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Why this talk

• Particle physicists generally believe they know Statistics well enough
to carry out their measurements without external help, and have
over time built an arsenal of «standard» methods of inference. Not
all of these have solid foundations

• It looks fruitful to have a discussion, in  order to “bridge the gap” 
between Statisticians and Physicists on the jargon and on how 
techniques are used, such that improvements can be made

• The problems of particle physics are quite special. This calls for 
specialized solutions… You are the right audience to advertise them
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Jargon check

When Physicists say… Statisticians call it…

Determine Estimate

Estimate Guess

Observable space Population

Observe Draw a sample

Data / event Sample

Uncertainty Error

Error Mistake

Systematic Nuisance parameter



Particle physics in 8 slides

My goal today is to explain
how statistical problems are 
handled in particle physics

 but I need first to explain
the general framework of 
these problems

• I claim I can say all you need
to know about this before
you manage to fall asleep



The Standard Model
A misnomer – it is not a model but a full-blown
theory which allows us to compute the result
of subatomic processes with high precision

Three families of quarks, and three families of 
leptons, are the matter constituents

Strong interactions between quarks are 
mediated by 8 gluons, g

Electromagnetic interactions between charged
particles are mediated by the photon, γ

The weak force is mediated by W and Z
Bosons

The Higgs boson is an additional peculiar
particle that gives mathematical consistency
to the whole construction



The LHC 
LHC is the world’s largest and most powerful particle
accelerator, built to investigate matter at the shortest
length scales

It resides in a 27km long tunnel 100 meters
underground near Geneva

Collisions between protons are created where the 
beams intersect: 4 caverns are equipped with huge
detectors. Two of these (ATLAS and CMS) are multi-
purpose «electronic eyes» that try to detect everything
that comes out of the collision

ATLAS

CMS



CMS
CMS (Compact Muon Solenoid) was built with the specific goal of 
finding the Higgs boson

• Along with ATLAS, it is arguably one of the most complex
machines ever built by mankind

• Hundreds of millions collisions take place every second in its
core, and each produces signals in tens of millions of 
electronic channels. These data are read out in real time and 
stored for offline analysis



How we detect particles
Charged particles are detected in the tracker, through the ionization they leave in silicon;
a powerful magnet bends their trajectories, allowing a measurement of their momentum
Then calorimeters destroy both charged and neutral ones, measuring their energy
Muons are the only particles that can traverse the dense material and get tracked outside



How we see a collision
A reconstruction of the O(10M) electronic signals provides us a «view» of the 
created objects: using their characteristics we build O(100) high-level variables
which we compare to theoretical models after a further compression (usually
into a 1-dim test statistic)  then we do measurements and inference

This is a huge dimensionality reduction…



What we do with it
• We have a theory that allows us to calculate predicted probabilities for the 

possible physics processes, to extreme accuracy– but we believe it is incomplete 
and to some extent unsatisfactory. 

• So we look for new physics processes: things that the standard model does not
predict
– New matter particles
– New force carriers

• We also measure with precision known processes, in the attempt of finding a 
significant difference with model calculations

• We thus make extensive use of 
– Hypothesis testing
– Point and interval estimation

• In our analyses of the data we also frequently employ
– Unfolding techniques
– Machine-learning-driven dimensionality reduction
– Goodness-of-fit tests

I will discuss these

These would be all another
talk!



Example: new particle searches

The typical search for a new particle
involves a model which predicts it

• Monte Carlo generators use the model 
to produce simulated datasets that
teach us how the signal looks like

• A data selection isolates a sample 
where we try to evidence the particle

• Typically we attempt to reconstruct
the particle mass from the measured
features. As mass is a unique attribute
of the particle, a histogram may then
display a narrow bump on a smooth
background

• A test of hypotheses allows to derive 
p(data|H0)
– More on that later



And what if there is no signal ?

If we do not see a signal we can 
exclude the new physics model

• More often the model is
composite, so we exclude a 
range of values of the 
relevant nuisance parameter
– Often this is, again, the mass 

of the particle

• We can e.g. derive lower
limits on the particle mass 
from upper limits on the 
signal strength, by comparing
those to a theoretical model

Luckily, even a lower mass limit is useful information, worth a publication!



CMS Limits on exotic particles
circa 2020



Neyman’s Confidence interval recipe
Let us review the original recipe for frequentist CIs…

We specify a model which provides the probability 
density function of a particular observable x being found, 
for each value of the unknown parameter of interest: 
p(x|μ) 
• We also choose a Type-I error rate α (e.g. 32%, or 5%)
• For each µ, we draw a horizontal acceptance interval 

[x1,x2] such that 
p (x∈ [x1,x2] | μ) = 1 ‐ α. 

