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Benitez 2000

In addition to 
distance, galaxies 
are cosmic 
ecosystems that 
contain rich 
information about 
their growth:


•Formation histories

•Number of stars

•Production of heavy 
elements

•Dust obscuration


but also supernovae 
progenitors, 
cosmology, stellar 
evolution, ….!



Galaxy properties are inferred by fitting observed data with models. 
Take beautiful galaxy data:

… and use models to turn them into even more beautiful 
inferred parameters.

stellar mass 
star formation history 
nebular properties

dust content 
chemical abundances 
active black holes

The Andromeda Galaxy
Planck / NASA / ESA



Key Idea: Stellar Populations in Distant Galaxies are (almost) always 
Unresolved (i.e. stars are blended)

Andromeda

MIPS24

A typical distant galaxy 

In most cases we model the sum of the light — hard to reconstruct dim populations 
(e.g. low-mass stars).



Thanks to decades of investment, most modern galaxy evolution surveys are 
multiwavelength, with tens of image types across the electromagnetic spectrum - 

usually spanning ultraviolet to infrared.
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More rarely, spectroscopy is available. Spectroscopy is richly informative with many 
different absorption and emission features, and promises constraints on galaxy 

formation histories and physical conditions to factors of 2-3.



The best scenario is both spectroscopy and imaging. Imaging probes dust 
and mass constraints, while spectroscopy yields detailed star formation 

history and heavy element abundance.



Bayesian Thinking is Powerful for Interpreting Galaxy Data
The combination of tens of parameters and weakly constraining data for 

distant galaxies mean the prior and the data are ~equally important.

This is the 'sweet spot’ for Bayesian statistics.



The Universe can be arbitrarily complex - yet as long as we can simulate the correct 
physics, we can marginalize over those physics.  

Can we do that?

Prospector 
Open-source galaxy 

SED-fitting code 

Johnson, Leja+21

Bayesian Thinking is Powerful for Interpreting Galaxy Data



Systematic Uncertainties in Modeling Photometry of Distant Galaxies

Pacifici et al. 
2023 (+Leja)

A galaxy modeling 
experiment

…identical high-
quality space-

based imaging…

… produce 
qualitatively and 

quantitatively 
different galaxy 

populations!

Popular, different 
modeling codes 

applied to…
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Why?

log10(mass in stars)



Key Statistical & Modeling Challenges for Distant Galaxies 

The Outshining Problem
• Distant galaxies are nearly point-sources, so 

light from every star, nebula, black hole, etc is 
combined linearly. 

• Most of the light comes from a few very bright 
objects (e.g. O-stars, red giants); much of what 
we want to know is the great majority of dim 
things (e.g., older, low-mass stars)

Labbé+23

Conroy+13

Inferring the properties of distant galaxies 
dominated by modeling choices:  

what do bright things tell us about the rest of the 
system?

True size of 
Andromeda on 
sky, compared 

to full moon



Key Statistical & Modeling Challenges for Distant Galaxies 

Most Parameters are Degenerate, Especially With Only Imaging
Star formation history, metallicity, dust all have similar effects on imaging 
—> limited to mapping out inherent degeneracies or adopting informed priors from better data!

Leja et al. 2019
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Imaging Isn’t Enough. What About The “Best Distant Galaxy Spectra We’ve Ever Had”?

Van der Wel et 
al. 2021

The LEGA-C survey: ~3000 galaxies at 0.6 < z < 1, with ~20 hour rest-optical spectra on an 8.2 meter 
telescope (VLT), yielding signal to noise~ 20-70 per wavelength element with excellent resolution



Comparing Results of LEGA-C Spectra from Leading Analysis Codes

Gallazzi et al. 
submitted (incl 

Leja), 2025

Stellar 
metallicity

“Light-
weighted” 

age
(Mass-weighted not 

shown; much worse)
Codes: Bagpipes 

(Carnall+), Prospector 
(Johnson,Leja+), BaSTA 

(Zibetti & Gallazzi)

…why???



SED Parameter approximate effect on SED

stellar mass orders of magnitude
current star formation rate 3-10x

Many different physics in play, forcing approximations/assumptions and create systematic uncertainties.
“All models are wrong - but some are useful.”

(ad infinitum)

Key Statistical & Modeling Challenges for Distant Galaxies 

We Do Not Include Enough Physics To Capture the Complexities of Galaxies



Key Statistical & Modeling Challenges for Distant Galaxies 

Complex Emergent Behavior Means Key Physics Are Uncertain

Illustris Illustris-TNG Mufasa Simba

EAGLE SC-SAM Fire2UniverseMachine 

Huge scales in space and time (20+ orders of magnitude) limit accuracy of galaxy formation simulations 
Below are the formation histories of 4-5 galaxies, under different simulation rules.

