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Total Electron Content (TEC) map
Total Electron Content (TEC) map

lonosphere: layer in the upper atmosphere 70-1000 km above Earth.
lonosphere TEC: total number of electrons in the path between satellite
(The Global Navigation Satellite Systems (GNSS)) radio transmitter and
ground-based receiver. (1 TEC unit = 101® electrons/m?).
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Total Electron Content (TEC) map

Real time monitoring of TEC is important.

o TEC affects the propagation of radio waves, leading up to 10s meters
positioning error in the GNSS Positioning, Navigation and Timing
(PNT) services. Better knowledge of TEC map will make PNT
services more accurate.

@ TEC measurement has been used in earthquake monitoring, modelling
and prediction: a significant reduction in TEC is observable for at
least 3 days before major earthquakes.
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@ The Madrigal Database: global maps of vertical TEC measurements
with a spatial resolution of 1° x 1° latitude by longitude and a
temporal resolution of 5 minutes.

@ International GNSS Service (IGS) TEC maps: spherical harmonics

fitted TEC maps with a spatial resolution of 2.5° latitude by 5°
longitude and a highest temporal resolution of 15 minutes.

(A) Madrigal TEC map (B) Madrigal TEC map with median filter (C) IGS TEC maps
(~74% missing) (~47% missing) (no missing)
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@ Goal: “fill in" missing values in Madrigal data to create high spatial
& temporal resolution full TEC maps.
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Total Electron Content (TEC) map

@ Goal: “fill in" missing values in Madrigal data to create high spatial
& temporal resolution full TEC maps.

@ Pattern of missingness in Madrigal TEC maps:

e Big patches of missingness in ocean area.
e Scattered (not random) missingness in land area.

e Temporally moving missingness patches.
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Background Existing Methods

Framed as a Matrix Completion Problem

@ To impute the TEC maps, we adopt classical statistics techniques
called matrix completion.
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Background Existing Methods

Framed as a Matrix Completion Problem

@ To impute the TEC maps, we adopt classical statistics techniques
called matrix completion.

@ Matrix completion is a commonly used method in designing
recommendation systems. With a user-item rating matrix, for
example, matrix completion can infer the potential rating a user
would give to an item he/she has never consumed.
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Background Existing Methods

Matrix Completion with Factorization

SoftImpute-Alternating Least Square (Hastie et aI., 2015)

: 1
min F(At,Bt)iziHXt ABTHF+ (HAtHFJrHBtH) (1)

tth

where )A(t is a "filled-in" m x n matrix, with )A(t =Pq,(X¢) + PQ#_ (AtétT)
and At, B, are the two factor matrices in the previous iterative step.
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Matrix Completion with Factorization

SoftImpute-Alternating Least Square (Hastie et aI., 2015)

: 1
min  F(A¢, Br) ¢=§HXt ABTHF+ (HA Iz +1BlF) (1)

tth

where )A(t is a "filled-in" m x n matrix, with )A(t =Pq,(X¢) + PQ#_ (AtétT)
and At, B, are the two factor matrices in the previous iterative step.

(&) Original Map (B) Softimpute
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Background Existing Methods

Spherical Harmonics

Approximating data on a surface (TEC values around the globe) with a
linear combination of several basis functions.
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Spherical Harmonics

Approximating data on a surface (TEC values around the globe) with a
linear combination of several basis functions.

2.1. Spherical Harmonics. For a sufficiently smooth surface,
represented by a function f(0, ¢), an infinite series of spheri-
cal harmonic basis functions can be used to represent it in the
following form [23]:

1

max

|
f6.9)=) Y a"v"(6.9), )

1=0 m=-1

where 6 and ¢ are the polar and azimuth angles in a spherical
coordinate system. As [ — 0o, this representation

max

becomes an exact description of the surface f(6,¢). The

Source: Nortje et al., 2015
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Background Existing Methods

Spherical Harmonics

Yang Chen
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FiGure I: Spherical harmonics,

Figure: Source: Nortje et al., 2015
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Spherical Harmonics

(A) Original Map (B) SH fitting Map
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Figure: Example of Spherical Harmonics Fitting
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Summary: Softlmpute versus Spherical Harmonics

