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Background Total Electron Content (TEC) map

Total Electron Content (TEC) map

Ionosphere: layer in the upper atmosphere 70-1000 km above Earth.
Ionosphere TEC: total number of electrons in the path between satellite
(The Global Navigation Satellite Systems (GNSS)) radio transmitter and

ground-based receiver. (1 TEC unit = 1016 electrons/m²).
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Background Total Electron Content (TEC) map

Total Electron Content (TEC) map

Real time monitoring of TEC is important.

TEC affects the propagation of radio waves, leading up to 10s meters
positioning error in the GNSS Positioning, Navigation and Timing
(PNT) services. Better knowledge of TEC map will make PNT
services more accurate.

TEC measurement has been used in earthquake monitoring, modelling
and prediction: a significant reduction in TEC is observable for at
least 3 days before major earthquakes.
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Background Total Electron Content (TEC) map

Total Electron Content (TEC) map

The Madrigal Database: global maps of vertical TEC measurements
with a spatial resolution of 1◦ × 1◦ latitude by longitude and a
temporal resolution of 5 minutes.

International GNSS Service (IGS) TEC maps: spherical harmonics
fitted TEC maps with a spatial resolution of 2.5◦ latitude by 5◦

longitude and a highest temporal resolution of 15 minutes.

(A) Madrigal TEC map
(~74% missing)
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Background Total Electron Content (TEC) map

Total Electron Content (TEC) map

Goal: “fill in” missing values in Madrigal data to create high spatial
& temporal resolution full TEC maps.

Pattern of missingness in Madrigal TEC maps:

Big patches of missingness in ocean area.

Scattered (not random) missingness in land area.

Temporally moving missingness patches.
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Background Existing Methods

Framed as a Matrix Completion Problem

To impute the TEC maps, we adopt classical statistics techniques
called matrix completion.

Matrix completion is a commonly used method in designing
recommendation systems. With a user-item rating matrix, for
example, matrix completion can infer the potential rating a user
would give to an item he/she has never consumed.
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Background Existing Methods

Matrix Completion with Factorization

SoftImpute-Alternating Least Square (Hastie et al., 2015)

min
At ,Bt

F (At ,Bt) :=
1

2
‖X̂t − AtB

T
t ‖2

F +
λ1

2
(‖At‖2

F + ‖Bt‖2
F ) (1)

where X̂t is a ”filled-in” m × n matrix, with X̂t = PΩt (Xt) + PΩ⊥
t

(ÃtB̃
T
t ),

and Ãt , B̃t are the two factor matrices in the previous iterative step.

Figure: TEC maps: observed (left) and fitted by the SoftImpute approach (right).
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Background Existing Methods

Spherical Harmonics

Approximating data on a surface (TEC values around the globe) with a
linear combination of several basis functions.

Source: Nortje et al., 2015
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Background Existing Methods

Spherical Harmonics

Figure: Source: Nortje et al., 2015
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Background Existing Methods

Spherical Harmonics

Figure: Example of Spherical Harmonics Fitting
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Background Existing Methods

Summary: SoftImpute versus Spherical Harmonics
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Method Proposed Method: VISTA

Proposed Method: VISTA

Our final framework has the following features:

Impute a time series of TEC maps (i.e. TEC videos)

Use a matrix factorization formulation as the imputed matrix

Use spherical harmonics as a warm-start (we call it “auxiliary data“)

Penalizes the matrix norm of the factor matrices

Reinforce smoothness of the imputed results temporally

Objective function has the form:

Imputation Loss + λ1 ×Matrix Norm Penalty

+ λ2 × Temporal Smoothness Penalty

+ λ3 × Auxiliary Data Penalty
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Method Proposed Method: VISTA

Proposed Method: VISTA

Our model has a name “Video Imputation with SoftImpute, Temporal
smoothing and Auxiliary data” (VISTA).

min
A1:T ,B1:T

{
F (A1:T ,B1:T ) ,

1

2

T∑
t=1

‖PΩt (Xt − AtB
T
t )‖2

F

+
λ1

2

T∑
t=1

(‖At‖2
F + ‖Bt‖2

F )

+
λ2

2

T∑
t=2

‖AtB
T
t − At−1B

T
t−1‖2

F

+
λ3

2

T∑
t=1

‖Yt − AtB
T
t ‖2

F

}
where Y1,Y2, . . . ,YT are m × n auxiliary data with no missing values.
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Method Proposed Method: VISTA

Recall: SoftImpute versus Spherical Harmonics
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Method Computational Algorithm

Algorithm Outline

There are in total T frames to be imputed at the same time, and
each frame has its own At ,Bt factors.