Iyer et al. 2020



Bayesian Inference: Powerful but Dangerous

“All models are wrong - but 
some are useful.” 

What does “useful” mean? We create new knowledge! 

But - must understand data (measurement uncertainties, 
instrumental effects, ...) 

Must have reasonably accurate generative models for what 
we're fitting (stars, gas, black holes, ...) 

If not true - careful! Modeling can do more harm than good. 

So, are our models accurate enough to be useful?



Adding More Physics Can Solve Big Problems!
Straightforward interpretations of ultraviolet, infrared images left a long-standing mystery: galaxies form too many stars at early times

More physics: Prospector 15-parameter forward-model solves, cosmic star formation rate now agrees with simulations!

Leja et al. 2022

But - this was computationally expensive, and many puzzles remain



High Dimensionality Already Pushing Computational Limits
High-dimensional models cannot live on a grid (curse of dimensionality): this means each model must be 

generated on-the-fly, a compute-intensive task (~15 hours/fit!).
• several million CPU-hours to analyze ~105 objects in deep field

What is driving the computational requirements?
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High Dimensionality Already Pushing Computational Limits
High-dimensional models cannot live on a grid (curse of dimensionality): this means each model must be 

generated on-the-fly, a compute-intensive task (~15 hours/fit!).
• several million CPU-hours to analyze ~105 objects in deep field

Neural net emulation of photometric predictions reduces 
model generation time by ~100-1000 (104 on a GPU)

Alsing, Peiris, 
Leja et al. 

(2020) 

Mathews, Leja 
et al. (2023)



Neural networks are fast (by trading off precision)

Mathews, 
Leja et al. 

(2023)

ANN = artificial neural network

FSPS = classical stellar 
population 
synthesis (Conroy et al. 2009) 



Neural networks are precise (if they’re big enough; <[0.5 x obs error] works)

Mathews, 
Leja et al. 

(2023)



Neural networks give accurate posteriors

Mathews, Leja et al. (2023)



Neural Networks are differentiable

This opens the door for using gradient-based samplers 
such as Hamiltonian Monte Carlo (HMC) or the No-U-Turn Sampler (NUTS)

(from Wikipedia)



Differentiability Allows Highly Efficient Sampling
True 
Solution

Likelihood 
Surface



Differentiability Allows Highly Efficient Sampling
True 
Solution

Random Walk 
Sampler

Likelihood 
Surface



Differentiability Allows Highly Efficient Sampling

Likelihood 
Surface

True 
Solution

Random Walk 
Sampler

Gradient-based 
Sampler

Gradient-based samplers are efficient at proposing good samples.



The result: ~70,000 galaxies in one of Webb’s first deep fields (UNCOVER; PIs Labbé, Bezanson) can be 
analyzed in a couple of days on a modest compute allocation (Wang, Leja+ 2024).  

Can answer a variety of questions about early galaxies, including discovery of second- and fourth-most distant 
galaxies (z=12.4, z=13.1; Wang et al. 2024, incl. Leja) 

Neural nets let us do “normal” science faster, 
but… 

What about something new?



Recall: We treat stellar populations (not stars!) in distant galaxies as Unresolved 
But - they aren’t!

Andromeda

MIPS24

A typical distant galaxy 

In principle we can fit every pixel - this has key advantages ! Break underlying degeneracies, learn 
fundamentally new things about distant galaxies! 

Key challenge: pixels are not independent - correlated by limited resolution which spreads out light. So 
we must forward-model hundreds or thousands of pixels .. SIMULTANEOUSLY



New Constraints: Bursty Star Formation And Outshining
JWST sees spatial complexity of distant galaxies, revealing older stars normally hidden by bright young stars. 

Resolved modeling boosts inferred stellar mass up to 5x for galaxies forming lots of stars. 

Giménez-Arteaga+24 
see also Sorba & Sawicki 2018

Current techniques emerging treat every pixel like a little isolated galaxy, and smear all imaging to match lowest resolution. 
This throws (lots) of information and ignores correlations from convolution. With ML-acceleration we can do better! 



New Approach: Fit Every Pixel!
● New approach, “pirate”, forward-models both stellar populations and light-

smearing. Can simultaneously model images of any resolution. 
● Give each pixel own stars, dust, black holes, … 
● Neural nets give free derivatives - powers hyper-efficient Hamiltonian Monte 

Carlo sampler. 
● Fitting a ~75x75 px image with 20 filters finishes in about ~1 day 
○ To be clear, this is 75 * 75 * 15 = 84,375 free parameters. 
○ This would take about 112,000 core-hours with classic fitting - 5000x faster! 