{A) Original Map (B) Softimpute
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(A) Original Map (B) SH fitting Map
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e R
Proposed Method: VISTA

Our final framework has the following features:

@ Impute a time series of TEC maps (i.e. TEC videos)
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e R
Proposed Method: VISTA

Our final framework has the following features:
@ Impute a time series of TEC maps (i.e. TEC videos)
@ Use a matrix factorization formulation as the imputed matrix
@ Use spherical harmonics as a warm-start (we call it “auxiliary data*)
o Penalizes the matrix norm of the factor matrices
°

Reinforce smoothness of the imputed results temporally

(]

Objective function has the form:

Imputation Loss + A1 x Matrix Norm Penalty
+ A2 x Temporal Smoothness Penalty
+ A3 x Auxiliary Data Penalty
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Proposed Method: VISTA

Our model has a name "“Video Imputation with Softlmpute,
and Auxiliary data” (VISTA).

T

1
min { F(A.T,Bu7) 2 = Pa,(X: — A:BT)|2
o P B 253 1P 06 AT
\ T
1
t5 > A +11B:17)
t=1

+

5
A3
+3 2Ive- As

., YT are m x n auxiliary data with no missing values.
October 8th, 2021 18 /54
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Method Proposed Method: VISTA

Recall: Softlmpute versus Spherical Harmonics

{A) Original Map (B) Softimpute
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(A) Original Map (B) SH fitting Map

B 2 15 18 21 24T 3 18 21 zawLT

o
STAMPS Webinar October 8th, 2021 19 /54

o
&
o




Computational Algorithm
Outline

© Method

@ Computational Algorithm

Yang Chen (

STAMPS Webinar October 8th, 2021 20 /54



Computational Algorithm
Algorithm Outline

@ There are in total T frames to be imputed at the same time, and
each frame has its own A;, B; factors.
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@ There are in total T frames to be imputed at the same time, and
each frame has its own A;, B; factors.

@ Update the factors A1, Ay, ..., A1, By, By, ..., Bt cyclically:
Al A— - 2 Ar—=>B —>B,— - = Br A - A — ...

@ Fix 2T — 1 matrices and update one matrix at a time with
majorization-minimization (MM) algorithm.
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Computational Algorithm
Algorithm Outline

@ There are in total T frames to be imputed at the same time, and
each frame has its own A;, B; factors.

@ Update the factors A1, Ay, ..., A1, By, By, ..., Bt cyclically:
Al A— - 2 Ar—=>B —>B,— - = Br A - A — ...

@ Fix 2T — 1 matrices and update one matrix at a time with
majorization-minimization (MM) algorithm.

@ The final step in MM is simply doing a least square.
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ez il
Update Matrix with Least Square

Suppose in the k-th round, we wish to update A;. The current values for
the other factors are: A(1k+l), Agkﬂ), ce Agljl), Agk), . .A(Tk) and

Bfk), B2(k), ceey Bg). Keeping every matrix other than A; fixed at their

current values, the convex optimization problem is reduced to the
following optimization problem:

Bff%)

. k+1) A (k
”l\'t”{ (A |A(1t 1,A§+)1 T

1 k k
£ 2P, (X = AdBI)T)|E + HAtHF+ 21— ABIN T
)\2 k+1
+ e AT - AL >(Bt DTz

A k k
221 |APL (BT - A8 ))Tu%}
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ez il
Update Matrix with Least Square

.1 K A1 A3 k
min {erQt(xt — AdBENIE + AR + 21 Ye - AdBE) IR

A2 K k41 K
+ 2yl AT - AL (BT IR

)\2 K
2 ey IASL (BT — ABI)T u?}

The first term || Pq, (X: — ( ) )||% can be upper bounded by:

1Pa, (Xe — A(BINT) + Po (AY(BINT — A(BI)T) 12
= | Pa,(Xe) + P (AP (BI)T) — A(BI)T|I2
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Update Matrix with Least Square

Substituting the first term with its upper bound, and denote the new

objective function as Q(A; |A1ktJr11),A(tl_?1 T ng%) Then one can take the

derivative of Q w.r.t. A; and sets it to zero and get:

~1
AP — [(1 + Xa(lgeey + les1y) + 23)(BY) 7B + )‘11} z08"

where
Z8 = Pa,(Xe) + P (A (B)T
k+1 k k
+ A (I{t>1}A( 1 )(B( )) + I{t<T}A£+)1(Bt(+)1)T)
+ )\3 Yt
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Method Computational Algorithm

Final Algorithm

Algorithm 1 softmpute-ALS with Temporal Smoothing and Auxiliary Data

Input: mxn Sparse data Xy, X5, ..., X7, mxnauxiliary data ¥, Yo, ..., Y7, operating rank r. Maximum iteration

K and convergence threshold 7.