Update the factors A1,A2, . . . ,AT ,B1,B2, . . . ,BT cyclically:
A1 → A2 → · · · → AT → B1 → B2 → · · · → BT → A1 → A2 → . . . .

Fix 2T− 1 matrices and update one matrix at a time with
majorization-minimization (MM) algorithm.

The final step in MM is simply doing a least square.
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Method Computational Algorithm

Update Matrix with Least Square

Suppose in the k-th round, we wish to update At . The current values for

the other factors are: A
(k+1)
1 ,A

(k+1)
2 , . . . ,A

(k+1)
t−1 ,A

(k)
t , . . .A

(k)
T and

B
(k)
1 ,B

(k)
2 , . . . ,B

(k)
T . Keeping every matrix other than At fixed at their

current values, the convex optimization problem is reduced to the
following optimization problem:

min
At

{
Q(At |A(k+1)

1:t−1 ,A
(k)
t+1:T ,B

(k)
1:T )

,
1

2
‖PΩt (Xt − At(B

(k)
t )T )‖2

F +
λ1

2
‖At‖2

F +
λ3

2
‖Yt − At(B

(k)
t )T‖2

F

+
λ2

2
I{t>1}‖At(B

(k)
t )T − A

(k+1)
t−1 (B

(k)
t−1)T‖2

F

+
λ2

2
I{t<T}‖A

(k)
t+1(B

(k)
t+1)T − At(B

(k)
t )T‖2

F

}
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Method Computational Algorithm

Update Matrix with Least Square

min
At

{
1

2
‖PΩt (Xt − At(B

(k)
t )T )‖2

F +
λ1

2
‖At‖2

F +
λ3

2
‖Yt − At(B

(k)
t )T‖2

F

+
λ2

2
I{t>1}‖At(B

(k)
t )T − A

(k+1)
t−1 (B

(k)
t−1)T‖2

F

+
λ2

2
I{t<T}‖A

(k)
t+1(B

(k)
t+1)T − At(B

(k)
t )T‖2

F

}
The first term ‖PΩt (Xt − At(B

(k)
t )T )‖2

F can be upper bounded by:

‖PΩt (Xt − At(B
(k)
t )T ) + PΩ⊥

t
(A

(k)
t (B

(k)
t )T − At(B

(k)
t )T )‖2

F

= ‖PΩt (Xt) + PΩ⊥
t

(A
(k)
t (B

(k)
t )T )− At(B

(k)
t )T‖2

F
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Method Computational Algorithm

Update Matrix with Least Square

Substituting the first term with its upper bound, and denote the new

objective function as Q̃(At |A(k+1)
1:t−1 ,A

(k)
t+1:T ,B

(k)
1:T ). Then one can take the

derivative of Q̃ w.r.t. At and sets it to zero and get:

A
(k+1)
t =

[
(1 + λ2(I{t<T} + I{t>1}) + λ3)(B

(k)
t )TB

(k)
t + λ1I

]−1
Z

(k)
t B

(k)
t

where

Z
(k)
t = PΩt (Xt) + PΩ⊥

t
(A

(k)
t (B

(k)
t )T

+ λ2

(
I{t>1}A

(k+1)
t−1 (B

(k)
t−1)T + I{t<T}A

(k)
t+1(B

(k)
t+1)T

)
+ λ3Yt
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Method Computational Algorithm

Final Algorithm
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Method Theoretical Guarantees

Convergence Guarantee

Across the iterations of our algorithm, we denote the iterative value of

A1:T ,B1:T in the k-th round of algorithm as A
(k)
1:T ,B

(k)
1:T . Then we can

prove the following property of our algorithm:

Objective Function is Non-Increasing

Define the descent of objective function value at iteration k as

∆k = F (A
(k)
1:T ,B

(k)
1:T )− F (A

(k+1)
1:T ,B

(k+1)
1:T ). Then the value of the objective

function is non-increasing, i.e.,

F (A
(k)
1:T ,B

(k)
1:T ) ≥ F (A

(k+1)
1:T ,B

(k)
1:T ) ≥ F (A

(k+1)
1:T ,B

(k+1)
1:T ),

thus ∆k ≥ 0, for all k ≥ 1.
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Method Theoretical Guarantees

Convergence Rate

Convergence Rate Lower Bound

Let the limit of the objective function F (A
(k)
1:T ,B

(k)
1:T ) be f∞, we have:

min
1≤k≤K

∆k ≤
F (A

(1)
1:T ,B

(1)
1:T )− f∞

K

where K is the total number of iterations.