There are infinitely many ways of doing this: an 
ordering principle is required to well-define
– for upper limits, integrate the pdf from x to inf
– for lower limits do the opposite
– or choose central intervals, or shortest intervals…

• Upon performing an experiment, you measure x=x*. 
You can then draw a vertical line through it. 

 The vertical confidence interval [µ1,µ2]  (with 
Confidence Level C.L. = 1 ‐α) is the union of all values 
of μ for which the corresponding acceptance interval 
is intercepted by the vertical line.

This procedure guarantees
coverage



On coverage
For physicists, coverage is a very important property of classical intervals

– We especially like the fact that coverage is preserved even if we collect results
produced by different experiments

– We instead try to avoid the introduction of a subjective input in our results
– Also note that we work with parameters that describe physical reality – we

hate to speak of the probability of a physical constant having this or that value
(although we fancy a flutter now and then!)

– This has led to preference of classical over Bayesian techniques

However…

• Often physical quantities must fulfil constraints that restrict the space of 
possible true values
– This has brought back Bayesian methods to some extent



Coverage, or the Lack Thereof
To see how we’re affectionate with coverage, but
we also are likely to neglect it, let us consider a 
typical HEP graph: event counts in a mass 
histogram, with sqrt(N) bars

As you see, data (black points) get compared to 
models (full histograms). Funnily, physicists attach
uncertainty bars to the points: these only refer to 
the MLE of the rate in the bin, which of course is
equal to the observed count.

What are those uncertainty bars supposed to 
mean, anyway? They report central intervals that
"cover" at 68.3%.

But do they ?

Alas, usually they don't, as the Gaussian
approximation for the Poisson distribution breaks 
down quite miserably for small N

Of course, a solution exists: it was
obtained in the fifites by Garwood, who
used Neyman's construction for the 
Poisson distribution



Where It Gets Murky
If the parameter you are measuring is
bounded (e.g. a mass or a process rate, 
which are >0) Neyman's recipe needs a fix.
Take e.g. μ>0 measured by P(x|μ) = N(μ,1):

The classical method for UL at α=0.05 
produces upper limit μ<x+1.64σ

– for x<-1.64 this results in the empty set!, 
in violation of one of Neyman’s own
demands (confidence set does not
contains empty sets)

 «what do you do when you know you’re in 
the wrong 5%» problem

Can it be fixed? Yes!
Is there general agreement on how to deal 
with it? No!



Bounded μ Problem: Proposed Solutions

The graph illustrates
various choices for 
confidence belts one
can construct for the 
bounded parameter
problem

The most principled
among classical
constructions is the one
provided by Feldman
and Cousins[1] in 1998

Bayesians have their
own solution too (1) Neyman’s recipe for 90% upper limits: μUL=x+1.28.

(2) Hacked Neyman (cap at zero)
(4) Bayesian solution: step-function prior
(6) Mc Farlane's "loss of confidence"



Food for Thought: Relevant Subsets

Neyman’s method applied to Gaussian measurement with known σ of a parameter
with unknown positive mean μ yields upper limits at 95% CL in the form
μUL=x+1.64σ . The procedure guarantees coverage, and yet...

• Yet one can devise a betting strategy against it, at nominal 19:1 odds, using no 
more information than observed x, and be guaranteed to win in the long run!
– How ? Just choose a real constant k: bet that the interval does not cover 

when x<k, pass otherwise.
– For k<-1.64 this wins EVERY bet! For larger k, advantage is smaller but still >0

Surely then, the procedure is not making the best inference on 
the data? 
Issue is discussed in paper by R. Cousins[2]



Flip-Flopping

One additional issue is the fact that physicists usually do not say beforehand whether
they will set an upper limit on a quantity or claim a discovery of its non-null value

– All they pre-define is the size of their UL test and the size of their discovery-level test
– Typical sentence in papers (now deprecated): “since we observe no significant signal, we 

proceed to derive upper limits…”

• This is called «flip-flopping», and can be shown to yield under-coverage in the 
Neyman construction

Suppose e.g. that we take μUL = max(x,0) +1.28 at 90%CL for the Gaussian-resolution
measurement of a non-negative μ

• Upon finding x>5 (say) we have an «observation-level» significance and rather than
quoting the upperl imit, we proceed to claim discovery, quoting a two-sided interval
for μ: [x-1.64,x+1.64]

• This undercovers! (see next slide)



Flip-Flopping illustrated
• E.g. α=0.05, Disc. Threshold =4.5

Under
coverage!

The issue of Flip-Flopping and
the empty set problem can be
cured in the frequentist setting
by the recipe advocated by
G.Feldman and R.Cousins in 1998 [1],
based on a likelihood-ratio ordering
of the acceptance intervals.
The FC technique is widely used in HEP



Statistical significance: What we mean
By Statistical significance we mean a way to report the probability that an experiment 
obtains data at least as discrepant as those actually observed, under a given null H0

• In physics H0 usually describes the currently accepted and established theory (but there 
are exceptions). 

