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Problem- or data-driven?

• Let’s start with a super-generic question
• For a particular scientific problem, do we need more context, or should 

the data “speak for themselves”?
• Data-driven: rely on non-parametric constructs (neural networks, NNs) 

have been very popular for many applications in STEM and beyond
• Shall we just ignore the context? 



Why data driven methods could fail



A fork in the road?

- Unknown or 
nonexistent 
equations

- A lot of data 
(cheap and  
ubiquitous)

- E.g., social 
networks, large 
language models, 
foundation 
models 

- Well known 
equations

- Few data 
(hard/expensive)

- E.g., astronomy, 
paleoclimate

Data-poor, context-rich
Data-rich, context-poor



Do we even have to choose? 

• The problem of merging (assimilating, fusing, etc.) data with physical 
information is a very old exploit in Statistics

• These models are generally termed physical-statistical (PS) models
• Mark Berliner’s 2003 JRG paper was the first one to formalize it (to my 

knowledge!) 

Spatio-temporal statistical models are not at odds with deterministic 
ones. Indeed, the most powerful models are constructed based on 

physical mechanisms
(Wikle, Zammit-Magion and Cressie, Spatio-temporal statistics with R)



How PS models work



PS models

• PS model fits naturally in a hierarchical (Bayesian) framework
• Stage 1 (data): Suppose we observe 𝑍𝑍𝑡𝑡(𝒔𝒔), we assume

𝑍𝑍𝑡𝑡 𝒔𝒔 = ℋ 𝑌𝑌𝑡𝑡 𝒔𝒔 ,𝜽𝜽data, 𝜀𝜀𝑡𝑡 𝒔𝒔

• 𝑌𝑌𝑡𝑡 𝒔𝒔 : latent process
• ℋ: (linear/nonlinear) mapping
• 𝜽𝜽data: data-model parameters
• 𝜀𝜀𝑡𝑡 𝒔𝒔 : data-model error 
• Easy example 𝑍𝑍𝑡𝑡 𝒔𝒔 ~𝑁𝑁 𝑌𝑌𝑡𝑡 𝒔𝒔 ,𝜎𝜎2



PS models

• Stage 2: The latent process 𝑌𝑌𝑡𝑡 𝒔𝒔  is modeled
𝑌𝑌𝑡𝑡 𝒔𝒔 = ℳ( 𝑌𝑌𝑡𝑡−1 𝒔𝒔 , … ,𝑌𝑌𝑡𝑡−𝑘𝑘 𝒔𝒔 ,𝜽𝜽process, 𝜂𝜂𝑡𝑡 𝒔𝒔 )

• 𝑌𝑌𝑡𝑡 𝒔𝒔 : latent process
• ℳ: dynamic process
• 𝜽𝜽process : data-model parameters
• 𝜂𝜂𝑡𝑡 𝒔𝒔 : process-model error 
• (Stage 3: Priors)



Relative merits of PS models

• PS models
𝑌𝑌𝑡𝑡 𝒔𝒔 = ℳ( 𝑌𝑌𝑡𝑡−1 𝒔𝒔 , … ,𝑌𝑌𝑡𝑡−𝑘𝑘 𝒔𝒔 ,𝜽𝜽process, 𝜂𝜂𝑡𝑡 𝒔𝒔 )

• PS models require a definition of ℳ, so an exact knowledge of the 
physics

• If something goes wrong, we hope that 𝜂𝜂𝑡𝑡 𝒔𝒔  takes case of any 
misspecification



Physics-informed Neural networks
• In the last few years, the ML literature has developed a separate area of 

research on how to merge physics with data: physics informed neural 
networks (PINNs)

• The idea is quite different, but there is a link with PS models which was 
somehow lost



The main idea: a scale

Data-poor, context-rich
Data-rich, context-poor

Context Data-driven



PINNs in a nutshell

• This is my “stats” reframing of PINN
• The canonical PINN definition is more algorithmical
• Stage 1: We observe 𝑍𝑍𝑡𝑡 𝒔𝒔  and we assume