These results suggest that our algorithm is converging at a rate of
O(1/K ).
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Method Theoretical Guarantees

Parameter Tuning

There are multiple hyper-parameters in our imputation model:

(VISTA Model Fitting) λ1, λ2, λ3 controlling the relative weights of
the penalty on matrix norm, temporal smoothness and auxiliary data.

(Auxiliary Data Generating) Number of basis functions and
L1-penalty in Spherical Harmonics fitting.

We do not choose the VISTA model parameters based on any data-driven
methods for the TEC data. In general, we adopt cross validation.

The model exhibits stable performances across many different choices of
(λ1, λ2, λ3), with λ1 ∈ [0.5, 1.5], λ2 ∈ [0.2, 0.3], λ3 ∈ [0.01, 0.03] as
recommended ranges for TEC data.
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(VISTA Model Fitting) λ1, λ2, λ3 controlling the relative weights of
the penalty on matrix norm, temporal smoothness and auxiliary data.

(Auxiliary Data Generating) Number of basis functions and
L1-penalty in Spherical Harmonics fitting.

One can tune the auxiliary data parameters via cross-validation: masking
out a portion of observed pixels and fit on the rest, then decide the best
tuning parameters based on test set RMSE.

A single run of our model to impute one-day TEC map
(T = 288,m = 181, n = 361) takes ∼ 10− 20 minutes on a single-core
machine with 16 GB memory.
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Empirical Analysis

Empirical Analysis: Data Pipeline

Figure: Data Pipeline
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Empirical Analysis Simulation Study
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Empirical Analysis Simulation Study

Simulation Study: Data

Benchmark: IGS dataset of TEC map, which is of low resolution but
is fully observed without missing values.

We fit our model on several days of IGS data in Sept. 2017.

Each day contains data of size 181× 361× 96, where every matrix is
of size 181× 361.

Missingness patterns chosen to mimic some data missing patterns
typically observed in Madrigal database (high-res TEC maps).
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Empirical Analysis Simulation Study

Simulation Study: Missingness Design

Figure: Create Missing Data
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Empirical Analysis Simulation Study

Simulation Study: Missingness Design

Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

Random patch missingness (sub-figure E): for each frame, randomly
pick a center on a fixed bounding box around high TEC value region
(sub-figure D) and create a 27× 27 or 45× 45 or 63× 63 patch as
missing.

Temporal patch missingness (sub-figure F): similar to patch
missingness, but the center of the 27× 27/45× 45/63× 63 patch
moves along the bounding box at the speed of 6 columns(rows) per
matrix (anti-clockwise as shown by the red arrow).
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Empirical Analysis Simulation Study

Simulation Study: Models & Metrics

We fit the following models on each of the missing pattern:

1 soft: softImpute as in Hastie et al., 2015: λ1 = 0.9, λ2 = 0, λ3 = 0.
(Benchmark model)

2 TS: softImpute + temporal smoothing: λ1 = 0.9, λ2 = 0.05, λ3 = 0.

3 SH: softImpute + auxiliary data based on spherical harmonics:
λ1 = 0.9, λ2 = 0, λ3 = 0.01.

4 TS+SH: softImpute + temporal smoothing + auxiliary data based
on spherical harmonics: λ1 = 0.9, λ2 = 0.05, λ3 = 0.01.
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Empirical Analysis Simulation Study

Simulation Study: Models & Metrics

To evaluate the performance of the imputation, we compute Relative
Squared Error (RSE):

RSE(Xt ,X
∗
t ,Ωt) =

‖PΩ⊥
t

(X ∗t − Xt)‖F
‖PΩ⊥

t
(Xt)‖F

,

where Xt is the fully-observed IGS data. Ωt is the bitmap indicating the
observed pixels. PΩ⊥

t
(.) is a projection operator onto the missing pixels.