• Given some data X and a suitable test statistic T  one starts with the p-value, i.e. the 
probability of obtaining a value of T at least as extreme as the one observed, if H0 is true.  

p can always be converted into the corresponding number of "sigma," i.e. standard 
deviation units from a Gaussian mean. This is done by finding x such that the integral 
from x to infinity of a unit Gaussian N(0,1) equals p:

• According to the above recipe, a 15.9% probability is a one-standard-deviation effect; a 
0.135% probability is a three-standard-deviation effect; and a 0.0000285% probability 
corresponds to five standard deviations - "five sigma" for insiders.
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Notes
The alert observer will no doubt notice a few facts:

– the convention is to use a “one-tailed” Gaussian: we do not consider departures of x 
from the mean in the un-interesting direction
• Hence “negative significances” are mathematically well defined, but we do not care about those

– the conversion of p into σ is fixed and independent of experimental detail. As such, 
using Νσ rather than p is just a shortcut to avoid handling numbers with many digits: 
we prefer to say “5σ” than “0.00000029” just as we prefer to say “a nanometer” instead
than “0.000000001 meters” or “a Petabyte” instead than “1000000000000 bytes”

– The whole construction rests on a proper definition of the p-value. Any shortcoming of 
the properties of p (e.g. a tiny non-flatness of its PDF under the null hypothesis) totally
invalidates the meaning of the derived Nσ

– The “probability of the data” has no bearing on the concept, and is not used. What is
used is the probability of a subset of the possible outcomes of the experiment, defined
by the outcome actually observed (as much or more extreme)



The Birth of the Five-Sigma Criterion

Arthur H. Rosenfeld (Univ. Berkeley)



Careless particle hunters
• In 1968 A. Rosenfeld wrote a paper titled "Are There Any Far-out Mesons or 

Baryons?“[3]. In it, he demonstrated that the number of claims of discovery 
of those exotic particles published in scientific magazines agreed reasonably 
well with the number of statistical fluctuations that one would expect in the 
analyzed datasets.

(“Far-out hadrons” are hypothetical particles which can be defined as ones 
that do not fit in SU(3) multiplets. In 1968 quarks were not yet fully accepted 
as real entities, and the question of the existence of exotic hadrons was 
important.)

• Rosenfeld examined the literature and pointed his finger at large trial factors 
coming into play due to the massive use of combinations of observed 
particles to derive mass spectra containing potential resonances:

“[...] This reasoning on multiplicities, extended to all combinations of all outgoing 
particles and to all countries, leads to an estimate of 35 million mass 
combinations calculated per year. How many histograms are plotted from these 
35 million combinations? A glance through the journals shows that a typical mass 
histogram has about 2,500 entries, so the number we were looking for, h is then 
15,000 histograms per year (Our annual surveys also tells you that the U.S. 
measurement rate tends to double every two years, so things will get worse).”



Footnote:
Bubble chamber physics

A bubble chamber is a vessel filled with a gas in a 
phase of superheating. The passage of charged
particles ionizes the gas and bubbles are formed
along the path

By measuring the tracks in a magnetic
field, one determines their momentum.
The mass of a particle decaying into others
can be determined from the daughters’ 
momenta



More Rosenfeld
“[...] Our typical 2,500 entry histogram seems to average 40 bins. This means that 
therein a physicist could observe 40 different fluctuations one bin wide, 39 two bins 
wide, 38 three bins wide... This arithmetic is made worse by the fact that when a 
physicist sees 'something', he then tries to enhance it by making cuts...”

(I will get back to the last issue later)

“In summary of all the discussion above, I conclude that each of our 150,000 annual 
histograms is capable of generating somewhere between 10 and 100 deceptive 
upward fluctuations [...]”.

That was indeed a problem! A comparison with the literature in fact showed a 
correspondence of his eyeballed estimate with the number of unconfirmed new 
particle claims.

Rosenfeld concluded:

“To the theorist or phenomenologist the moral is simple: wait for nearly 5σ effects. 
For the experimental group who has spent a year of their time and perhaps a million
dollars, the problem is harder... go ahead and publish... but they should realize that
any bump less than about 5σ calls for a repeat of the experiment.”



What 5σ May Do For You
• Setting the bar at 5σ for a discovery claim undoubtedly removes the large 

majority of spurious signals due to statistical fluctuations

• Nowadays we call this “LEE”, for “look-elsewhere effect”. 