𝑍𝑍𝑡𝑡 𝒔𝒔 = ℋ 𝑌𝑌𝑡𝑡 𝒔𝒔 ,𝜽𝜽data, 𝜀𝜀𝑡𝑡 𝒔𝒔

• 𝑌𝑌𝑡𝑡 𝒔𝒔 : latent process
• ℋ: (linear/nonlinear) mapping
• 𝜽𝜽data: data-model parameters
• 𝜀𝜀𝑡𝑡 𝒔𝒔 : data-model error (noise)



PINNs as hierarchical models

• Stage 2 (process): The latent process 𝑌𝑌𝑡𝑡 𝒔𝒔  is modeled
𝑌𝑌𝑡𝑡 𝒔𝒔 = ℳ( 𝑌𝑌𝑡𝑡−1 𝒔𝒔 , … ,𝑌𝑌𝑡𝑡−𝑘𝑘 𝒔𝒔 ,𝜽𝜽process, 𝜂𝜂𝑡𝑡 𝒔𝒔 )

• 𝑌𝑌𝑡𝑡 𝒔𝒔 : latent process
• ℳ: dynamic process, highly nonparametric NN
• 𝜽𝜽process: data-model parameters (huge space!)
• 𝜂𝜂𝑡𝑡 𝒔𝒔 : process-model error (noise)
• (Stage 3: Priors)
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The main idea behind PINNs

• Assume 𝒀𝒀t = 𝑌𝑌𝑡𝑡 𝒔𝒔  is informed by a PDE 
𝜕𝜕𝒀𝒀t
𝜕𝜕𝜕𝜕

−𝒩𝒩 𝒀𝒀t = 0

• We are not solving the PDE, we just want 𝒀𝒀t to be “loosely compliant”

• So, g 𝒀𝒀t = 𝜕𝜕𝒀𝒀t
𝜕𝜕𝜕𝜕
−𝒩𝒩 𝒀𝒀t  should be small

• Physics-based models: 

�
𝑡𝑡=1

𝑇𝑇

𝐶𝐶 𝒁𝒁t, �𝒁𝒁t 𝜽𝜽process + 𝜆𝜆g �𝒀𝒀t 𝜽𝜽process
2

• For some cost function 𝐶𝐶
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The main idea behind PINNs

• We minimize

�
𝑡𝑡=1

𝑇𝑇

𝐶𝐶 𝒁𝒁t, �𝒁𝒁t 𝜽𝜽process + 𝜆𝜆g �𝒀𝒀t 𝜽𝜽process
2

• If we have a Gaussian process (“traditional” PINN) �𝒁𝒁t = �𝒀𝒀t and we have

�
𝑡𝑡=1

𝑇𝑇

𝒁𝒁t − �𝒁𝒁t 𝜽𝜽process
2

 + 𝜆𝜆g �𝒁𝒁t 𝜽𝜽process
2

• We penalize values that departs from the PDE
• Good computational news: this is not an inverse problem, it’s a forward 

problem
• Bad computational news: no closed form, requires gradient descent, 

backprop, etc.
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PINNs and penalized functional regression

• Recall PINN

argmin𝜽𝜽�
𝑡𝑡=1

𝑇𝑇

𝒁𝒁t − �𝒁𝒁t 𝜽𝜽process
2

 + 𝜆𝜆g �𝒁𝒁t 𝜽𝜽process
2

• Even this penalized approach is actually not new in statistics
• Sangalli and collaborators at Politecnico di Milano cast this as a (spatial) 

functional problem 

argmin�𝒀𝒀�
𝑖𝑖=1

𝑛𝑛

𝒁𝒁 𝑠𝑠𝑖𝑖 − �𝒁𝒁 𝑠𝑠𝑖𝑖
2

 + 𝜆𝜆� g �𝒁𝒁 𝑠𝑠
2

d𝑠𝑠

• There is no NN, but the idea is very similar and in a continuous setting
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Work 1

