X ∗

1 ,Y
∗
1 ), . . . , (X

∗
N ,Y

∗
N) ∼ k(y |x)r(x)

▶ Want to infer f (x) or ν(x) = f (x)/r(x).

▶ Iterative solution (Multhei, Mainz, Schorr 1987, Kondor 1983, Shepp
and Vardi 1982)

▶

f (k+1)(x) = f (k)(x)

∫
p(y)∫

k(y |x ′)f (k)(x ′)dx ′
k(y |x)dy
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Omnifold

▶ Andreassen et al (2020) invented a simulation-based version

▶ r (k)(y) = p(y)
q(k)(y)

q(k)(y) =
∫
ν(k)(x ′)k(y |x ′)dx ′

▶ ν(k+1)(x) = ν(k)(x) q
(k)(x)
q(x) q(k)(x) =

∫
r (k)(y)k(y |x)dx

▶ These density ratios are estimated using classifiers

▶ Zhu et al (2024) includes nuisance parameters
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Model Mispecification
Tomasselli , Ventura, Wasserman (2025)

▶ Model P = {pθ : θ ∈ Θ}.
▶ Do not assume that P ∈ P.

▶ Choose a discrepancy d(p, q).

▶ Projection parameter: θ∗ which minimizes d(p, pθ) i.e.

θ∗ = argminθd(p, pθ)

▶ The model is an approximation
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Discrepancies

▶ Kullback-Leibler: d(p, q) =
∫
p log(p/q)

▶ When the model is misspecified, the maximum likelihood (and
Bayes) estimate converges to the Kullback-Leibler projection

▶ But this is very non-robust

▶ Suppose
p = (1− ϵ)N(0, 1) + ϵQa

where Qa is centered at a and ϵ is tiny.

▶ Projection is N(µ(a), 1).

▶ As a → ∞, µ(a) → ∞.
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Kullback-Leibler Projection
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Better Discrepancies

▶ Hellinger: d(p, q) =
∫
(
√
p −√

q)2

▶ Density Power Divergence (DPD):

d(p, q) =

∫ [
q1+γ(x)−

(
1 +

1

γ

)
p(x)qγ(x) +

1

γ

∫
p1+γ(x)

]
where 0 < γ ≤ 1.

▶ Gives KL as γ → 0.

▶ Becomes
∫
(p − q)2 when γ = 1

▶ γ trades off efficiency vs robustness
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Better Discrepancies

▶ Kernel distance (MMD):

d2(p, q) = E[K (X ,X ′)]− 2E[K (X ,Y )] + E[K (Y ,Y ′)]

where K (x , y) is a symmetric Kernel and X ,X ′ ∼ p and Y ,Y ′ ∼ q.

▶ This is equivalent to

d2(p, q) = sup
f∈F

∣∣∣∣∣EP(f (X ))− EQ(f (Y ))

∣∣∣∣∣
where F is a reproducing kernel Hilbert space
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Which Discrepancy?

robust efficient avoids no tuning
density estimation parameter

KL ×
√

×
√

Hellinger
√ √

×
√

DPD
√

× × ≈
Kernel

√
×

√
×
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Model Misspecification: Inference

▶ Recall that the projection parameter as:

θ∗ = argminθd(p, pθ).

▶ Goal: get a confidence set for θ∗
▶ We cannot get a confidence set by inverting a test. The hypothesis

H0 : θ = θtrue is always false.

▶ Inverted sets can get smaller and smaller as sample size increases.
Due to rejecting all θ eventually. False impression of accuracy.
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Estimation

▶ To be concrete, let’s use DPD with γ = 1 which is

d2(p, pθ) =

∫
(pθ(x)− p(x))2

=

∫
p2θ(x)dx − 2

∫
pθ(x)p(x) + constant = ψ(θ) + constant

▶ Draw W1, . . . ,Wℓ ∼ g , and use a classifier to estimate
rθ(y) = pθ(y)/g(y) for a reference density g .

▶ Estimate:

ψ̂(θ) =
1

m

∑
i

r̂θ(Yi (θ))g(Yi (θ))−
2

n

∑
i

r̂θ(Yi )g(Yi ).