X ∗t is the imputation of PΩt (Xt) and ‖.‖F is the Frobenius norm.
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Empirical Analysis Simulation Study

Simulation Study: Result of Random Missingness

Figure: Random missing and temporal missing results. Three variants of our
method are considered: TS, SH, TS+SH. The scatter points show the average
test set RSE margin over baseline softImpute method, positive means
performance better than softImpute. Error bar gives the 95% confidence interval.
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Empirical Analysis Simulation Study

Simulation Study: Result of Patch Missingness

Figure: Random patch missing and temporal patch missing results. Three variants
of our method are considered: TS, SH, TS+SH. The scatter points show the
average test set RSE margin over baseline softImpute method, positive means
performance better than softImpute. Error bar gives the 95% confidence interval.
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Empirical Analysis Simulation Study

Simulation Study: Imputation Example

Figure: Example of imputing IGS data with temporal patch missingness.
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Empirical Analysis Imputing TEC map
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Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Data

We fit VISTA on each day of TEC map, which is of size
181× 361× 288. Every matrix is of size 181× 361.

We showcase our results based on two days of data: Sept-08-2017
(storm day), Sept-03-2017 (non storm day).

Tuning parameters (λ1, λ2, λ3) are determined with grid-search.

We randomly drop 20% of the observed pixels and use them as test
set, and we fit our model only on the rest 80% of the observed pixels.
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Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Result

Figure: Imputation Result
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Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Non-storm Day Example

Figure: 2017-09-03/00:02:30 UT Result
Yang Chen (U-M) STAMPS Webinar October 8th, 2021 42 / 54



Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Storm Day Example

Figure: 2017-09-08/00:02:30 UT Result
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TEC Prediction Model TEC Prediction Model

Model Overview

We build a matrix-based auto-regressive model for forecasting TEC maps
hours into the future with the following highlights:

(VISTA database) We use the VISTA-imputed TEC map for
training, validating and testing our model.

(Multi-modality Data) We utilize both the past VISTA-imputed
TEC videos and the past time-series of relevant global plasma
parameters (referred to as solar-wind parameters hereafter) to jointly
predict the current/future TEC maps.

(Algorithm) We use iterative least square to alternatively estimate
the coefficients of the predictors of different modality.
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TEC Prediction Model TEC Prediction Model

The Model

For TEC maps Xt−P ,Xt−P+1, . . . ,Xt−1,Xt (m × n matrices) and
solar-wind parameters Zt−S ,Zt−S+1, . . . ,Zt−1,Zt (d × 1 vectors), we have
an auto-regressive model:

Xt =
P∑

p=1

ApXt−pBp +
K∑

k=1

[ZT
t−1 : ZT

t−2 : · · · : ZT
t−S ]βk · Yk + Et

where Ap,Bp, p = 1, 2, . . . ,P are the autoregressive coefficients and
Y1,Y2, . . . ,YK are some pre-specified m × n matrix basis functions and
β1, β2, . . . , βK are the coefficients for solar-wind parameters. Et is the
error matrix. We use spherical harmonics basis functions as our
Y1,Y2, . . . , in the TEC forecasting task.
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TEC Prediction Model TEC Prediction Model

The Model: Interpretation

If one applies a vectorization operator vec(.) to both side of the model,
one gets:

vec(Xt) =
P∑

p=1

[Bp ⊗ Ap]vec(Xt−p)

+ YBT [ZT
t−1 : ZT

t−2 : · · · : ZT
t−S ]T + vec(Et)

where Y = [vec(Y1) : vec(Y2) : · · · : vec(YK )], B = [β1β2 . . . βK ].
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TEC Prediction Model TEC Prediction Model

The Model: Interpretation

The vectorized model looks very similar to a traditional vector
auto-regressive model (VAR). Each term has its own interpretations in the
context of TEC map prediction:∑P

p=1[Bp ⊗ Ap]vec(Xt−p): Auto-regressive (AR) part with structured
coefficient matrix Bp ⊗ Ap. The matrix Ap,Bp captures the
latitude-latitude and longitude-longitude interaction in TEC
forecasting.