• The other reason at the roots of the establishment of a high threshold for 
significance has been the ubiquitous presence in our measurements of 
unknown, or ill-modeled, systematic uncertainties
– To some extent, a 5σ threshold protects systematics-dominated results from 

being published as discoveries

Protection from trials factor and unknown or ill-modeled systematics 
is the rationale behind the 5σ criterion

Still, the criterion has no basis in professional statistics literature, and is 
considered totally arbitrary by statisticians, no less than the 5% threshold 
often used for the type-I error rate of research in medicine, biology, social 
sciences, et cetera. 

d



How 5σ Became a Standard in HEP: 
1 - the Seventies

In the seventies the gradual consolidation of the SM 
shifted the focus from random bump hunting to more 
targeted searches
Let us check a few important searches to understand how
the 5σ criterion gradually became a standard
– The J/ψ discovery (1974): no question of significance – the 

bumps were too big to call for fiddling with hypothesis tests

– The τ discovery (1975-1977): no mention of significances for 
the observed excess of (eμ) events; rather a very long debate
on possible backgrounds 

– The Oops-Leon(1976):  “Clusters of events as observed
occurring anywhere from 5.5 to 10.0 GeV appeared less than
2% of the time8. Thus the statistical case for a narrow (<100 
MeV) resonance is strong although we are aware of the need
for a confirmation.” 

In a footnote they add: “An equivalent but cruder check is made by noting
that the “continuum” background near 6 GeV and within the cluster width is
4 events. The probability of observing 12 events is again <=2%” 
Note that P(μ=4;N>=12)  =  0.00091, so this does include a 20x trials factor. 



The Real Upsilon
The Upsilon discovery (1977): burned by 
their Oops-Leon, the authors waited more 
patiently for more data after seeing a 
promising 3σ peak at 9.5 GeV
– They did many statistical tests to account for 

the trials factor
– Even after obtaining a peak with very large 

significance (>>5σ) they continued to 
investigate systematical effects

– Final announcement claims discovery but
does not quote significance, noting however
that the signal is “statistically significant”

June 6th 1977

Nov 21st 1976

Nov 19th 1976



The W and Z Bosons

The 1983 W discovery was announced based on 
6 events with all the required features

• No statistical analysis is discussed in the 
discovery paper, which however tidily rules
out backgrounds as a source of the signal
– There was no trials factor to account for: the 

signature was unique and predetermined; 
theory prediction for W mass (82+-2 GeV) was
matched well by the measurement (81+-5 
GeV).

The Z was discovered shortly thereafter, with an 
official CERN announcement based on 4 events

– Also for the Z no trials factor was applicable
– No mention of statistical checks in the paper, 

except notes that backgrounds were negligible



The Top Quark Discovery

• In 1994 the CDF experiment had a serious counting 
excess (2.7σ) in b-tagged single-lepton and dilepton
datasets, plus a mass peak at a value compatible 
with theory predictions
– the mass peak, or corresponding kinematic evidence, 

was over 3σ by itself

The paper describing the analysis (120-pages long) 
spoke of “evidence” for top quark production

• One year later CDF and DZERO both presented 5σ 
significances based on their counting experiments, 
obtained by analyzing 3x more data

The top quark was thus the first particle discovered
by a willful application of the “5σ” criterion



Following the Top Quark...

• Since 1995, the requirement of a p-value below
3*10-7 slowly but steadily became a standard.

• Striking examples of searches that diligently waited
for a 5-sigma effect before claiming discovery:

1) Single top quark production: harder to detect than
strong pair-production processes; it took 14 more years
to be seen. CDF and DZERO claimed observation in 
2009, over clear 5-sigma effects, using MVA methods

2) In 2012 the Higgs boson was claimed by ATLAS and 
CMS. Note that the two experiments had coherent >3σ
evidences in their data 6 months earlier, but the 5σ 
recipe was followed diligently. 

It is precisely the search for the Higgs
what brought the five-sigma criterion
to the attention of media



A look into the Look-Elsewhere Effect

The above discussion clarifies that a reason for enforcing a small test size
as a prerequisite for discovery claims is the presence of large trials 
factors, aka LEE

• The LEE was a concern 50 years ago; nowadays we have enormously
more CPU power, so we can correct p-values for it. But the 
complexity of our analyses has also grown considerably

– Take the Higgs discovery: CMS combined in a global likelihood dozens of 
final states with hundreds of nuisance parameters, partly correlated, 
partly constrained by external datasets, often non-Normal. 
 we still occasionally cannot compute the trials factor satisfactorily by 
brute force!

A study by E. Gross and O. Vitells[4] demonstrated in 2010 how it is
possible to estimate the trials factor in most experimental situations, 
without resorting to throwing toys



Trials factors
The situation is the one of a hypothesis test when a nuisance parameter is present only
under the alternative hypothesis. The regularity conditions under which Wilks’ theorem
applies are then not satisfied.

