SEARCHING FOR THE UNEXPECTED FROM COLLIDERS TO STARS WITH MODERN MACHINE LEARNING

David Shih December 6, 2024

CMU STAMPS Colloquium

Illustrations of Nobel Laureates by Niklas Elmehed. © Nobel Prize Outreach.

An A.I.-Generated Picture Won an Art Prize. Artists Aren't Happy.

Lawyer Used ChatGPT In Court -And Cited Fake Cases. A Judge Is Considering Sanctions

Molly Bohannon Forbes Staff

ChatGPT's answer goes wrong: Gives away journalist's number to join Signal

A Conversation With Bing's Chatbot Left Me Deeply Unsettled

ChatGPT creator Sam Altman says the world may not be away from potentially scary' AI and feels 'regulation wil

Generative AI in the news

Future Technology

to come

ON TECH: A.I. NEWSLETTER

How Should I Use A.I. Chatbots Like ChatGPT?

Large language models are already good at a wide variety of tasks.

TECHNOLOGY EXECUTIVE COUNC

How ChatGPT is changing the job hiring process, from the HR department to coders

APR 8 2023-10:00 AM EDT | UPDATED SAT. APR 8 2023-11:05 AM UNDEFINED ED

Kevin Travers, special to CNBC.com

Here's How To Use AI-Like ChatGPT And Bard—For Everyday Tasks Like Creating A Budget, Finding Airfare Or Planning Meals

I cover the latest trends in science, tech and healthcare.

Can ChatGPT be a doctor?

Asia Martin Apr 10, 2023, 3:48 AM

How Generative AI And **ChatGPT Are Shaping The Contact Center**

UNCIL POST | Membership (Fee-Base

How to use ChatGPT to write code

an ChatGPT replace programmers? What programming anguages does ChatGPT know? We answer these and your other generative AI coding guestions

> A college student got a top grade for an essay written with the help of ChatGPT, report says

Beatrice Nolan Apr 10, 2023, 4:00 AM

ML is also growing rapidly in HEP!

"Machine learning" on INSPIRE

arXiv Category

hep-ex	1,537
hep-ph	1,282
cs.LG	1,203
astro-ph.CO	1,170
astro-ph.IM	1,123
astro-ph.HE	764
physics.data-an	647
physics.ins-det	603
astro-ph.GA	531
stat.ML	468

G

- As an AI language model, I can provide some insights, but please note that predicting the future with certainty is challenging. While AI has the potential to impact various industries, including particle physics, its effect on specific jobs is not always straightforward. Let's consider the role of AI in particle physics:
- 1. Data analysis: AI can help in analyzing large datasets generated by particle accelerators and detectors. Machine learning algorithms can assist in identifying patterns, anomalies, and new physics signals, which can enhance the efficiency and accuracy of data analysis. Rather than replacing particle physicists, AI can be a valuable tool that complements their expertise.
- 2. Simulation and modeling: Al techniques, such as generative models, can assist in simulating particle interactions and improving the accuracy of theoretical models. This can help in exploring new theories and predictions, but it still requires the guidance and interpretation of particle physicists.

Will ML take my job?

^C 3. Experimental design: AI can aid in optimizing experimental setups, data collection strategies, and detector designs. Particle physicists can work alongside AI systems to determine the most effective experiments to conduct and interpret the results.

4. Theory development: While AI has shown promise in generating scientific hypotheses and exploring complex data, the creative and abstract thinking required for developing fundamental theories still remains a domain of human scientists.

It's important to note that AI is a tool that can augment the work of particle physicists, helping them handle vast amounts of data and accelerating discoveries. Rather than replacing experts, AI can free up their time to focus on higher-level tasks, interpretation, and advancing the field. It's crucial for particle physicists to adapt and embrace AI as a valuable tool in their research.

G

- As an AI language model, I can provide some insights, but please note that predicting the future with certainty is challenging. While AI has the potential to impact various industries, including particle physics, its effect on specific jobs is not always straightforward. Let's consider the role of AI in particle physics:
- 1. Data analysis: Al can help in analyzing large datasets generated by particle accelerators and detectors. Machine learning algorithms can assist in identifying patterns, anomalies, and new physics signals, which can enhance the efficiency and accuracy of data analysis. Rather than replacing particle physicists, AI can be a valuable tool that complements their expertise.
- 2. Simulation and modeling: Al techniques, such as generative models, can assist in simulating particle interactions and improving the accuracy of theoretical models. This can help in exploring new theories and predictions, but it still requires the guidance and interpretation of particle physicists.

Will ML take my job?

^C 3. Experimental design: AI can aid in optimizing experimental setups, data collection strategies, and detector designs. Particle physicists can work alongside AI systems to determine the most effective experiments to conduct and interpret the results.

4. Theory development: While AI has shown promise in generating scientific hypotheses and exploring complex data, the creative and abstract thinking required for developing fundamental theories still remains a domain of human scientists.

It's important to note that AI is a tool that can augment the work of particle physicists, helping them handle vast amounts of data and accelerating discoveries. Rather than replacing experts, AI can free up their time to focus on higher-level tasks, interpretation, and advancing the field. It's crucial for particle physicists to adapt and embrace AI as a valuable tool in their research.

G

- As an AI language model, I can provide some insights, but please note that predicting the future with certainty is challenging. While AI has the potential to impact various industries, including particle physics, its effect on specific jobs is not always straightforward. Let's consider the role of AI in particle physics:
- 1. Data analysis: Al can help in analyzing large datasets generated by particle accelerators and detectors. Machine learning algorithms can assist in identifying patterns, anomalies, and new physics signals, which can enhance the efficiency and accuracy of data analysis. Rather than replacing particle physicists, AI can be a valuable tool that complements their expertise.
- 2. Simulation and modeling: Al techniques, such as generative models, can assist in simulating particle interactions and improving the accuracy of theoretical models. This can help in exploring new theories and predictions, but it still requires the guidance and interpretation of particle physicists.

Will ML take my job?

^C 3. Experimental design: AI can aid in optimizing experimental setups, data collection strategies, and detector designs. Particle physicists can work alongside AI systems to determine the most effective experiments to conduct and interpret the results.

4. Theory development: While AI has shown promise in generating scientific hypotheses and exploring complex data, the creative and abstract thinking required for developing fundamental theories still remains a domain of human scientists.