● So - does it work?
Hubble Spitzer (and Herschel, and Webb, and …)



First fits in Webb deep fields reveal galaxies are spatially complex

log(M*/Msun)

Mathews, Leja et al. in prep; 
collaborators Nelson, 
Speagle, Whitaker..



log(Z/Zsun)

First fits in Webb deep fields reveal galaxies are spatially complex

Mathews, Leja et al. in prep; 
collaborators Nelson, 
Speagle, Whitaker..



Better constraints: typical uncertainties for galaxy stellar masses in unresolved photometry are 20-50%…

Tests on spatially resolved mock galaxies suggest well-calibrated uncertainties of ~5%!

Mathews, 
Leja et al. 

in prep



Simultaneous fits forward-modeling image-smearing are critical 
- “independent” pixel-by-pixel fits fail to give good answers

Accounting for PSF Ignoring PSF



Observed

Different models

A Key Challenge Before Industrial-Scale Spatially Resolved Modeling.. 
More Pixels - More Problems!

Mathews, Leja+23 (emulator) 
Mathews, Leja+ in prep (GPU/spatially resolved)

Fit 20-band Webb photometry with different assumptions about 
small-scale variation of age/dust/metallicity - all provide beautiful 

match to light!

But small-scale variations very important - 
factor of 4-5 spread in recovered stellar 

masses! 

Mathews, 
Leja et al. 

in prep

Need to understand small-scale physics of dust and dynamical mixing of stellar 
populations of different age, heavy element composition. Hard problem! 



What about Spectra?

Advantages over imaging emulators 
•Can emulate in rest-frame (redshift is biggest 
challenge!)

•Spectral pixels highly correlated, smooth


Challenges compared to imaging emulator 
•Far more data (~10 filters—> 1000s of pixels)

•More detailed input physics (e.g. complex 
line emission physics)

PFS 12-hour spectra

Many large-scale spectral surveys of the observable universe starting, goal of 
understanding dark energy: DESI, PFS, Euclid, MOONS, … tens of millions of 

galaxies!



E-FSPS Model

Piecewise Emulation For Spectra (Not Single-
Shot!)

Nebular 
Spectrum

Composite 
Spectrum

Stellar Component

Nebular Component
(cue; Yijia Li)

Emulated FSPS (E-FSPS) replaces gigabytes of stellar model grids with deep neural 
networks.

Stellar 
Spectrum

Observed 
Spectrum

Dust + Other 
Physical Processes

Burnham et al. in prep



• Predict brightest 130 emission lines+nebular continuum with < 5% uncertainty. 
• Each prediction takes 5ms –> 104 faster than full nebular models. 
• Can investigate mysterious ionizing sources to calibrate models (good data), or marginalize 

over uncertainty in ionizing sources (most data)

https://github.com/yi-jia-li/cue

Cue: a fast and flexible neural net emulator for nebulae

Li, Leja+24ab

Inferred ionizing spectrum + nebular physics Observed data

https://github.com/yi-jia-li/cue


E-FSPS Model

Piecewise Emulation For Spectra (Not Single-
Shot!)

Nebular 
Spectrum

Composite 
Spectrum

Stellar Component

Nebular Component
(cue; Yijia Li)

Emulated FSPS (E-FSPS) replaces gigabytes of stellar model grids with deep neural 
networks.

Stellar 
Spectrum

Observed 
Spectrum

Dust + Other 
Physical Processes

Burnham et al. in prep



Emulation Error for Stellar Spectrum

Burnham et al. in prep



How does E-FSPS compare to Prospector?

Number of Simultaneous Spectra to Predict

Initial overhead 

for GPU usage
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E-FSPS ~100x 

faster for 
predicting 

multiple 

spectra at 

once

Burnham et al. in prep

+Additional speedups from gradient-enhanced sampling (TBD)

We can rapidly generate thousands of 
spectra simultaneously? 
Let’s do something new!



In addition to fluctuations being unrecoverable, bursty SFHs significantly degrade accuracy of 
masses, ages, star formation rates (>factor of two) - even if we know it’s bursty.  

see also Narayanan+23, Haskell+24, Wan+24

Annoyingly, Bursty Star Formation Is Nearly 
Impossible To Model In Single Objects

A model-generated, high S/N Webb/
spectrum, perfectly fitted

A “continuity” prior recovers a 
smoothing rising SFR but no bursts

A “bursty” prior recovers only 
bursts (no old stars)

Recently-formed bright stars stars obscure nearly all history older than 100 Myr in 
‘summed’ galaxy imaging.

Wang, Leja et al.,  
ApJ under review

Single objects degenerate? 
Solution: model entire galaxy populations 

simultaneously 
(Also e.g. pop-cosmos for galaxy population modeling to constrain 

cosmology of our universe; Alsing, Peiris, Leistedt, Leja, Mortlock…) 



With neural net emulators, we can generate ~2000 model spectra per second (can you feel 
the wind in your hair??).  