YBT [ZT
t−1 : ZT

t−2 : · · · : ZT
t−S ]T : Semi-parametric part. We have

pre-specified a series of matrix basis function Yk and solar-wind
parameter only needs to predict the coefficients to linearly combine all
basis functions.

vec(Et): The error process. We now simply assume i.i.d. errors but
structured covariance matrices can be easily modeled.
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TEC Prediction Model TEC Prediction Model

Estimation Algorithm

To estimate the coefficients of the predictors, i.e. A1, . . . ,AP ,B1, . . . ,BP

and β1, β2, . . . , βK (or simply B), we introduce the following optimization
problem:

min
A1,...,AP

B1,...,BP

B

∑
t

∥∥∥∥∥∥Xt −
P∑

p=1

ApXt−pBp − YBT [ZT
t−1 : ZT

t−2 : · · · : ZT
t−S ]T

∥∥∥∥∥∥
2

F

We can attach penalties for A1, . . . ,AP ,B1, . . . ,BP ,B following the
prediction loss above, if needed.
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TEC Prediction Model TEC Prediction Model

Estimation Algorithm

To estimate the coefficients, we optimize the all the coefficients, within
each iteration of the algorithm, in the order of:
A1 → B1 → A2 → B2 → · · · → AP → BP → B. Whenever we update one
of the coefficient in this chain, we fix all other coefficients.
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TEC Prediction Model TEC Prediction Model

Estimation Algorithm

To update the coefficients, we simply derive the first-order condition and
solve the matrix equations accordingly:

Aj : ∑
t

AjXt−j B̂
T
j B̂jX

T
t−j =

∑
t

Xt −
∑
i 6=j

ÂT
i Xt−i B̂

T
i −

∑
k

YB̂TZt

 B̂jX
T
t−j

where Zt = [ZT
t−1 : ZT

t−2 : · · · : ZT
t−S ]T and Â, B̂, B̂ are the current

estimates of the coefficients.
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Estimation Algorithm

To update the coefficients, we simply derive the first-order condition and
solve the matrix equations accordingly:

Bj : ∑
t

BjX
T
t−j Â

T
j ÂjXt−j =

∑
t

Xt −
∑
i 6=j

ÂT
i Xt−i B̂

T
i −

∑
k

YB̂TZt

T

ÂjXt−j

Yang Chen (U-M) STAMPS Webinar October 8th, 2021 48 / 54



TEC Prediction Model TEC Prediction Model

Estimation Algorithm

To update the coefficients, we simply derive the first-order condition and
solve the matrix equations accordingly:

B: (∑
t

ZtZT
t

)
B(YT

∗ Y) =

∑
t


vec(Xt −

∑
i

ÂT
i Xt−i B̂

T
i

)T

Y

⊗Zt


where Y∗ = [vec(Y T

1 ) : vec(Y T
2 ) : · · · : vec(Y T

K )]
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TEC Prediction Model TEC Prediction Model

Preliminary Empirical Results

We conduct a first-step empirical analysis of the TEC forecast problem
using our model with our VISTA database in August, 2017:

VISTA TEC map is available at 5-min cadence. Solar-wind parameter
is available at 1-min cadence. We down-sample the data to 15-min
cadence for both datasets.

Take the first 20 days of August, 2017 as training set and the trailing
5 days as the testing set. (∼ 2, 000 frames of TEC map for model
training, ∼ 500 frames for testing the prediction performance)

Predictors are normalized to have standard Gaussian distribution
before model training.
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Conclusion & Future Plan

Conclusion

We propose a new imputation method (VISTA), combining matrix
completion with soft rank constraint, temporal smoothing and
spherical harmonics in a unified framework, to impute Total Electron
Content (TEC) maps with over 50% data missing.

Matrix completion provides the basic low-rank structure of the
imputation.

Temporal smoothing borrows information from TEC maps at adjacent
timestamp and smooth the low-rank structure.

Spherical harmonics provides a warm-start of imputation values at big
patches of missingness.

Empirical results suggest improvements on both global-scale and
meso-scale reconstruction.
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Conclusion & Future Plan

Future Plan

Imputation

Release a data product containing the imputed TEC maps based on
VISTA for the last solar cycle (2009-2020).

Prediction

Give uncertainty quantification of the model prediction.

Derive the joint asymptotic properties of the estimator for
A1,A2, . . . ,AP ,B1,B2, . . . ,BP and B.

Provide a complete imputation-prediction pipeline for operational use.
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Conclusion & Future Plan

Thank you!

Questions?

Email Yang Chen, ychenang@umich.edu
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