It's important to note that AI is a tool that can augment the work of particle physicists, helping them handle vast amounts of data and accelerating discoveries. Rather than replacing experts, AI can free up their time to focus on higher-level tasks, interpretation, and advancing the field. It's crucial for particle physicists to adapt and embrace AI as a valuable tool in their research.

G

- As an AI language model, I can provide some insights, but please note that predicting the ^L 3. Experimental design: Al can aid in optimizing experimental setups, data collection future with certainty is challenging. While AI has the potential to impact various industries, strategies, and detector designs. Particle physicists can work alongside Al systems to including particle physics, its effect on specific jobs is not always straightforward. Let's determine the most effective experiments to conduct and interpret the results. consider the role of AI in particle physics:
- 1. Data analysis: Al can help in analyzing large datasets generated by particle accelerators and detectors. Machine learning algorithms can assist in identifying patterns, anomalies, and new physics signals, which can enhance the efficiency and accuracy of data analysis. Rather than replacing particle physicists, AI can be a valuable tool that complements their expertise.
- 2. Simulation and modeling: Al techniques, such as generative models, can assist in simulating particle interactions and improving the accuracy of theoretical models. This can help in exploring new theories and predictions, but it still requires the guidance and interpretation of particle physicists.

Will ML take my job?

4. Theory development: While AI has shown promise in generating scientific hypotheses and exploring complex data, the creative and abstract thinking required for developing fundamental theories still remains a domain of human scientists.

It's important to note that AI is a tool that can augment the work of particle physicists, helping them handle vast amounts of data and accelerating discoveries. Rather than replacing experts, AI can free up their time to focus on higher-level tasks, interpretation, and advancing the field. It's crucial for particle physicists to adapt and embrace AI as a valuable tool in their research.

G

- As an AI language model, I can provide some insights, but please note that predicting the ^C 3. Experimental design: Al can aid in optimizing experimental setups, data collection future with certainty is challenging. While AI has the potential to impact various industries, strategies, and detector designs. Particle physicists can work alongside AI systems to including particle physics, its effect on specific jobs is not always straightforward. Let's determine the most effective experiments to conduct and interpret the results. consider the role of AI in particle physics:
- 1. Data analysis: Al can help in analyzing large datasets generated by particle accelerators and detectors. Machine learning algorithms can assist in identifying patterns, anomalies, and new physics signals, which can enhance the efficiency and accuracy of data analysis. Rather than replacing particle physicists, AI can be a valuable tool that complements their expertise.
- 2. Simulation and modeling: Al techniques, such as generative models, can assist in simulating particle interactions and improving the accuracy of theoretical models. This can help in exploring new theories and predictions, but it still requires the guidance and interpretation of particle physicists.

Will ML take my job?

4. Theory development: While AI has shown promise in generating scientific hypotheses and exploring complex data, the creative and abstract thinking required for developing fundamental theories still remains a domain of human scientists.

It's important to note that AI is a tool that can augment the work of particle physicists, helping them handle vast amounts of data and accelerating discoveries. Rather than replacing experts, AI can free up their time to focus on higher-level tasks, interpretation, and advancing the field. It's crucial for particle physicists to adapt and embrace AI as a valuable tool in their research.

G

- As an AI language model, I can provide some insights, but please note that predicting the ^C 3. Experimental design: Al can aid in optimizing experimental setups, data collection future with certainty is challenging. While AI has the potential to impact various industries, strategies, and detector designs. Particle physicists can work alongside Al systems to including particle physics, its effect on specific jobs is not always straightforward. Let's determine the most effective experiments to conduct and interpret the results. consider the role of AI in particle physics:
- 1. Data analysis: Al can help in analyzing large datasets generated by particle accelerators and detectors. Machine learning algorithms can assist in identifying patterns, anomalies, and new physics signals, which can enhance the efficiency and accuracy of data analysis. Rather than replacing particle physicists, AI can be a valuable tool that complements their expertise.
- 2. Simulation and modeling: Al techniques, such as generative models, can assist in simulating particle interactions and improving the accuracy of theoretical models. This can help in exploring new theories and predictions, but it still requires the guidance and interpretation of particle physicists.

Will ML take my job?

4. Theory development: While AI has shown promise in generating scientific hypotheses and exploring complex data, the creative and abstract thinking required for developing fundamental theories still remains a domain of human scientists.

It's important to note that AI is a tool that can augment the work of particle physicists, helping them handle vast amounts of data and accelerating discoveries. Rather than replacing experts, AI can free up their time to focus on higher-level tasks, interpretation, and advancing the field. It's crucial for particle physicists to adapt and embrace AI as a valuable tool in their research.

G

- As an AI language model, I can provide some insights, but please note that predicting the ^C 3. Experimental design: Al can aid in optimizing experimental setups, data collection future with certainty is challenging. While AI has the potential to impact various industries, strategies, and detector designs. Particle physicists can work alongside Al systems to including particle physics, its effect on specific jobs is not always straightforward. Let's determine the most effective experiments to conduct and interpret the results. consider the role of AI in particle physics:
- 1. Data analysis: Al can help in analyzing large datasets generated by particle accelerators and detectors. Machine learning algorithms can assist in identifying patterns, anomalies, and new physics signals, which can enhance the efficiency and accuracy of data analysis. Rather than replacing particle physicists, AI can be a valuable tool that complements their expertise.
- 2. Simulation and modeling: Al techniques, such as generative models, can assist in simulating particle interactions and improving the accuracy of theoretical models. This can help in exploring new theories and predictions, but it still requires the guidance and interpretation of particle physicists.

Will ML take my job?

4. Theory development: While AI has shown promise in generating scientific hypotheses and exploring complex data, the creative and abstract thinking required for developing fundamental theories still remains a domain of human scientists.

It's important to note that AI is a tool that can augment the work of particle physicists, helping them handle vast amounts of data and accelerating discoveries. Rather than replacing experts, AI can free up their time to focus on higher-level tasks, interpretation, and advancing the field. It's crucial for particle physicists to adapt and embrace AI as a valuable tool in their research.

I'm a particle physicist. Will AI take my job? Please answer concisely.

Will ML take my job?

I'm a particle physicist. Will AI take my job? Please answer concisely.

Will ML take my job?