Output: Imputation of sparse data A, B] , A, BY ..., Ay BT,

1:

10:
11:
12:
13:
14:

PO Shbh Rtk

Initialization: For 1 < ¢t < T, Aill = U Dy, B:[” = Wiy, where U, V; are m % r,n x r randomly chosen
matrix with orthogonal columns. I is L.,

: Update A:
cfort=1:T

9 .
a. Let x?*' = Pa,(Xy) + Py (AP (BI)T), which is the “filled-in” version of X,
b. Let Z/*) be the weighted label in equation (11)
B AE“” is updated as equation (13)

end for
(k)

: Update B: For every t, repeat a,b,c steps above, with ka]. Z;"" being replace by X;'H ;]. Z}IH;]. B,“' ) jg

calculated following equation (14)

: Repeat wupdating Appy and By untl  convergence. The algorithm converges when

max{VF*, vEP, ..., VEP} < 7, with VF defined in (15).

For any t, denote the final output as A7, B Let X = Po, (X¢) + Po: (A7 (BI)T).
Do SVD for A; (Bf )T = Ur(D; (V)™
Define M, = X;V;* and do SVD for M, = U, D, kY.
Do soft-thresholding on Dy: Dy, = diag[(o) — Ay )4, (o2 = A, oo (o0 = Ad)4]

Output imputation for time ¢ as U, Dy », (V" Ry)7

Yang Chen STAMPS Webinar October 8th, 2021
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Theoretical Guarantees
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Convergence Guarantee

Across the iterations of our algorithm, we denote the iterative value of
A1.7, B1.7 in the k-th round of algorithm as Aglf)T, B{k% Then we can
prove the following property of our algorithm:
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Theoretical Guarantees
Convergence Guarantee

Across the iterations of our algorithm, we denote the iterative value of
A1.7, B1.7 in the k-th round of algorithm as Aglf)T, B{k% Then we can
prove the following property of our algorithm:

Objective Function is Non-Increasing

Define the descent of objective function value at iteration k as

A = F(AR By — F(AlD BlEI)y Then the value of the objective

function is non-increasing, i.e.,
k k k+1 k k+1 k+1
FIAYT B9) > FAYTY, Big) > F(AYT Y. BiT ),

thus Ayg >0, for all kK > 1.
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Convergence Rate

Convergence Rate Lower Bound

Let the limit of the objective function F(Aglf-),-, Bfk;-) be £°°, we have:

(1) p(1) 0
min Ay, < F(ALT. Brr) = f
1<k<K - K

where K is the total number of iterations.

These results suggest that our algorithm is converging at a rate of

O(1/K).
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Method Theoretical Guarantees

Parameter Tuning

There are multiple hyper-parameters in our imputation model:

e (VISTA Model Fitting) A1, A2, A3 controlling the relative weights of
the penalty on matrix norm, temporal smoothness and auxiliary data.

@ (Auxiliary Data Generating) Number of basis functions and
L1-penalty in Spherical Harmonics fitting.
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Parameter Tuning

There are multiple hyper-parameters in our imputation model:

e (VISTA Model Fitting) A1, A2, A3 controlling the relative weights of
the penalty on matrix norm, temporal smoothness and auxiliary data.

@ (Auxiliary Data Generating) Number of basis functions and
L1-penalty in Spherical Harmonics fitting.

We do not choose the VISTA model parameters based on any data-driven
methods for the TEC data. In general, we adopt cross validation.

The model exhibits stable performances across many different choices of

(A1, A2, A3), with \; € [0.5,1.5], A, € [0.2,0.3], A\3 € [0.01,0.03] as
recommended ranges for TEC data.
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Method Theoretical Guarantees

Parameter Tuning

There are multiple hyper-parameters in our imputation model:
e (VISTA Model Fitting) A1, A2, A3 controlling the relative weights of
the penalty on matrix norm, temporal smoothness and auxiliary data.