Let us consider a particle search when the mass is unknown. The null hypothesis is that the 
data follow the background-only model b(m), and the alternative hypothesis is that they
follow the model b(m)+ μ s(m|M), with μ a signal strength parameter, S(m) the signal 
model, and M the particle’s true mass, which here acts as a nuisance parameter only present 
in the alternative.
μ=0 corresponds to the null hypothesis (only background), μ>0 to the alternative.
One then defines a test statistic encompassing all possible particle mass values,

This is the maximum of the test statistic for the bgr-only hypothesis, across the many tests
performed at the various possible masses being sought. The problem consists in assigning a 
p-value to the maximum of q(m) in the entire search range.
One can use an asymptotic “regularity” of the distribution of the above q to get a global p-
value by using the technique of Gross and Vitells.



Local minima and upcrossings
One counts the number of “upcrossings” of the distribution of the test statistic, as a function
of the nuisance parameter (mass). Its wiggling tells how many independent places one has
been searching in.
The number of local minima in the fit to a distribution is closely connected to the freedom of 
the fit to pick signal-like fluctuations in the investigated range

The number of times that the test statistic (below, the likelihood ratio between H1 and H0) 
crosses some reference line can be used to estimate the trials factor. One estimates the 
global p-value with the average number N0 of upcrossings from a minimal value of the q0 test 
statistic (for which p=p0) by the formula

The number of upcrossings can be best estimated
using the data themselves at a low value of 
significance, as it has been shown that the
dependence on Z is a simple
negative exponential:



Notes about the LEE estimation

Even if we can usually compute the trials factor by brute force or estimate with 
asymptotic approximations, there is a degree of uncertainty in how to define it

If I look at a mass histogram and I do not know where I try to fit a bump, I may consider:

1. the location parameter and its freedom to be anywhere in the spectrum
2. the width of the peak: is that really fixed a priori?
3. the fact that I may have tried different selections before settling on the one I actually

end up presenting!
4. the fact that I may be looking at several possible final states and mass distributions
5. My colleagues in the experiment might be doing similar things with different

datasets; should I count that in?
6. There is ambiguity on the LEE depending who you are (grad student, experiment

spokesperson, lab director...)

The bottomline is that while we can always compute a local significance,  it may
not always be clear what the true global significance is.



Systematic uncertainties
Systematic uncertainties affect any physical measurement and it is
sometimes quite hard to correctly assess their impact. 

Often one sizes up at the 1-sigma level the typical range of variation of 
an observable due to the imprecise knowledge of a nuisance
parameter; then one stops there and assumes that the probability
density function of the nuisance be Gaussian. 

 if however the PDF has larger tails, it makes the odd large bias
much more frequent than estimated

• Indeed, the potential harm of large non-Gaussian tails of systematic
effects is one arguable reason for sticking to a 5σ significance level 
even when we can somehow cope with the LEE. 

• However, the safeguard that the criterion provides to mistaken
systematics is not always sufficient.



A study of residuals
A study of the measurement of particle properties in 1975 
revealed that residuals were not Gaussian in fact. Matts Roos
et al. [5] considered the difference between true and 
measured values of kaon and hyperon mean life and mass 
measurements, and concluded that these seemed to all have a 
similar shape, well described by a Student distribution
S10(h/1.11):

Of course, one cannot extrapolate to 5-sigma the behaviour
observed by Roos and collaborators in the bulk of the 
distribution; however, one may consider this as evidence that
the uncertainties evaluated in experimental HEP may have a 
significant non-Gaussian component

Black: a unit Gaussian; 
red: the S10(x/1.11) function

Left: 1-integral distributions of the two functions. 
Right: ratio of the 1-integral values as a function of z

5.52

10 1.12
1

10256
315

11.1

−









+=






 xxS

The distribution of residuals
of 306 measurements in [5]

x1000!



A Bigger, Meaner Study of Residuals
• David Bailey (U. Toronto) recently

published an article[6] where use 
of large datasets is made (all of 
RPP, Cochrane medical and health
database, Table of Radionuclides)

• 41,000 measurements of 3200 
quantities studied

• The methodology is similar to 
that of Roos et al., but some 
shortcuts are made, and data 
input automation prevents more 
vetting (e.g. correlations not
properly accounted for)

Results are quite striking - we seem to have ubiquitous Student-t 
distributions in our Z values, with large tails – almost Cauchy-like.



Going Postal Bayesian:
The Jeffreys-Lindley Paradox

So what happens if one tries to move to Bayesian territory ?

Consider a null hypothesis, H0, on which we base a strong belief. In physics we do 
believe in our “point null” – a theory valid for a specific value θ0 of a parameter θ (say
the photon mass being 0); in other sciences a true “point null” hardly exists

Comparing a point null θ=θ0 to an alternative which has a continuous support for θ, we
need to suitably encode this in a prior belief. Bayesians use a “probability mass” at θ=θ0
for H0.

The use of probability masses to encode priors for a simple-vs-composite test throws a 
monkey wrench in the Bayesian paradigm, as it can be proven that no matter how large 
and precise is the data, Bayesian inference strongly depends on the scale over which the 
prior is non-null – that is, on the prior belief of the experimenter.