Will ML take my job?

• Amplify sensitivity and precision

- Amplify sensitivity and precision
- Accelerate simulation and inference

- Amplify sensitivity and precision
- Accelerate simulation and inference
- Automate complex and time-consuming tasks

- Amplify sensitivity and precision
- Accelerate simulation and inference
- Automate complex and time-consuming tasks

Era of Big Data in HEP/Astro/Cosmo

Dataset	Year launched (expected)	No. events/ objects	Size	
LHC	2010	10 ¹⁵ +	10 ² PB+	The Big Data era
Euclid	2023	10 ¹⁰	10 ² PB	is coming for Astro/C
Rubin	2024	10 ¹⁰	10 ² PB	
Roman	2027	109	10 ¹ PB	
SKA	2030	109	1-10 EB	

"All the impressive achievements of deep learning amount to just curve fitting" - Judea Pearl

"All the impressive achievements of deep learning amount to just curve fitting" - Judea Pearl

"All the impressive achievements of deep learning amount to just curve fitting" - Judea Pearl

To this

• Given a collection of data points $\vec{x}_i \sim p(x)$, i = 1, ..., N

- Given a collection of data points $\vec{x}_i \sim p(x), i = 1, ..., N$
- noise z

- Given a collection of data points $\vec{x}_i \sim p(x), i = 1, ..., N$
- noise z
 - ChatGPT: word ~ p(word | previous words)

11

- Given a collection of data points $\vec{x}_i \sim p(x)$, i = 1, ..., N
- noise z
 - ChatGPT: word ~ p(word | previous words)
 - Midjourney: image ~ p(image | caption)

11

- Given a collection of data points $\vec{x}_i \sim p(x), i = 1, ..., N$
- noise z
 - ChatGPT: word ~ p(word | previous words)
 - Midjourney: image ~ p(image | caption)

(note: both are *conditional* generative models)

11

Generative Models and Density Estimation

- Generative models closely connected to density estimation
 - **Generative model:** sample from p(x)
 - **Density estimation:** estimate p(x)

Example: Normalizing Flows

 $z \sim p_{base}(z) = \mathcal{N}(0,1)^d \quad z$

Generation $x = f(z; \theta)$ $x \quad x \sim p_{\theta}(x)$

Density estimation

 $z \sim p_{base}(z) = \mathcal{N}(0,1)^d \quad z$

Powerful class of density estimators that are also generative models

Powerful class of density estimators that are also generative models

• Family of invertible maps parametrized by neural networks

Powerful class of density estimators that are also generative models

• Family of invertible maps parametrized by neural networks $p_{\theta}(x) = p_{base}(z = f_{\theta}(x)) \left| \frac{\partial z}{\partial x} \right|$

(need tractable Jacobian!)

Example: Normalizing Flows Generation $x = f(z; \theta)$ $x \quad x \sim p_{\theta}(x)$

 $z \sim p_{base}(z) = \mathcal{N}(0,1)^d \quad z$

Powerful class of density estimators that are also generative models

- Family of invertible maps parametrized by neural networks •
- Train with maximum likelihood objective

Density estimation

$$p_{\theta}(x) = p_{base}(z = f_{\theta}(x)) \left| \frac{\partial z}{\partial x} \right|$$

$$L = -\sum_{x_i \in data} \log p_{\theta}(x_i)$$

(need tractable Jacobian!)

Powerful class of density estimators that are also generative models

- Family of invertible maps parametrized by neural networks •
- Train with maximum likelihood objective
- **Compose multiple maps for greater** •

$$p_{\theta}(x) = p_{base}(z = f_{\theta}(x)) \left| \frac{\partial z}{\partial x} \right|$$

$$L = -\sum_{x_i \in data} \log p_{\theta}(x_i)$$
$$x_i \in data$$
expressivity

(need tractable Jacobian!)

Example: Normalizing Flows

source: Eric Jang

14

Example: Normalizing Flows

source: Eric Jang

14

Generative models are also powering recent advances in ML4HEP! Fast Simulation Surrogate Anomaly Models Detection Generative AI Simulation-Foundation based Inference Models

Generative models are also powering recent advances in ML4HEP! Fast Simulation **THIS TALK** Surrogate Anomaly Models Detection Generative AI Simulation-Foundation based Inference Models

Source: The Economist

The Standard Model was largely established in the '60s, '70s and '80s.

With the discovery of the Higgs boson by the LHC in 2012, it is finally complete.

Source: The Economist

The Standard Model was largely established in the '60s, '70s and '80s.

With the discovery of the Higgs boson by the LHC in 2012, it is finally complete.

What "new physics" lies **beyond the Standard Model?**

Z= -= FAU FAU

+ iFBX + h.c

+ X: Yis Xs\$ +hc $+\left|\mathcal{D}_{\mathcal{P}}\right|^{2}-V(\phi)$

The Search for "New Physics"

dark matter

neutrino masses

matter/anti-matter asymmetry

We know the "new physics" must be out there ...