@ (Auxiliary Data Generating) Number of basis functions and
L1-penalty in Spherical Harmonics fitting.

One can tune the auxiliary data parameters via cross-validation: masking
out a portion of observed pixels and fit on the rest, then decide the best
tuning parameters based on test set RMSE.

A single run of our model to impute one-day TEC map

(T =288, m=181,n = 361) takes ~ 10 — 20 minutes on a single-core
machine with 16 GB memory.
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© Empirical Analysis
@ Simulation Study
@ Imputing TEC map
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Empirical Analysis

Empirical Analysis: Data Pipeline

Input Video

Fit each frame with
spherical harmonics,
order =11,v = 0.1

Yang Chen

Box-Cox Transformation
with A =0.1

Caleulate the mean ()
and standard deviation
() of all observed entries

Standardizs all observed
entries with the y, &

Standardize with the y, o
of the input video
Box-Cox Transformation
withd = 0.1

Impute
Algorithm

Figure: Data Pipeline

STAMPS Webinar

Pre-processing

post-prc g

Multiply all entries with o
i and add p

Inverse Box-Cox
transformation

Output Video
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SUDIICIWGEINSEIN  Simulation Study
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S
Simulation Study: Data

@ Benchmark: IGS dataset of TEC map, which is of low resolution but
is fully observed without missing values.
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S
Simulation Study: Data

@ Benchmark: IGS dataset of TEC map, which is of low resolution but
is fully observed without missing values.

@ We fit our model on several days of IGS data in Sept. 2017.

@ Each day contains data of size 181 x 361 x 96, where every matrix is
of size 181 x 361.

@ Missingness patterns chosen to mimic some data missing patterns
typically observed in Madrigal database (high-res TEC maps).
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S
Simulation Study: Missingness Design

(A 1GS dlata (B} T0% Random Missing (G} 70% Temparal Missing

(D) 155 data (High TEC Value) [E) 63x63 Patch Missing {F) B3xE3 Pateh Termporal Missing

Figure: Create Missing Data
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S
Simulation Study: Missingness Design

e Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.
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SUDIICIWGEINSEIN  Simulation Study

Simulation Study: Missingness Design

e Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

e Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).
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Simulation Study: Missingness Design

e Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

e Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

e Random patch missingness (sub-figure E): for each frame, randomly
pick a center on a fixed bounding box around high TEC value region
(sub-figure D) and create a 27 x 27 or 45 x 45 or 63 x 63 patch as
missing.
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S
Simulation Study: Missingness Design

e Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

e Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

e Random patch missingness (sub-figure E): for each frame, randomly
pick a center on a fixed bounding box around high TEC value region
(sub-figure D) and create a 27 x 27 or 45 x 45 or 63 x 63 patch as
missing.

e Temporal patch missingness (sub-figure F): similar to patch
missingness, but the center of the 27 x 27/45 x 45/63 x 63 patch
moves along the bounding box at the speed of 6 columns(rows) per
matrix (anti-clockwise as shown by the red arrow).

Yang Chen (U-M) STAMPS Webinar October 8th, 2021 34 /54



S
Simulation Study: Models & Metrics

We fit the following models on each of the missing pattern:

@ soft: softimpute as in Hastie et al., 2015: A\; = 0.9, \» =0, A3 =0.
(Benchmark model)

@ TS: softlmpute + temporal smoothing: A; = 0.9, A\» = 0.05, A\3 = 0.

© SH: softlmpute + auxiliary data based on spherical harmonics:
A1 =0.9, X =0,A3 =0.01.

@ TS+SH: softimpute 4+ temporal smoothing + auxiliary data based
on spherical harmonics: A\; = 0.9, \» = 0.05, A3 = 0.01.
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S
Simulation Study: Models & Metrics

To evaluate the performance of the imputation, we compute Relative
Squared Error (RSE):

[P (X7 — Xe)llF

IPas (Xe)llF

where X; is the fully-observed IGS data. Q; is the bitmap indicating the
observed pixels. PQ#(.) is a projection operator onto the missing pixels.
X/ is the imputation of Pq,(X:) and ||.||r is the Frobenius norm.