The Jeffreys-Lindley paradox[7] arises as frequentists and Bayesians draw opposite 
conclusions on some data when comparing a point null to a composite alternative. This
fact bears relevance to the kind of tests we are discussing, so let us give it a look.



The Paradox

where zα/2 is the significance corresponding to test size α for a 
two-tailed normal distribution

The paradox is that the posterior probability that H0
is true, conditional on seeing data in the critical 
region (i.e. ones which exclude H0 in a classical α-
sized test) approaches 1 (not α, NB!)  as the sample 
size becomes arbitrarily large.

θ

θ0

π(H0)

π(H1)

θ0-I/2 θ0+I/2

Take X1...Xn i.i.d. as Xi|θ ~ N(θ,σ2), and a prior belief on θ constituted by a mixture of a point 
mass p at θ0 and (1-p) uniformly distributed in [θ0-I/2, θ0+I/2].

In classical hypothesis testing the “critical values” of the sample mean delimiting the rejection 
region of H0: θ = θ0 in favor of H1: θ <> θ0 at significance level α are

As evidenced by R. Cousins[8], the paradox arises
if there are three independent scales in the problem, 
ε << σ/sqrt(n) << I, i.e. the width of the point mass, 
the measurement uncertainty, and the scale I of the 
prior for the alternative hypothesis

Common situation in HEP!!

X

ε

σ/sqrt(n)

I



Notes on the JL Paradox
• The paradox has been used by Bayesians to criticize the way inference is 

drawn by frequentists: 
– Jeffreys: “What the use of [the p‐value] implies, therefore, is that a 

hypothesis that may be true may be rejected because it has not predicted 
observable results that have not occurred” [9]

• Still, the Bayesian approach offers no effective substitute to the p-value
– Bayes factors, which describe by how much prior odds are modified by the 

data, do not factor out the subjectivity of the prior when the JLP applies: even
asymptotically, they retain a dependence on the scale of the prior of H1.

• In JLP debates, Bayesians have blamed the concept of a “point mass”, or 
suggested n-dependent priors. Their final line of defence is to argue that 
“the precise null” is never true.
– However, we do believe our point nulls in HEP and astro-HEP!!

There is a large body of literature on the subject. The issue is an active
research topic and is not resolved. 
 The trouble of picking α in classical hypothesis testing is not
automatically solved by moving to Bayesian territory.



So What to Do With 5σ ?
To summarize:
– the LEE can be estimated; experiments now routinely produce “global” and 

“local” p-values and Z-values
• What is then the point of protecting from large LEE ?
• Trial factor can be anything from 1 to enormous; a one-size-fits-all is hardly justified –

it is illogical to penalize an experiment for the LEE of others
– Impact of systematic uncertainties varies widely; sometimes one has control 

samples to check their tails, but not always.
– The cost of a wrong claim, as backfiring of media hype, can vary dramatically
– Some claims are intrinsically less likely to be true («extraordinary claims

require extraordinary evidence»)

So why a fixed discovery threshold ?
– Any claim is anyway subject to criticism and independent verification, and 

the latter is always more rigorous when the claim is steeper and/or more 
important

– It is good to just have a “reference value” for the level of significance of the 
data – a «tradition», a useful standard



What it yielded
In July 2012, ATLAS and CMS both reported 5-sigma combined significances 
for observed departures from a model nobody believed (the SM without a 
Higgs), thereby establishing observation of the Higgs boson

Rather than going through that now oldish, well-known result, let us see a more recent, 
failed application of the discussed hypo testing machinery: the «750 GeV diphoton affair»

ATLAS animation, Hγγ candidates CMS animation, H4 lepton candidates



The Case Of The Photon Pairs

In December 2015 ATLAS and CMS 
announced evidence for a 750 GeV
particle decaying to photon pairs

– Significance in the 4-sigma ballpark
• ATLAS 3.6σ alone, CMS 2-sigmaish 

evidence
• Conflicting evidence on width

– Theorists jumped at it, proposing
interesting and less interesting
scenarios to fit it in

– Experiments set out to search for it in 
other ways and with additional data



Phenomenologists’ feeding frenzy
In the matter of 8 months the Cornell arxiv got
flooded with over 550 new papers that tried to 
explain the diphoton excesses of ATLAS and CMS 

Bets were offered and accepted on the nature of 
the new particle, with various odds

In the process, we learned that finding new 
physics will not teach us much per se – one needs
to then characterize it quite well to sort out what 
underlying theory can be responsible for it!