Status of NP searches at LHC

ATLAS SUSY Searches* - 95% CL Lower Limits

JL	ıly 2019					1					$\sqrt{s} = 13 \text{ TeV}$
	Model	S	ignatur	e J	$\mathcal{L} dt [fb^-$		ss limit				Reference
clusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 <i>e</i> , μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 36.1	 <i>q̃</i> [2×, 8× Degen.] <i>q̃</i> [1×, 8× Degen.] 	0.43	0.9	1.55	$m(ilde{\chi}_1^0)\!<\!$ 100 GeV $m(ilde{q})\!=\!$ 5 GeV	1712.02332 1711.03301
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	36.1	รัช รัช		Forbidden	2.0 0.95-1.6	$m(ilde{\chi}_1^0){<}200GeV\ m(ilde{\chi}_1^0){=}900GeV$	1712.02332 1712.02332
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e,μ ee,μμ	4 jets 2 jets	$E_T^{ m miss}$	36.1 36.1	150 FD			1.85 1.2	$\mathfrak{m}(ilde{\chi}_1^0){<}800 { m GeV}$ $\mathfrak{m}(ilde{g}){-}\mathfrak{m}(ilde{\chi}_1^0){=}50 { m GeV}$	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e, μ SS e, μ	7-11 jets 6 jets	$E_T^{\rm miss}$	36.1 139	సర ఫర			1.8 1.15	$\mathfrak{m}(ilde{\chi}^0_1)$ <400 GeV $\mathfrak{m}(ilde{g})$ - $\mathfrak{m}(ilde{\chi}^0_1)$ =200 GeV	1708.02794 ATLAS-CONF-2019-015
Ч	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{ m miss}$	79.8 139	ρ δ β			2. 1.25	25 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 139	$egin{array}{ccc} & & & eta_1 & & & Forbidden \ & & & & eta_1 & & & \ & & & & eta_1 & & & \ & & & & eta_1 & & & \ & & & & eta_1 & & & \ & & & & & eta_1 & & & \ & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & & \ & & & & & & & & \ & & & & & & & & \ & & & & & & & & & \ & & & & & & & & & \ & & & & & & & & & \ & & & & & & & & & \ & & & & & & & & & & \ & & & & & & & & & \ & & & & & & & & & \ & & & & & & & & & & \ & & & & & & & & & & \ & & & & & & & & & & \ & & & & & & & & & & \ & & & & & & & & & & & \ & & & & & & & & & & \ & & & & & & & & & & & \ & & & & & & & & & & & & \ & & & & & & & & & & & & & \ & & & & & & & & & & & & & & & & & \ &$	Forbidden Forbidden	0.9 0.58-0.82 0.74	m(Ã	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}){=}300\text{GeV},BR(b\tilde{\chi}_{1}^{0}){=}1\\ m(\tilde{\chi}_{1}^{0}){=}300\text{GeV},BR(b\tilde{\chi}_{1}^{0}){=}BR(t\tilde{\chi}_{1}^{\pm}){=}0.5\\ 1){=}200\text{GeV},m(\tilde{\chi}_{1}^{\pm}){=}300\text{GeV},BR(t\tilde{\chi}_{1}^{\pm}){=}1\end{array}$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
rks tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 <i>b</i>	$E_T^{ m miss}$	139	$egin{array}{ccc} eta_1 & Forbidden \ eta_1 & eta_1 \end{array}$	0.23-0.48	().23-1.35	$\begin{array}{l} \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) \!=\! 130 \mathrm{GeV}, m(\tilde{\chi}_{1}^{0}) \!=\! 100 \mathrm{GeV} \\ \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) \!=\! 130 \mathrm{GeV}, m(\tilde{\chi}_{1}^{0}) \!=\! 0 \mathrm{GeV} \end{array}$	SUSY-2018-31 SUSY-2018-31
dua	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$ or $t\tilde{\chi}_1^0$	0-2 e, μ (0-2 jets/1-2	$b E_T^{miss}$	36.1	ĩ ₁		1.0		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	1506.08616, 1709.04183, 1711.11520
1. S Dro($\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0$	1 e, µ	3 jets/1 b	$E_T^{\rm miss}$	139	\tilde{t}_1	0 <mark>.44-0</mark> .	.59		$m(\tilde{\chi}_1^0)$ =400 GeV	ATLAS-CONF-2019-017
gel ect	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	$1 \tau + 1 e, \mu, \tau$	2 jets/1 b	E_T^{miss}	36.1	\tilde{i}_1			1.16	m(τ̃ ₁)=800 GeV	1803.10178
3 rd dire	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 <i>e</i> , µ	2 <i>c</i>	$E_T^{\rm miss}$	36.1	ĩ ĩ	0.46	0.85		$m(\tilde{\chi}_1^0) = 0 GeV$	1805.01649
		0 <i>e</i> , <i>µ</i>	mono-jet	$E_T^{ m miss}$	36.1	\tilde{t}_1 \tilde{t}_1	0.46			$ m(t_1, c) - m(\tilde{X}_1) = 50 \text{ GeV} m(\tilde{t}_1, \tilde{c}) - m(\tilde{X}_1^0) = 5 \text{ GeV} $	1711.03301
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , µ	4 <i>b</i>	$E_T^{ m miss}$	36.1	\tilde{t}_2		0.32-0.88		$m(\tilde{\chi}_1^0)=0 \text{ GeV}, m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=180 \text{ GeV}$	1706.03986
	$\tilde{l}_2 \tilde{l}_2, \tilde{l}_2 \rightarrow \tilde{l}_1 + Z$	3 <i>e</i> , <i>µ</i>	1 <i>b</i>	$E_T^{\rm miss}$	139	\tilde{t}_2	Forbidden	0.86		$m(\tilde{\chi}_1^0)$ =360 GeV, $m(\tilde{t}_1)$ - $m(\tilde{\chi}_1^0)$ = 40 GeV	ATLAS-CONF-2019-016
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e,μ ee,μμ	≥ 1	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 139	$ \begin{array}{ccc} ilde{\chi}_{1}^{\pm}/ ilde{\chi}_{2}^{0} \ ilde{\chi}_{1}^{\pm}/ ilde{\chi}_{2}^{0} \end{array} & 0.205 \end{array} $		0.6		$m(ilde{\chi}_1^0) = 0 \ m(ilde{\chi}_1^\pm) - m(ilde{\chi}_1^0) = 5 \ GeV$	1403.5294, 1806.02293 ATLAS-CONF-2019-014
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> , <i>µ</i>		$E_T^{ m miss}$	139	$\tilde{\chi}_1^{\pm}$	0.42			$m(ilde{\chi}_1^0) {=} 0$	ATLAS-CONF-2019-008
t.	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh	0 -1 <i>e</i> ,μ	$2 b/2 \gamma$	$E_T^{\rm miss}$	139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ Forbidden		0.74		$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	ATLAS-CONF-2019-019, ATLAS-CONF-2019-XYZ
ec V	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$	2 <i>e</i> , <i>µ</i>		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$		1.0		$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2019-008
Ш i	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \! ightarrow \! \tau \tilde{\chi}_1^0$	2 τ		E_T^{miss}	139	$\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-0.3	0.12-0.39			$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2019-018
	$\tilde{\ell}_{\mathbf{L},\mathbf{R}}\tilde{\ell}_{\mathbf{L},\mathbf{R}}, \tilde{\ell} {\rightarrow} \ell \tilde{\chi}_1^0$	2 e,μ 2 e,μ	0 jets ≥ 1	E_T^{miss} E_T^{miss}	139 139	$ \widetilde{\ell} $ $ \widetilde{\ell} $ 0.256		0.7		$m(ilde{\chi}_1^0) = 0 \ m(ilde{\chi}_1^0) = 10 \ GeV$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 36.1	<i>H</i> 0.13-0.23 <i>H</i> 0.3		0.29-0.88		$\begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array}$	1806.04030 1804.03602
lived cles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{ m miss}$	36.1	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} \end{array} \textbf{0.15} \end{array} $	0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
ng- arti	Stable \tilde{g} R-hadron		Multiple		36.1	Ĩ			2.0		1902.01636,1808.04095
Гo D	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$			2.05	2.4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901,1808.04095
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	$e\mu,e au,\mu au$			3.2	$\tilde{\nu}_{\tau}$			1.9	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$	4 <i>e</i> , μ	0 jets	$E_T^{\rm miss}$	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.82	1.33	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4	-5 large- <i>R</i> je	ets	36.1	$\tilde{g} = [m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100 \text{ GeV}]$			1.3 1.9	Large $\lambda_{112}^{\prime\prime}$	1804.03568
20			Multiple		36.1	\hat{g} [$\mathcal{A}_{112}^{\prime\prime}$ =2e-4, 2e-5]		1.0	5 2.0	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
RF	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$		Multiple		36.1	\tilde{g} [$\lambda_{323}^{\prime\prime}$ =2e-4, 1e-2]	0.5	5 1.0	5	m $({ ilde {\cal X}}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$		2 jets + 2 <i>b</i>	b	36.7	$\tilde{t}_1 [qq, bs]$	0.42 (0.61			1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e,μ 1 μ	2 <i>b</i> DV		36.1 136		<3e-9]	1.0	0.4-1.45 1.6	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ BR($\tilde{t}_1 \rightarrow q\mu$)=100%, cos θ_t =1	1710.05544 ATLAS-CONF-2019-006