Yet not fast enough; need ~50k-100k model galaxies to propose a single mock galaxy 
population; need to generate 105-106 populations for a fit; 10k core-hours per fit?

The Next Step: Likelihood-Free Inference
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~1 million models per fit

New Workflow

Simulation-based 
Inference 

using Normalizing 
Flows (~1-10s)



Simulation-Based Inference

Use a “normalizing flow”, an ML technique that learns the transformation 
from an N-dimensional Gaussian to an arbitrary N-dimensional PDF

Ting & Weinberg 2021

input: observed data 
output: joint posteriors for your model

Simulate your data, plus noise, many times, and learn the direct transformation 
from noisy data to Bayesian posteriors.

Wang, Leja et al.,  
NeuRIPS 2022

We use SBI++ (Wang, Leja+22), which lets us Monte Carlo over missing data 
and uncertainties outside training set (crucial for astronomical data)



Generate Populations of Bursty Formation 
Histories

σ: Amplitude
of up-and-
down 
fluctuations

Burnham et al. in prep



δt: Timescale
for up-and-
down
fluctuations

Generate Populations of Bursty Formation 
Histories

Burnham et al. in prep



ɑ: Slope
of recent star 
formation 
history (rising, 
falling, etc)

Generate Populations of Bursty Formation 
Histories

Burnham et al. in prep



Sample many galaxies with different dust, 

metallicity, etc from bursty populationBurnham et al. in prep

Sample many galaxies with different dust, heavy 
element composition, etc from bursty population



Different burstiness models produce different observed 
populations. Need hundreds of millions of model galaxies as a 

training set – now “easy”.

(Sampling over SFH phase)

Burnham et al. in prep



Simulation-Based Inference (SBI) For Galaxy 
Population Modeling

Observed 
Distributions

Population-level 
Parameters

Simulation-Based Inference

SBI effectively learns the population posterior given an observation.

Machine-learning inference framework 
pre-trained on simulated distributions

Burnham et al. in prep



Can We Recover the Simple Model Parameters?
We can accurately recover for realistic 

populations (N~500 galaxies)

slope: 3-5%
timescale: ~10%
amplitude: 1-2% 

Can we ‘solve’ outshining by learning 
the right prior? Unsolvable with classic 
techniques -- now straightforward with 

ML-enhanced approach.

Next up: test systematic uncertainties, 
use realistic SFHs (power spectrum), 
apply to JWST populations (Cycle 4)

Burnham et al. in prep

We can accurately recover timescales for 
realistic populations (N~500 galaxies)

slope: 3-5%
timescale: ~10%
amplitude: 1-2% 

Can we ‘solve’ outshining by learning the right 
population prior, and applying to individual 

objects? Unsolvable with classic techniques -- 
now feasible with ML-enhanced approach.

Next up
• test epistemic uncertainties (e.g. stellar 
evolution models) 

•use realistic formation histories
•apply to deep JWST populations!



A Quiet Computational Revolution

2017: 100 core-hours 

2019: 20 core-hours 

2021: 10 core-minutes 

2024: 1 core-minute 

& simulation-based inference yields <10 core-seconds per object; (e.g. 
Hahn+21, Wang+22, Khullar+22…)

105 speedup in 5-6 years - hold on to your hats, folks! Now can efficiently model 
 complex systems with hundreds, thousands, or tens of thousands of parameters. 

… just need to parameterize the physics!  
(Already hundreds of parameters in existing models of black holes, chemical evolution, stellar evolution, photoionization…)

Time to fit galaxy data using on-the-fly model generation:

Code optimization
Neural net emulators 

(Alsing+20, Mathews+23, Kwon+23)

GPU acceleration + 
differentiability (Hearin+23, 

Alsing+23, Li+24)



New Galaxy Modeling Science with New Data-Intensive 
Techniques

• Neural net emulators yield speed increases of 100-1000x for galaxy data, + gradient-
enhanced sampling and GPU-acceleration 

• Solves ‘curse of dimensionality’; permits more physics and/or faster inference 
(e.g. deep Webb fields; Wang+24), AND qualitatively new science 

• NEW: spatially complex modeling including light-smearing; hundreds of pixels, tens of 
thousands of parameters, more accurate galaxy inference (pirate, Mathews et al. 2023, 

+in prep) 

• NEW: rapid interrogation of unknown or mixed ionizing sources (cue, Li et al. 2024ab) 

• NEW: Bayesian population modeling with SBI; infer star formation rate fluctuations, 
mitigate old problems of outshining and unknown formation histories (E-FSPS, Burnham 

et al. in prep)