Some of the proposed explanations:

Two higgs doublets
Seesaw vectorlike fermions
Closed strings
Neutrino-catalyzed
Indirect signature of DM
Colorful resonances
Resonant sneutrino
SU(5) GUT
Inert scalar multiplet
Trinification
Dark left-right model
Vector leptoquarks
D3-brane
Deflected-anomaly SUSY breaking
Radion candidate
Squarkonium-Diquarkonium
R-parity violating SUSY
Gravitons in multi-warped scenario



750-GeV Bump Interpretation Summary
1 - It seems quicker to say what a 750 GeV bump cannot be:

Not the Lochness monster, which
has an evident 3-bump structure

2 – The signal clearly inspired the creativity of theorists, but it
also forced them to work around the clock.
Best title in arXiv Preprint server for a while:

"How the gamma-gamma Resonance Stole Christmas"

Not Mickey Mouse, who
clearly has a non-Gaussian tail



Conclusions
• Physicists use profusely the technique of hypothesis testing and derive upper limits

and intervals from their data
– The specificities of the problems call for specialized solutions. It is remarkable (and probably

also suboptimal) that some of the seminal studies addressing this issue come from physicists! 

• In this talk I could only scratch the surface of some of the issues… The debates are 
30-years long (but I know you statisticians have your own!)

• Statisticians have in some cases offered help to HEP experimentalists, yet more of it
is welcome.

• And there is a large potential bonus – we publish hundreds of high-citation papers, 
and we cite the statistical techniques. 
– One example: the Feldman-Cousins paper, which is basically a rediscovery of 1.5 pages in 

Kendall & Stuart, has >3200 citations.
– Another one: a paper on asymptotic formulae for likelihood ratio tests (G.Cowan et al., Eur. 

Phys. J. C 71 (2011) 1554) has >2800.

So…



So… Come and work with us!

&&

Thank you for your attention!
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Higgs Discovery: a case study



Nuts and Bolts of Higgs Combination

1) One writes a global likelihood function, whose parameter of interest μ is called
«signal strength modifier». If s and b denote signal and background, and θ is a vector
of systematic uncertainties, one can generically write for a single channel:

Note that θ has a “prior” coming from a hypothetical auxiliary measurement. 
In the LHC combination of Higgs searches, nuisances are treated in a frequentist way
by taking for them the likelihood which would have produced as posterior, given a flat
prior, the PDF one believes the nuisance is distributed from. 

In L one may combine many different search channels where a counting experiment is
performed as the product of their Poisson factors:

or from a unbinned likelihood over k events, factors such as:



2) One then constructs a profile likelihood
test statistic qμ as

Note that the denominator has L computed with the values of μ^ and θ^ that
globally maximize it, while the numerator has θ=θ^

μ computed as the 
conditional maximum likelihood estimate, given μ.  
A constraint is posed on the MLE μ^ to be confined in 0 <= μ^ <= μ: this avoids
negative solutions for the cross section, and ensures that best-fit values
above the signal hypothesis μ are not counted as evidence against it.

3) ML values θμ
^ for H1 and θ0

^ for H0
are then computed, given the data
and μ=0 (bgr-only) or μ>0 hypotheses

4) Pseudo-data is generated for the 
two hypotheses, using the above ML 
estimates of the nuisance parameters. 
With the data, one constructs the pdf 
of the test statistic given a signal of 
strength μ (H1) and μ=0 (H0). 

This recipe has good coverage properties.



5) With pseudo-data one can then compute the integrals defining p-values for the two
hypotheses. For the signal plus background hypothesis H1 one has

and for the null, background-only H0 one has

6) Finally one can compute the value called CLs as

CLs = pμ/(1-pb)

CLs is thus a “modified” p-value, in the sense that it describes how likely it is that the 
value of test statistic is observed under the alternative hypothesis by also accounting for 
how likely the null is: the drawing incorrect inference based on extreme values of pμ is
“damped”, and cases when one has no real discriminating power, approaching the limit
f(q|μ)=f(q|0), are prevented from excluding the alternate hypothesis. 

7) We can then exclude H1 when CLs < α. In the case of Higgs searches, all mass hypotheses
H1(M) for which CLs<0.05 are said to be excluded (one would rather call them
“disfavoured”…)



Significance in the Higgs search
To test for the significance of an excess of events, given a Mh
hypothesis, one uses the bgr-only hypothesis and constructs a 
modified version of the q test statistic:

• This time we are testing any μ>0 versus the H0 hypothesis. One
builds the distribution f(q0|0,θ0

^obs) by generating pseudo-data, 
and derives a p-value corresponding to a given observation as

One then converts p into Z using the relation 

where pχ
2 is the survival function for the 1-dof χ2.



Asymptotic formula
• Often it is impractical to generate large datasets

given the complexity of the search (dozens of 
search channels and sub-channels, correlated
among each other). One then relies on a very
good asymptotic approximation:

• The derived p-value and the corresponding Z 
value are “local”: they correspond to the specific
hypothesis that has been tested (a specific Mh) as
q0 also depends on Mh (the search changes as Mh
varies)

• When dealing with many searches, one needs to 
get a global p-value and significance, i.e. evaluate
a trials factor.