*Only a selection of the available mass limits on new states or

 10^{-1}

Mass scale [TeV]

1

Status of NP searches at LHC

Α Ju	TLAS 9 11y 2019	SUSY Searches* - 95% CL Lo	ower Limits
	Model		CMS (pr
ches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\chi_1$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$		Overviev
e Sean	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)$		$36/137 { m ~fb}^-$
clusiv	ĝĝ, ĝ→qqWZ		${f pp} o {f ilde g}{f ilde g}$
Ч	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	$ ilde{f g} ightarrow {f tt} ilde{\chi}_1^{f 0}$	0 <i>ℓ</i> : SUS-19-005
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}$		1 ℓ: arXiv:1705.
	$\tilde{b}_{1}, \tilde{b}_{2}, \tilde{b}_{3}, \dots, \tilde{b}_{N}$	~~0	2ℓ same-sign,
uarks uction	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W h \tilde{t}$	${f g} ightarrow {f tt} ightarrow {f tt} \chi_1^{f o}$	0ℓ: arXiv:1710.
en. sq t prod	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \hat{\lambda}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \lambda$		1 <i>l</i> : arXiv:1705.
3 rd g direc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$	$\tilde{a} \rightarrow t \tilde{t} \rightarrow t c \tilde{v}^0$	2ℓ same-sign, 0ℓ or Xiv:1710
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 +$	$g \rightarrow vv \rightarrow vc_{\lambda_1}$	2 <i>l</i> same-sign:
	$\frac{\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + \tilde{v}^0 \text{ via } WZ}{\tilde{v}^\pm \tilde{v}^0 \text{ via } WZ}$	${f ilde g} o {f tb} ilde \chi_1^\pm o {f tbff'} ilde \chi_1^{f 0}$	0ℓ: arXiv:1704.
	$\tilde{\chi}_1 \chi_2$ via WZ $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW		2ℓ same-sign:
V ect	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L/2$	$\mathbf{\tilde{g}} \rightarrow (\mathbf{tt} \tilde{\chi}_1^0 / \mathbf{bb} \tilde{\chi}_1^0 / \mathbf{tb} \tilde{\chi}_1^\pm \rightarrow \mathbf{tbff'} \tilde{\chi}_1^0)$	0 ℓ: arXiv:1704.
dire	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$ $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell$	$ ilde{\mathbf{g}} ightarrow \mathbf{bb} ilde{\chi}_{1}^{0}$	0 <i>ℓ</i> : SUS-19-005
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}$	$ ilde{\mathbf{g}} ightarrow \mathbf{q} \mathbf{q} ilde{\chi}_{1}^{0}$	0 <i>ℓ</i> : SUS-19-005
p s	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$	$\tilde{\mathbf{g}} \to \mathbf{q}\mathbf{q}(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0) \to \mathbf{q}\mathbf{q}(\mathbf{W}/\mathbf{Z})\tilde{\chi}_1^0$	0 ℓ: SUS-19-006
ng-live article:	Stable g R-ha	~ ~ +	2ℓ same-sign,
Loi	Metastable \tilde{g}	$\mathbf{g} \to \mathbf{q}\mathbf{q}\chi_1^- \to \mathbf{q}\mathbf{q}\mathbf{w}\chi_1^-$	1 <i>l</i> : arXiv:1709.
	$\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}/\widetilde{\chi}_{2}^{0} \rightarrow 1$	$ ilde{\mathbf{g}} ightarrow \mathbf{q} \mathbf{q} ilde{\mathbf{v}}_{\mathbf{q}}^{0} ightarrow \mathbf{q} \mathbf{q} \mathbf{H} ilde{\mathbf{v}}_{\mathbf{q}}^{0}$	2ℓ same-sign, 0ℓ or Xiv:1712
٨d٢	$gg, g \to qq\chi_1,$ $\tilde{t}, \tilde{t} \to t\tilde{V}^0, \tilde{V}^0$	$ ilde{\mathbf{g}} arrow \mathbf{q} \mathbf{q} \chi_2^0 arrow \mathbf{q} \mathbf{q} \mathbf{r} \chi_1^0 \ ilde{\mathbf{g}} arrow \mathbf{q} \mathbf{q} \tilde{\chi}_2^0 arrow \mathbf{q} \mathbf{q} \mathbf{r} \chi_1^0$	0ℓ: arXiv:1712.
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow a\ell$	5 - 11/2 - 11 - 7 - 71	
	11/1 7	()