RSE(Xt, X;(, Qt) -
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SUDIICIWGEINSEIN  Simulation Study

Simulation Study: Result of Random Missingness

random temporal

0.75 0757

0.50 % 050
z } | 14
€ p25 025 . irdce]
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i 0.00 . Tt .00 i | § TsesH

.25+ i 025

30% 5% 70% 0% 50 0%

% of plxals mising

Figure: Random missing and temporal missing results. Three variants of our
method are considered: TS, SH, TS+SH. The scatter points show the average
test set RSE margin over baseline softlmpute method, positive means
performance better than softlmpute. Error bar gives the 95% confidence interval.
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S
Simulation Study: Result of Patch Missingness

patch temporal patch
s ¢
- 204 20
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c | model
H ua b
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@
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04 | o
2Tx27 A5x45 B3x63 2127 45045 GIxE3

siza of patch

Figure: Random patch missing and temporal patch missing results. Three variants
of our method are considered: TS, SH, TS+SH. The scatter points show the
average test set RSE margin over baseline softimpute method, positive means
performance better than softlmpute. Error bar gives the 95% confidence interval.
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Simulation Study: Imputation Example
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Figure: Example of imputing IGS data with temporal patch missingness.
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Imputing TEC map
Imputing Madrigal TEC map: Data

@ We fit VISTA on each day of TEC map, which is of size
181 x 361 x 288. Every matrix is of size 181 x 361.
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Imputing TEC map
Imputing Madrigal TEC map: Data

@ We fit VISTA on each day of TEC map, which is of size
181 x 361 x 288. Every matrix is of size 181 x 361.

@ We showcase our results based on two days of data: Sept-08-2017
(storm day), Sept-03-2017 (non storm day).

@ Tuning parameters (A1, A2, A3) are determined with grid-search.

@ We randomly drop 20% of the observed pixels and use them as test
set, and we fit our model only on the rest 80% of the observed pixels.
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Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Result

Storm Day
# matrices better | # matrices worse
N_hda ) test RSE | tBSt_ MSE than softlmpute | than Full model
softimpute (A; = 0.9) '10.895% | 2.675 ! 285 (98.96%)
TS (A =094, =02) 9.643% 2.106 284 (98.62%) 267 (92.71%)
SH (A1 = 0.9, Az = 0.021) 9.936% 2.227 287 (99.65%) 274 (95.14%)
Full (A = 0.9, A2 = 0.2, Ay = 0.021) | 9.357% 1.983 285 (98.96%) !
Directly use Spherical Harmonics 17.354% 6.720 0 (0%) 288 (100%)
Non-Storm Day
Model testRSE | test MSE fh';‘;g‘ei"n:’;ﬁ SO
softimpute (A, = 0.9) | 10424% | 1324 | 1 )
TS (A1 = 0.9, Ao = 0.31) 8.880% 0.958 281 (97.57%) 235 (81.60%)
SH (A1 = 0.9, A3 = 0.03) 9.231% 1.032 287 (99.65%) 278 (96.53%)
Full (A =0.9,A; =0.31, A3 = 0.03) | 8.592% 0.895 283 (98.26%) /
Directly use Spherical Harmonics 15.732% 2.893 0 (0%) 288 (100%)

Table 1: Empirical study results from the madrigal database.

Figure: Imputation Result
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STAMPS Webinar

October 8th, 2021

41 /54



Lz
Imputing Madrigal TEC map: Non-storm Day Example

{A) Original map (B) Auxiliary map from SH {C) Full model

Figure: 2017-09-03/00:02:30 UT Result
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Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Storm Day Example

{A) Original map (B) Auxiliary map from SH 1) Full modal

(D) Softimpute model (E} TS model {F} SH modal

Figure: 2017-09-08/00:02:30 UT Result
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TEC Prediction Model TEC Prediction Model

Model Overview

We build a matrix-based auto-regressive model for forecasting TEC maps
hours into the future with the following highlights:

o (VISTA database) We use the VISTA-imputed TEC map for
training, validating and testing our model.
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TEC Prediction Model TEC Prediction Model