• We model the process 
𝑍𝑍𝑡𝑡 𝒔𝒔 = ℋ 𝑌𝑌𝑡𝑡 𝒔𝒔 ,𝜽𝜽data, 𝜀𝜀𝑡𝑡 𝒔𝒔

𝑌𝑌𝑡𝑡 𝒔𝒔 = ℳ( 𝑌𝑌𝑡𝑡−1 𝒔𝒔 , … ,𝑌𝑌𝑡𝑡−𝑘𝑘 𝒔𝒔 ,𝜽𝜽process, 𝜂𝜂𝑡𝑡 𝒔𝒔 )
• We model ℳ in two different ways
• 1) PS: ℳ is derived from the PDE
• 2) ℳ is some very large NN and is “nudged” towards the PDE solution

Contribution 1 (Bonas et al., JASA): develop a flexible temporal model 
NN for 𝓜𝓜 (Gaussian 𝓗𝓗) and inform it with a PDE in an experimental 

fluid dynamic problem (Navier-Stokes) 



18

Echo State Networks

• Temporal model, call 𝐙𝐙t = 𝑍𝑍𝑡𝑡 𝒔𝒔  
𝐙𝐙t = 𝑩𝑩𝒀𝒀𝑡𝑡 + 𝛆𝛆,  𝛆𝛆~N 𝟎𝟎,𝜎𝜎2𝐈𝐈

𝒀𝒀𝑡𝑡 = 1 − 𝛼𝛼 𝒀𝒀𝑡𝑡−1 + 𝛼𝛼𝝎𝝎𝑡𝑡
𝝎𝝎𝑡𝑡 = g 𝑾𝑾𝒀𝒀𝑡𝑡−1 + 𝑾𝑾𝑥𝑥𝒙𝒙𝑡𝑡

• Sparse random matrices with spike and slab prior (reservoir)
𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑊𝑊𝑓𝑓 𝜂𝜂𝑊𝑊 + 1 − 𝑝𝑝𝑖𝑖𝑖𝑖𝑊𝑊 𝛿𝛿0,  𝑝𝑝𝑖𝑖𝑖𝑖𝑊𝑊~𝐵𝐵𝐵𝐵 𝜋𝜋𝑊𝑊

𝑊𝑊𝑖𝑖𝑖𝑖
𝑥𝑥 = 𝑝𝑝𝑖𝑖𝑖𝑖𝑊𝑊

𝑥𝑥
𝑓𝑓 𝜂𝜂𝑊𝑊𝑥𝑥 + 1 − 𝑝𝑝𝑖𝑖𝑖𝑖𝑊𝑊

𝑥𝑥
𝛿𝛿0,  𝑝𝑝𝑖𝑖𝑖𝑖𝑊𝑊

𝑥𝑥
~𝐵𝐵𝐵𝐵 𝜋𝜋𝑊𝑊𝑥𝑥

• This is called an Echo State Network (ESN)
• This is the shallow version, but I will use a deep network (DESN)
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ESN (simplified) in a picture

𝑩𝑩

𝒀𝒀𝑡𝑡𝒙𝒙𝑡𝑡
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Liquid State Machines
• We also use Deep Liquid State Machines (DLSM) for time series
• This NN mimics more closely how the brain processes information
• The input (past data) are transformed in a subprocess with a firing rate 

proportional to the data (spike train)
• Spike trains is used as input and multiplied by synapse weights to 

increase (decrease) the stored energy of a neuron
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Liquid State Machines
• Neurons ‘spike’ once their energy crosses a threshold 
• The signal is then sent deeper into the network (like a brain synapse)
• Evolution of each neuron’s 𝑖𝑖 potential energy at time 𝑡𝑡