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and r represent the absolute mass difference between the primary sparticle and the LSP and the difference between the intermediate

*Only a selection (

Status of NP searches at LHC

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2019

Model

 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}$

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2019

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	-1]
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ multi-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $2J$ $\geq 1 b, \geq 1J/2$ $\geq 2 b, \geq 3j$	Yes - - - j Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	M _D M ₅ M _{th} M _{th} G _{KK} mass G _{KK} mass G _{KK} mass G _{KK} mass G _{KK} mass
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WZ \to qqqq \text{ model } \\ \text{HVT } V' \to WZ \to qqqq \text{ model } \\ \text{HVT } V' \to WH/ZH \text{ model } \\ \text{LRSM } W_R \to tb \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$2 e, \mu$ 2τ $-$ $1 e, \mu$ 1τ $B 0 e, \mu$ multi-channe 2μ	- 2 b ≥ 1 b, ≥ 1J/2 - 2 J el el 1 J	– – Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass W _R mass W _R mass
C	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e, μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	_ Yes	37.0 36.1 36.1	Λ Λ Λ
DM	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)) 0 e, μ DM) 0 e, μ 0 e, μ) 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 0\mbox{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M _* m _{\$}
Гα	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 <i>e</i> 1,2 μ 2 τ 0-1 <i>e</i> ,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes – Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ^u mass LQ ^d mass
Heavy quarks	$\begin{array}{l} VLQ\; TT \to Ht/Zt/Wb + X \\ VLQ\; BB \to Wt/Zb + X \\ VLQ\; T_{5/3} T_{5/3} T_{5/3} \to Wt + X \\ VLQ\; Y \to Wb + X \\ VLQ\; B \to Hb + X \\ VLQ\; QQ \to WqWq \end{array}$	multi-channe multi-channe $2(SS)/\geq 3 e_{,\mu}$ $1 e_{,\mu}$ $0 e_{,\mu}, 2 \gamma$ $1 e_{,\mu}$	el el $\mu \ge 1$ b, ≥ 1 j ≥ 1 b, ≥ 1 j ≥ 1 b, ≥ 1 j ≥ 4 j	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass f* mass v* mass
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles	1 e, μ 2 μ 2,3,4 e, μ (S 3 e, μ, τ –	≥ 2 j 2 j S) – – –	Yes _ _ _	79.8 36.1 36.1 20.3 36.1	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged

CMS (preliminary)

Vec

 $\sigma(Xtq) \times B(X \rightarrow tW), RH$ $\sigma(Xtq) \times B(X \rightarrow tW), LH$ $\sigma(Btq) \ge B(B \rightarrow tW), RH$

Ve

B2G-12-016 B2G-1 B2G-12-016 B2G-12-01 0.2 0.0

 $X5/3 \rightarrow tW(LH)$ $X5/3 \rightarrow tW(RH)$ YY, $B(Y \rightarrow bW) = 100\%$ BB doublet BB singlet BB, B(B \rightarrow bH) = 100% BB, B(B \rightarrow bZ) = 100% BB, $B(B \rightarrow tW) = 100\%$ TT doublet TT singlet TT, B(T \rightarrow tH) = 100% TT, B(T \rightarrow tZ) = 100% TT, B(T \rightarrow bW) = 100% QQ doublet QQ singlet QQ, $B(Q \rightarrow qH) = 100\%$ QQ, $B(Q \rightarrow qZ) = 100\%$ QQ, $B(Q \rightarrow qW) = 100\%$

CMS, EPS-HEP 2019

CMS, EPS-HEP 2019

Selection of observed limits at 95% C.L. The quantities ΔM and x represent the zsparticle and the LSP relative to ΔM , re

BB→(*l* ± ,*l* ± *l* ±

 $BB \rightarrow (l^{\pm}, l^{\pm}l^{\pm})$

Moriond 2019

CMS (preliminary)

Moriond 2019

Resonances to dibosons ($\sqrt{s} = 13$ TeV)

CMS (preliminary)

Moriond 2019

Z'→ZH (∥bb̄ + vvbb̄)	B2G-17-004	6.0		
Z'→ZH (qą̄bb̄)	B2G-17-002	6.8		
Z'→ZH (qāττ)	B2G-17-006	25.0		
IVT (all final states)	B2G-18-006		0.2	

ML for New Physics Searches

All but a few of these LHC searches are optimized for specific models

ML for New Physics Searches

All but a few of these LHC searches are optimized for specific models

There could be vast, untapped discovery potential with ML-powered model-agnostic searches

ML for New Physics Searches

The LHC Olympics 2020

A Community Challenge for Anomaly **Detection in High Energy Physics**

Gregor Kasieczka (ed),¹ Benjamin Nachman (ed),^{2,3} David Shih (ed),⁴ Oz Amram,⁵ Anders Andreassen,⁶ Kees Benkendorfer,^{2,7} Blaz Bortolato,⁸ Gustaaf Brooijmans,⁹ Florencia Canelli,¹⁰ Jack H. Collins,¹¹ Biwei Dai,¹² Felipe F. De Freitas,¹³ Barry M. Dillon,^{8,14} Ioan-Mihail Dinu,⁵ Zhongtian Dong,¹⁵ Julien Donini,¹⁶ Javier Duarte,¹⁷ D. A. Faroughy¹⁰ Julia Gonski,⁹ Philip Harris,¹⁸ Alan Kahn,⁹ Jernej F. Kamenik,^{8,19} Charanjit K. Khosa,^{20,30} Patrick Komiske,²¹ Luc Le Pottier,^{2,22} Pablo Martín-Ramiro,^{2,23} Andrej Matevc,^{8,19} Eric Metodiev,²¹ Vinicius Mikuni,¹⁰ Inês Ochoa,²⁴ Sang Eon Park,¹⁸ Maurizio Pierini,²⁵ Dylan Rankin,¹⁸ Veronica Sanz,^{20,26} Nilai Sarda,²⁷ Uroš Seljak,^{2,3,12} Aleks Smolkovic,⁸ George Stein,^{2,12} Cristina Mantilla Suarez,⁵ Manuel Szewc,²⁸ Jesse Thaler,²¹ Steven Tsan,¹⁷ Silviu-Marian Udrescu,¹⁸ Louis Vaslin,¹⁶ Jean-Roch Vlimant,²⁹ Daniel Williams,⁹ Mikaeel Yunus¹⁸