Model Overview

We build a matrix-based auto-regressive model for forecasting TEC maps
hours into the future with the following highlights:

o (VISTA database) We use the VISTA-imputed TEC map for
training, validating and testing our model.

o (Multi-modality Data) We utilize both the past VISTA-imputed
TEC videos and the past time-series of relevant global plasma
parameters (referred to as solar-wind parameters hereafter) to jointly
predict the current/future TEC maps.

o (Algorithm) We use iterative least square to alternatively estimate
the coefficients of the predictors of different modality.
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TEC Prediction Model
The Model

For TEC maps X;—p, Xe—p+1, ..., Xe—1, Xt (m x n matrices) and

solar-wind parameters Z;_s, Z;_s41,...,Zt—1,Z (d x 1 vectors), we have
an auto-regressive model:

P K
T . T . . 7T
Xe=> AoXepBo+ Y 1Z11: 20 50 ZL 516k Vi + Et
p=1 k=1
where A, By, p=1,2,..., P are the autoregressive coefficients and
Y1, Yo, ..., Yk are some pre-specified m x n matrix basis functions and
B1, B2, ..., Bk are the coefficients for solar-wind parameters. E; is the
error matrix. We use spherical harmonics basis functions as our
Y1, Ya,..., in the TEC forecasting task.
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=S L
The Model: Interpretation

If one applies a vectorization operator vec(.) to both side of the model,
one gets:

P
vec(Xe) = [Bp ® Aplvee(X:—p)
p=1
+ BTz 2] 2T )T + vec(Ey)
where Y = [vec(Y1) : vec(Ya2) : -+ - : vec(Yk)], B=[B152...Bk].
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TEC Prediction Model TEC Prediction Model

The Model: Interpretation

The vectorized model looks very similar to a traditional vector

auto-regressive model (VAR). Each term has its own interpretations in the
context of TEC map prediction:

° 2521[3;3 ® Ap]vec(Xi—p): Auto-regressive (AR) part with structured
coefficient matrix B, ® Ap. The matrix Ap, B, captures the

latitude-latitude and longitude-longitude interaction in TEC
forecasting.
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=S L
The Model: Interpretation

The vectorized model looks very similar to a traditional vector

auto-regressive model (VAR). Each term has its own interpretations in the
context of TEC map prediction:

° 2521[3;3 ® Ap]vec(Xi—p): Auto-regressive (AR) part with structured
coefficient matrix B, ® Ap. The matrix Ap, B, captures the
latitude-latitude and longitude-longitude interaction in TEC
forecasting.

o YBT[Zl,:ZT,:---:ZT ¢]": Semi-parametric part. We have
pre-specified a series of matrix basis function Y and solar-wind

parameter only needs to predict the coefficients to linearly combine all
basis functions.

@ vec(E;): The error process. We now simply assume i.i.d. errors but
structured covariance matrices can be easily modeled.
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TEC Prediction Model TEC Prediction Model

Estimation Algorithm

To estimate the coefficients of the predictors, i.e. A;,...,Ap,B1,...,Bp
and /31, B2, ..., Bk (or simply B), we introduce the following optimization
problem:
p 2
min = > |\ Xe =D AXe By —VBT(Z] 7], Z 6]
A1, Ap t p=1
F
Bi,...,Bp
B
We can attach penalties for Ay,...,Ap, Bi, ..., Bp, B following the

prediction loss above, if needed.

Yang Chen (U-M) STAMPS Webinar October 8th, 2021 48 /54



TEC Prediction Mode
Estimation Algorithm

To estimate the coefficients, we optimize the all the coefficients, within
each iteration of the algorithm, in the order of:

AL — By — Ay — By, — --- — Ap — Bp — B. Whenever we update one
of the coefficient in this chain, we fix all other coefficients.