• This can be done using the techniques discussed
earlier.



Type-I and type-II  error rates
In the context of hypothesis testing the type-I error rate α is the 
probability of rejecting the null hypothesis when it is true.

Testing a simple null hypothesis versus a composite alternative (e.g.
μ=0 versus μ>0) at significance level α is dual to asking whether 0 is in 
the confidence interval for μ at confidence level 1-α.

Strictly connected to α is the concept of “power” (1-β), where β is the 
type-2 error rate, defined as the probability of accepting the null, 
even if the alternative is instead true.

A stricter  requirement for α (i.e. a smaller type-I 
error rate) implies a higher chance of accepting a 
false null (yellow region), i.e. smaller power.

Once the test statistic is defined, by choosing 
α (e.g. to decide a criterion for a discovery 
claim, or to set a confidence interval) one is 
automatically also choosing β. In general 
there is no formal recipe for the decision. T.S.

T.S.

H0

H0

H1

H1



Alpha vs Beta and 
power graphs

• Where to stay in the curve provided by your 
analysis method highly depends on habits in your 
field

• What makes a difference is the test statistic. 
The N-P likelihood-ratio test outperforms others for 
simple-vs-simple HT, as dictated by the Neyman-
Pearsons lemma: higher power 1-β for any α.

The power 1-β of a test usually 
depends on the parameter of 
interest: different methods may 
have best performance in 
different parameter space points

As data size increases, the power curve (shown below) becomes closer to a step function



JLP Example: Charge Bias of a Tracker
Imagine you want to investigate whether your detector has a bias in reconstructing positive 
versus negative curvature, say at a lepton collider (e+e-). You take a unbiased set of collisions, 
and count positives and negatives in a set of n=1,000,000.
• You get n+=498,800, n-=501,200. You want to test the hypothesis that the fraction of 

positive tracks, say, is R=0.5 with a size α=0.05.
• Bayesians will need a prior π(R): a typical choice would be to assign equal probability to 

the chance that R=0.5 and to it being different (R<>0.5): a “point mass” of p=1/2 at R=0.5, 
and a uniform distribution of the remaining p=1/2 in [0,1]

• We are in high-statistics regime and away from 0 or 1, so Gaussian approximation holds 
for the Binomial. The probability to observe a number of positive tracks n+ can then be 
written, with x=n+/n, as N(x,σ) with σ2=x(1-x)/n. 
The posterior probability that R=0.5 is then
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from which a Bayesian concludes that there is no evidence against R=0.5, 
and actually the data strongly supports the null hypothesis (P>>α)
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JLP Charge Bias: Frequentist Solution

Frequentists calculate how often a result “at least as extreme” as the one 
observed arises by chance, if the underlying distribution is N(R,σ) with R=1/2 and 
σ2=x(1-x)/n 

One then has 

(we multiplied by two since we would be just as surprised to observe an excess of positives as a deficit). 

From this, frequentists conclude that the tracker is biased, since there is a less-
than 5% probability, P’<α, that a result as the one observed could arise by 
chance! 

A frequentist thus draws the opposite conclusion of a Bayesian from the same 
(large body of) data !
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Derivation of expected limits

One starts with the background-only 
hypothesis μ=0, and determines a 
distribution of possible outcomes of 
the experiment with toys, obtaining 
the CLs test statistic distribution for 
each investigated Higgs mass point

From CLs one obtains the PDF of upper limits 
μUL on μor each Mh. [E.g. on the right we 
assumed b=1 and s=0 for μ=0,
whereas μ=1 would produce <s>=1]

Then one computes the cumulative PDF of μUL

Finally, one can derive the median and the 
intervals for μ which correspond to 2.3%, 
15.9%, 50%, 84.1%, 97.7% quantiles. These 
define the “expected-limit bands” and their 
center.



An important ingredient: 
Wilks’ Theorem

• An almost ubiquitous method to derive a 
significance from a likelihood fit is the one of 
invoking Wilks’ theorem
– that is, many physicists invoke it although they’re not aware!

• One has a likelihood under the null hypothesis, L0 (say, a background-only
fit), and a likelihood for an alternative, L1 (a signal+background fit)

• One takes -2(lnL1-lnL0)=-2Δ(lnL) and interprets it as a chisquare

• P(χ2) can then be obtained, and from it a Z-value
– But people regularly forget that this is only applicable when the two

hypotheses are connected by H0 being a particular case of H1 (fixing of one
parameter): they must be nested models.

– In most cases this is not so: we routinely test a H1 where one of the 
parameters is not present in H0 (mass m for σ=0). 

– Fortunately, often even when the regularity conditions demanded by the 
theorem are not met, the asymptotic properties of ΔlnL are good enough
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