https://arxiv.org/abs/2101.08320

https://arxiv.org/abs/2105.14027

The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider

T. Aarrestad^a M. van Beekveld^b M. Bona^c A. Boveia^e S. Caron^d J. Davies^c A. De Simone^{f,g} C. Doglioni^h J. M. Duarteⁱ A. Farbin^j H. Gupta^k L. Hendriks^d L. Heinrich^a J. Howarth^l P. Jawahar^{m,a} A. Jueidⁿ J. Lastow^h A. Leinweber^o J. Mamuzic^{*p*} E. Merényi^{*q*} A. Morandini^{*r*} P. Moskvitina^{*d*} C. Nellist^{*d*} J. Ngadiuba^{*s*,*t*} B. Ostdiek^{u,v} M. Pierini^a B. Ravina^l R. Ruiz de Austri^p S. Sekmen^w M. Touranakou^{x,a} M. Vaškevičiūte^l R. Vilalta^y J.-R. Vlimant^t R. Verheyen^z M. White^o E. Wulff^h E. Wallin^h K.A. Wozniak^{α,a} Z. Zhang^d

A lot of new ideas for model-agnostic searches!

There are 200 anomalous events here (out of 10,000), can you spot them?

The Anomaly Score

This is actually Neyman-Pearson optimal for any, unknown signal!

 $p_{data}(x) = (1 - \epsilon)p_{bg}(x) + \epsilon p_{sig}(x)$

Two approaches to estimating R(x)

background samples to learn $p_{data}(x)$ and $p_{bg}(x)$

2. Likelihood ratio trick: train a binary classifier on data vs. background samples to learn $R(x) = \frac{p_{data}(x)}{p_{bg}(x)}$ Neyman-Pearson lemma

1. Direct density estimation: train density estimators on data and

Anomaly score in action

Anomaly score in action

events with R(x) > 1.2(density estimation method with Gaussian mixture models)

After cut on R(x),

After cut on R(x),

 $N_{sig} \to \epsilon_S N_{sig}, \quad N_{bg} \to \epsilon_B N_{bg}$

After cut on R(x),

 $N_{sig} \rightarrow \epsilon_S N_{sig}, \quad N_{bg} \rightarrow \epsilon_B N_{bg}$

 $S = \frac{N_{sig}}{\sqrt{N_{bg}}}$

Original significance

After cut on R(x),

 $N_{sig} \rightarrow \epsilon_S N_{sig}, \quad N_{bg} \rightarrow \epsilon_B N_{bg}$

 $S = \frac{N_{sig}}{\sqrt{N_{bg}}} \rightarrow \frac{\epsilon_S}{\sqrt{\epsilon_B}} \frac{N_{sig}}{\sqrt{N_{bg}}}$

Original significance Enhanced significance

After cut on R(x),

 $N_{sig} \to \epsilon_S N_{sig}, \quad N_{bg} \to \epsilon_B N_{bg}$

Original significance

Enhanced significance

"Significance improvement factor"

After cut on R(x),

 $N_{sig} \rightarrow \epsilon_S N_{sig}, \quad N_{bg} \rightarrow \epsilon_B N_{bg}$

IN sig

Original significance Enhanced significance

"Significance improvement factor"

Initial 2σ significance can be enhanced over $\sim 7x$ in the toy example!

Resonant Anomaly Detection

• In practice, don't have access to perfect background samples. Need simulation or data-driven control regions

• **One successful strategy:** build on the classic "bump hunt"

- assume signal is localized in some feature *m*
- learn background in **sidebands**
- **interpolate** this to approximate background in signal region

 $p_{bg}(x \mid m \in SB) \rightarrow p_{bg}(x \mid m \in SR)$

Interpolating the toy model

	SB		SR	SB	
	Learn the conditions density he	e al it re	nterpolat into her	e Learn th condition density he	e al ere
Ė–	-2	- 1	o rm	i ż	

Interpolating the toy model

	SB		SR	SB	
	Learn the conditions density he	e al it re	nterpolat into her	e Learn th condition density he	e al ere
Ė–	2	- 1	o rm	i ż	

Idealized Anomaly Detector

perfect background samples from $p_{bg}(x | m \in SR)$

CWoLa Hunting

<u>Collins et al (2018), (2019)</u>

background samples directly from SB, valid if $p_{bg}(x \mid m \in SB) = p_{bg}(x \mid m \in SR)$

Proof of concept: LHC Olympics 2020 R&D Dataset

- <u>SM background:</u> 1M QCD dijet events (Pythia8+Delphes, $(p_T)_{J_1} > 1.2$ TeV)
- **BSM signal:** $Z'(3.5 \text{ TeV}) \rightarrow X(500 \text{ GeV})Y(100 \text{ GeV}),$ $X \rightarrow q\bar{q}, Y \rightarrow q\bar{q}$
- A good set of features:

 $m = m_{JJ}, x = (m_{J_1}, m_{J_2}, (\tau_{21})_{J_1}, (\tau_{21})_{J_2})$

Proof of concept: LHC Olympics 2020 R&D Dataset

 $m = m_{JJ}$

Additional features

 $x = (m_{J_1}, m_{J_2}, \tau_{21}^{J_1}, \tau_{21}^{J_2})$

Full statistical procedure

- How to discover anything with resonant anomaly detection?
 - Signal sensitivity not enough, need an accurate background estimate
 - Cut on R(x), traditional 1d bump hunt after that
 - Background estimation from sidebands, assuming no sculpting
 - Robustness: can be suboptimal but not wrong

From proof-of-concept to actual search

CMS-PAS-EXO-22-026

CATHODE is a <u>SCMS search</u> now!

From LHC to Astro: Search for Stellar Streams

• We realized that the same resonant anomaly detection techniques could be used to search for stellar streams in Gaia data

Gaia satellite:

- Launched in 2013; ongoing
- Angular positions, proper motions, color and magnitude of over 1 billion stars in our Galaxy
- Distances and radial velocities for a smaller subset of nearby stars

Stellar streams

Stellar streams are tidally disrupted dwarf galaxies and globular clusters

Stellar streams

Stellar streams are tidally disrupted dwarf galaxies and globular clusters

of dark matter

Known stellar streams of the Milky Way

36

•

Streams are local overdensities in multiple features — ideal for enhanced bump hunt methods!