𝑉𝑉mem 𝑡𝑡 = 𝑉𝑉mem 𝑡𝑡 − 1 + �
𝑗𝑗∈synapse

𝑤𝑤𝑗𝑗;𝑖𝑖𝐼𝐼𝑡𝑡
(𝑗𝑗) − 𝑉𝑉leak

𝑉𝑉mem 𝑡𝑡 = 𝑉𝑉res  if 𝑉𝑉mem 𝑡𝑡 ≥ 𝑉𝑉thr
𝑠𝑠𝑡𝑡 = �1, if 𝑉𝑉mem 𝑡𝑡 ≥ 𝑉𝑉thr

0, if 𝑉𝑉mem 𝑡𝑡 < 𝑉𝑉thr

𝑉𝑉 m
em

𝑡𝑡

𝑉𝑉 m
em

𝑡𝑡
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Liquid State Machines

• We finally count how many spikes

𝜔𝜔𝑡𝑡 = �
𝑡𝑡∗=1

𝑇𝑇∗

𝑠𝑠𝑡𝑡∗

• And feed this into a reservoir 
• It’s actually more complicated than this
• There are two more processes to mimic synapses
• 1) latent period after firing
• 2) lateral inhibition (once a synapse fires, nearby synapses can’t)
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ENSEMBLE 
RESERVOIR

DLSM

DESN



What about uncertainty?
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Data

•  Velocity data of water flow in a tunnel
• Bottom: wall, top: free flow
• 2,500 time steps at frequency of 1,000 Hz: total time 2.5s
• Goal: provide physically consistent forecasting



Average velocity profile
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PDE derivation

• Controlled experiment: 2D fluid at equilibrium
• We use time averaged (RANS) solution to Navier Stokes, which reduces to

𝑢𝑢𝜏𝜏
𝛿𝛿

+
𝑢𝑢𝜏𝜏𝛿𝛿
RE𝜏𝜏

𝜕𝜕2 �𝑌𝑌
𝜕𝜕𝑦𝑦2

+ 𝜅𝜅𝜅𝜅 2 𝜕𝜕 �𝑌𝑌
𝜕𝜕𝜕𝜕

𝜕𝜕 �𝑌𝑌
𝜕𝜕𝜕𝜕

= 0

• �𝑌𝑌 𝑥𝑥,𝑦𝑦 : average water velocity
• 𝛿𝛿: boundary layer thickness (known)
• RE𝜏𝜏: Reynolds number (known)
• 𝑢𝑢𝜏𝜏: friction velocity (known)



Method MSE

With Physics 0.13 (0.05)
No Physics 0.26 (0.17)

MSE with Physics

M
SE

 w
ith

ou
t P

hy
si

cs



Prediction Interval Uncalibrated Calibrated

95% 100.0 (0.0) 95.0 (1.0)

90% 100.0 (0.0) 90.0 (2.0)

80% 90.0 (3.0) 80.0 (2.0)

Uncertainty quantification
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Wrap up work 1

• A PINN is just a penalized statistical model
• It works really well in cases where the physics is well known 
• No free lunch: you need the right approximation of the Navier Stokes 

equation
• We also performed uncertainty quantification and calibrated the forecast
• If the PDE penalty has some unknown physical parameters (e.g., Reynolds 

number and viscosity), they can be estimated as well!
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Work 2

• We model the process 
𝑍𝑍𝑡𝑡 𝒔𝒔 = ℋ 𝑌𝑌𝑡𝑡 𝒔𝒔 ,𝜽𝜽data, 𝜀𝜀𝑡𝑡 𝒔𝒔

𝑌𝑌𝑡𝑡 𝒔𝒔 = ℳ( 𝑌𝑌𝑡𝑡−1 𝒔𝒔 , … ,𝑌𝑌𝑡𝑡−𝑘𝑘 𝒔𝒔 ,𝜽𝜽process, 𝜂𝜂𝑡𝑡 𝒔𝒔 )
• ℳ is some very large NN and is “nudged” towards the PDE solution