Yang Chen (U-M) STAMPS Webinar October 8th, 2021 48 /54



TEC Prediction Mode
Estimation Algorithm

To update the coefficients, we simply derive the first-order condition and
solve the matrix equations accordingly:

° A
ZA X Bl BiX/[; =
S Xxe=> ATx_iB - ZyBth BiX/;
t i#j
where Z; = [ZtT_1 : ZtT_2 D ZtIS]T and A, é,l’;’ are the current

estimates of the coefficients.
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TEC Prediction Model TEC Prediction Model

Estimation Algorithm

To update the coefficients, we simply derive the first-order condition and
solve the matrix equations accordingly:

e B;:

xT AT A, L
E BJXt,jAJ- AiXi—j =
t

-
/\T /\T 5T ~
Y [ X =D ATXe BT > VB Z | AXe
t i£j k
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TEC Prediction Mode
Estimation Algorithm

To update the coefficients, we simply derive the first-order condition and
solve the matrix equations accordingly:

° B:
(Z 2.2 ) V)=
-
Z vec (Xt — Z AAI'TXt_,'éiT) y ® Zt
t i
where Y, = [vec(Y;") : vee(Yy ) -+ vee( V)]

Yang Chen (U-M) STAMPS Webinar October 8th, 2021 48 /54



TEC Prediction Model TEC Prediction Model

Preliminary Empirical Results

We conduct a first-step empirical analysis of the TEC forecast problem
using our model with our VISTA database in August, 2017:
@ VISTA TEC map is available at 5-min cadence. Solar-wind parameter
is available at 1-min cadence. We down-sample the data to 15-min
cadence for both datasets.

o Take the first 20 days of August, 2017 as training set and the trailing
5 days as the testing set. (~ 2,000 frames of TEC map for model
training, ~ 500 frames for testing the prediction performance)

@ Predictors are normalized to have standard Gaussian distribution
before model training.
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TEC Prediction Model TEC Prediction Model

Preliminary Empirical Results

Table 1: Preliminary Results for the TEC Forecasting Model, pixel-wise forecast Mean-Squared Error

Model 15-min 1h ah

AR SW K=3 K=8 K=121 K=36 K=81 K=121 | K=3 K=8 K=121
P=1 8=0 1.430 4.566 13.844
P=2 85=0 1.011 3.913 12.993
P=3 8=0 1.017 3.889 12.948

P=1 8=4 1.103 1.103 1.104 4.295 4.295 4.296 13.987 13.993 13.995
P=1 8=8 1.119 1.120 1.121 4.409 4.412 4.413 14.840 14.848 14.851
P=1 5=12| 1128 1.130 1.132 4.516 4.522 4.524 15.149  15.168 15.172

" P is the number of lagged term in the auto-regressive part. § is the number of lagged term in the solar-wind
parameter part. K is the number of basis functions. MSE is calenlated for all pixels in the test set.
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Conclusion & Future Plan

Conclusion

@ We propose a new imputation method (VISTA), combining matrix
completion with soft rank constraint, temporal smoothing and
spherical harmonics in a unified framework, to impute Total Electron
Content (TEC) maps with over 50% data missing.
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Conclusion & Future Plan

Conclusion

(]

We propose a new imputation method (VISTA), combining matrix
completion with soft rank constraint, temporal smoothing and
spherical harmonics in a unified framework, to impute Total Electron
Content (TEC) maps with over 50% data missing.

Matrix completion provides the basic low-rank structure of the
imputation.

Temporal smoothing borrows information from TEC maps at adjacent
timestamp and smooth the low-rank structure.

(]

Spherical harmonics provides a warm-start of imputation values at big
patches of missingness.

Empirical results suggest improvements on both global-scale and
meso-scale reconstruction.
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Conclusion & Future Plan

Future Plan

Imputation

Release a data product containing the imputed TEC maps based on
VISTA for the last solar cycle (2009-2020).
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Future Plan
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VISTA for the last solar cycle (2009-2020).

Prediction

@ Give uncertainty quantification of the model prediction.
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Future Plan
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Release a data product containing the imputed TEC maps based on
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@ Give uncertainty quantification of the model prediction.
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Al,AQ,...,Ap, Bl,Bz,...,BP and B.
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Future Plan

Imputation

Release a data product containing the imputed TEC maps based on
VISTA for the last solar cycle (2009-2020).

Prediction

@ Give uncertainty quantification of the model prediction.

@ Derive the joint asymptotic properties of the estimator for
Al,AQ,...,Ap, Bl,Bz,...,BP and B.

@ Provide a complete imputation-prediction pipeline for operational use.
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Thank youl!

Questions?

Email Yang Chen, ychenang@umich.edu
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