- •
- Choose either proper motion coordinate as resonant feature •

Streams are local overdensities in multiple features — ideal for enhanced bump hunt methods!

- Choose either proper motion coordinate as resonant feature •
- Learn anomaly score (using normalizing flows) with remaining five features •

Streams are local overdensities in multiple features — ideal for enhanced bump hunt methods!

All stars in a patch of the sky containing (part of) GD-1 (ra,dec)=(148.6,24.2)

Train ANODE on a proper motion window containing GD-1

All stars in a patch of the sky containing (part of) GD-1 (ra,dec)=(148.6,24.2)

It works! Fully data³⁸-driven, simulation-independent

New Stream Candidates from Gaia DR2 [DS, Buckley, Necib (2023)]

Many (~ 80-90) new streams potentially discovered in Gaia DR2!

Spinoff: discovering new ultra-faint dwarf galaxies [DS+ McQuinn et al (2023a), (2023b)]

- Helped astronomers to discover 3 new ultra-faint "field" dwarf galaxies
 - First as overdensities of star counts in DESI Legacy Survey data
 - Then confirmed with dedicated Hubble time

Mapping Dark Matter in the Milky Way [Lim, Putney, Buckley & DS (2022), (2023)]

- using Gaia data!

 - 2. Use the **Boltzmann equation** to extract acceleration and mass density

$$\frac{\partial f}{\partial t} + v_i \frac{\partial f}{\partial x_i} = \frac{\partial \Phi}{\partial x_i}$$

Idea: can measure 3d map of dark matter density $\rho_{DM}(\vec{x})$ near the Sun

1. Fit *normalizing flows* to stellar positions and velocities => phase space density $f(\vec{x}, \vec{v})$

Mapping Dark Matter in the Milky Way [Lim, Putney, Buckley & DS (2022), (2023)]

	0	.0	0.5	1.0		1.5	2	2.0
This w	ork	- '						
Casagrande, (2020)	[60]	-			•	[Blue st	ragg
Pato, et al., (2015)	[61]	-		H	••			Cire
Huang, et al., (2016)	[62]	-		101				
Benito, et al., (2019)	[63]	-						-
Karukes, et al., (2019)	[64]	-			-			
Lin, et al., (2019)	[65]	-				-		
de Salas, et al., $\left(2019\right)$	[66]	-			•			
Ablimit, et al., (2020)	[67]	-		-				
Benito, et al., (2020)	[68]	-						-
Sofue, (2020)	69]	-		-				
Zhou, et al., (2022)	[70]	ŀ			•			
Ou, et al., (2023)	[59]	-			•			
McMillan, (2017)	[71]	-		H	-		Circu	lar ve
Cautun, et al., (2020)	[72]	-		-				
Bienyame, et al., (2014)	[73]				-	•	Dist	ribut
Piffl, et al., (2014)	[74]	-			-			
Binney, et al., (2015)	[75]	-			•			
Cole, et al., (2017)	[76]	-			-	•		
Wegg, et al., (2019)	[77]	-			-			Ha
Hattori, et al., (2020)	[78]	-						
Nitschai, et al., (2020)	[12]				•			
Nitschai, et al., (2021)	[13]	-		нен				
Widmark, et al., (2021)	[79]			-				
Guo, et al., (2022)	[80]	-		-		-		-
McKee, et al., (2015)	[57]							Ver
Xia, et al., (2016)	[81]	-		-				+
Hagen, et al., (2018)	[15]	-				-	-	+
Sivertsson, et al., (2018)	[10]	-		-	•	•		
Guo, et al., (2020)	[14]	-				-		
Salomon, et al., (2020) (North)	[11]	-				-		
Salomon, et al., (2020) (South)	[11]	-			-			
Wardana, et al., (2020)	[82]	-		-	-			
Schutz, et al., (2018)	[58]	-					•	
Buch, et al., (2019)	[83]	È .						- 1
	0.	00	0.1	25	0.5	0	0.	75
				$ ho_{\mathrm{I}}$	$_{\rm DM}(r_{\rm O})$	∋) (G	leV/c	$m^3)$

1.00

Mapping Dark Matter in the Milky Way [Lim, Putney, Buckley & DS (2022), (2023)]

1.00

0.75

Summary/Outlook

- physics searches
- There is a lot more data coming, including HL-LHC, Gaia DR4, Euclid, LSST, Roman, SKA, ...
- discoveries await!

• Breakthroughs in AI/ML are enabling a **<u>new paradigm</u>** for new

• The new techniques we are developing for new physics searches have broader applicability, e.g. to search for stellar streams in Gaia data.

• Modern ML gives us new ways to look deeper into the data. Exciting

Thanks!

Further improvements

BDTs are more robust than NNs...

Name	# features	Features
Baseline	4	$\{m_{J_1},\Delta m_J, au_{21}^{eta=1,J_1}, au$
Extended 1	10	$\{m_{J_1},\Delta m_J, au_{N,N-1}^{eta=1,J_1}, au\}$
	10	for $2 \le N \le 5$
Extended 2	12	$\{m_{J_1},\Delta m_J, au_N^{eta=1,J_1}, au\}$
		for $N \leq 5$
Extended 3	56	$\{m_{J_1},\Delta m_J, au_N^{eta,J_1}, au_N^{eta$
		for $N \leq 9$ and $\beta \in \{0.3\}$

Further improvements

Relying on high-level physics features is not fully model-agnostic...

With recent breakthroughs in generative modeling (diffusion, flow-matching), using all the low-level information (jet constituents) is becoming possible!

Residual ANODE [Das, Kasieczka & DS (2023)]

Can do even better by freezing background density and only fitting a small "residual" density estimator to learn the signal in data

1. Fit $p_{bg}(x)$ to background

2. Freeze $p_{bg}(x)$ and fit $(1-w)p_{bg}(x) + wp_{sig}(x)$ to data

Performance on LHCO

R-ANODE exceeds classifier-based approaches Closes/narrows the gap with fully supervised

48

Interpretability with R-ANODE

In R-ANODE, fitting $p_{sig}(x)$ to the data in the signal region directly gives an empirical

Can also directly infer the signal strength!