Contribution 2 (Menicali et al., under review): A PINN to generate more 
realization from a numerical model (digital twin). Model: autoencoder for 

𝓗𝓗, an a recurrent NN for 𝓜𝓜, informed with Navier-Stokes 



The simulation: Rayleigh–Bénard convection (RCB)



Data and problem
• Two dimensional fluid 
• Variables: velocity 𝒖𝒖𝑡𝑡 = 𝑢𝑢𝑡𝑡 ,𝑤𝑤𝑡𝑡 , temperature 𝜃𝜃𝑡𝑡 and pressure 𝑝𝑝𝑡𝑡
• Navier Stokes becomes:

∇ ⋅ 𝒖𝒖𝑡𝑡 = 0,
𝜕𝜕𝒖𝒖𝑡𝑡
𝜕𝜕𝜕𝜕

+ 𝒖𝒖𝑡𝑡 ⋅ ∇ 𝒖𝒖𝑡𝑡 = −𝛁𝛁𝑝𝑝𝑡𝑡 +
Pr
𝑅𝑅𝑅𝑅

 ∇2𝒖𝒖𝑡𝑡 + 𝜃𝜃𝑡𝑡𝒆𝒆𝑧𝑧,

𝜕𝜕𝜃𝜃𝑡𝑡
𝜕𝜕𝜕𝜕

+ 𝒖𝒖𝑡𝑡 ⋅ ∇ 𝜃𝜃𝑡𝑡 =
1

PrRa
∇2𝜃𝜃𝑡𝑡 ,

• 𝒆𝒆𝑧𝑧: (0,1) vector
• Pr and Ra: Prandtl and Rayleigh constants
• The data are simulated on a 256 × 256 grid and 1,000 time points





Convolutional Autoencoder

• We model the spatio-temporal process 
𝒀𝒀𝑡𝑡 𝒔𝒔 = 𝑢𝑢𝑡𝑡 𝒔𝒔 ,𝑤𝑤𝑡𝑡 𝒔𝒔 ,𝑝𝑝𝑡𝑡 𝒔𝒔 ,𝜃𝜃𝑡𝑡 𝒔𝒔 ,

𝒀𝒀𝑡𝑡 = 𝒀𝒀𝑡𝑡 𝒔𝒔  
• We model the spatial structure of 𝒀𝒀𝑡𝑡 with a Convolutional Autoencoder (CAE) 
• The input is projected onto a latent space: the spatial encoder 
• Then projected back onto the original space: spatial decoder
• It’s a dimension reduction technique in space, like fixed rank Kriging, 

predictive processes, etc.



A CAE in a picture

u, v, 𝜃𝜃, p u, v, 𝜃𝜃, p



ConvLSTM

• We assume an LSTM model for the temporal structure 
• This is called a Convolutional Long-Short Term Memory (ConvLSTM) model



Results: Spatial part

MSE
Fixed Kriging: 5.0 × 105
PCA: 1.5 × 10−3
ICA: 3.6 × 10−3
CAE: 𝟑𝟑.𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟓𝟓



Results: Forecast

MSE
ARMA: 163.25
PI-ESN: 21.48
CRNN: 0.36
Our Model: 0.22



PINNs and WRF-LES: the SWEX experiment

• A PINN for WRF-LES (mesoscale-microscale): no more simplifying Navier Stokes
• Tasks: integrate a statistical model with the WRF Fortran (!) and build a PINN



Other interesting projects 

• PINNs and physics-informed emulators for satellite retrievals
• Physics-informed priors
• Land-vegetation dynamics in the Midwest Holocene
• Pushing emulations to exascale for Petabytes of data (2024 Gordon Bell!)
• Statistical models for climate output compression 
• Visualization in VR and other 3D environments 
• High energy particle physics, optics, etc.



Thanks very much for your attention!
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