▶ θ̂∗ minimizes ψ̂(θj).
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Confidence Set

▶ The usual confidence set is{
θ : (θ̂ − θ)TV−1(θ̂ − θ) ≤ χ2

d,α

}

where V = n−1 = BMBT , B = n−1 =
∑

i ψiψ
T
i , A = −n−1

∑
i ψi

and ψi is gradient of discrepancy estimate.

▶ But this depends on regularity conditions and the derivatives might
be intractable.
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Relative Test Confidence Set
Park, Balakrishnan, Wasserman (2023), Takatsu and Kuchibhotla (2025) and Chang and

Kuchibhotla (2024)

▶ Split data into D1 and D2

▶ D1 → θ̂.

▶ Use D2 to test:
For every θ test: H0 : d(p, pθ) ≤ d(p, pθ̂).

▶ Now

T = d̂(p, pθ)− d̂(p, pθ̂) =
1

n

∑
i

Wi −
1

m

∑
i

Vi ≈ N(µ, σ2
θ)

▶ This is ≈ Normal without regularity conditions on the model.

▶ Reject if T > zασ̂θ
▶ C = {θ : Tθ < zασ̂θ}.
▶ P(θ∗ ∈ C ) ≈ 1− α.
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Example: Mixture Model

▶ p(y) = λN(µ1, σ) + (1− λ)N(µ2, σ)

▶ This model is not identified. Regularity conditions fail.

▶ Standard methods for confidence sets don’t work.

▶ Also, we want to allow of misspecification
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Mixture Model: Using Discrepancy
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Robustness by Tilting

▶ Protect from model misspecification by expanding the model.

▶ Choose basis functions b1, . . . , bk .

▶ Expand the model pθ to

pθ,β(y) =
pθ(y)e

∑
j βjbj (y)∫

pθ(u)e
∑

j βjbj (u)du
.

▶ SBI can be used to get the profile likelihood

L(θ) = sup
β

L(θ, β)

▶ Use L(θ) to get confidence set for θ.

▶ Requires Newton-Raphson to get β̂(θ) which maximizes supβ L(θ, β)
for each θ.
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Model Approximation Using a Varying Coefficient Model

▶ When pθ(y) is intractable, it may be useful, for interpretability, to
have an approximate, closed form expression for pθ.

▶ Let b1, . . . , bk be basis functions.

▶ Let f (θ) = (f1(θ), . . . , fk(θ)).

▶ Define
p(y ; θ, f ) =

∑
r

fr (θ)br (y)

▶ Find f to minimize ∫
(pθ(y)− p(y ; θ, f ))2dy .

▶ Then
f̂ (θj) = B−1bθj

where

bθj =
1

m

∑
i

bθj (Yi (θj)).

▶ Then f̂ (θ) is obtained from f̂ (θ1), . . . , f̂ (θN) by smoothing.
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Model Approximation
Red = true. Blue = approx
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Active learning

▶ We want to draw θ1, θ2, . . . , sequentially and zoom in on the
confidence set C .

▶ This is critical when θ is high dimensional.

▶ Let C = {θ : pv(θ) ≥ α} and Ĉ = {θ : p̂v(θ) ≥ α}.
▶ Let

P

(
I (θ ∈ Ĉ ) ̸= I (θ ∈ C )

)
≈ Φ

(
−|α− pv(θ)|

s(θ)

)
≡ e(θ).

▶ Minimize R by choosing θj+1 where e(θ) is large.
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Example
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Goodness of Fit

▶ Test
H0 : inf

θ
d(p, pθ) = 0

▶ The p-value is
p = sup

θ
p(θ)

where
p(θ) = Pθ(Tn(θ) ≥ Tn)

Tn(θ) = inf
ψ

d(Pψ,Pn(θ)), Tn = inf
ψ

d(Pψ,Pn)

▶ Getting the critical value (while allowing for non-regularity) is
difficult in general.

▶ This can be SBI-ified.
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Open Questions and Challenges

▶ High-dimensional parameter space Θ. We can do high dimensional
quantile regression but we need to know where to look.

▶ Active learning. This could be the cure for high dimensional
problems.

▶ Reducing reducing sensitivity to nuisance parameters?
Traditionally: compute the score statistic for ψ and subtract its
projection onto the score for the nuisance parameter.
SBI?

▶ Choosing statistic T?

▶ Semiparametric and nonparametric inference.

THE END
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