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Application

• Interested in emulating the behavior of merging binary black holes

• Binary black holes are systems with two black holes orbiting around 
one another

• When binary black holes (BBH) merge, energy is released in the form 
of gravitational waves (predicted as the result of general relativity)

• As the BBHs spin closer together, rotational frequency increases as the 
objects merge, the gravitational waves can be observed/heard in the 
form of a chirp

• Laser Interferometer Gravitational-Wave Observatory (LIGO) detected 
this
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Application
Goal: Want to construct an emulator of binary 
population synthesis simulation codes … interest 
lies in characteristics of binary black hole (BBH) 
mergers

a. Initial stellar binary
b. Mass transfer 
c. Primary loses its entire envelope
d. Primary collapses into a black hole 
e. Mass transfer from the initially less massive 

star onto the black hole which leads to …
f. The formation of a common envelope 
g. Ejection of the common envelope
h. Collapse of the companion into a black hole
i. Merger

Mandel and Farmer, 2018
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Have a computational model

• COMPAS (Compact Object Mergers: Population Astrophysics and 
Statistics)

• Inputs: initial conditions of the binary system at birth (e.g., mass of the 
primary binary, initial orbital separation) and population parameters 
(e.g., mass loss rate during luminous blue variable phase)

• Output: chirp mass of the formed binary 

• Short-term goal: emulate the chirp mass for BBH 

• Long-term goal: using the observed distribution of chirp masses to 
constrain (i.e., calibrate in the sense of Kennedy and O’Hagan, 2001) 
population parameters that govern BBH formation 
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There are some challenges

• COMPAS is fast, but not readily available, nor fast enough

• Would like to exercise the code, potentially, billions of times

• We have a lot of code evaluations (about m = 2 x 106)

• While COMPAS is deterministic, the set of inputs does not 
always result in BBH formation… have regions of activity, 
otherwise, no chirp mass
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Challenges

• More simply,

1. Emulator has to be fast 

2. Have many deterministic simulations 
• Previous work on emulators with large simulation suites: 

e.g., Kaufman et al. (2011), Gramacy and Apley (2015) …

3. For many of the simulations runs, the output is unobserved 
(we replace with zero)
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Often Gaussian processes are used to emulate 
response surface with estimates of uncertainty

Notation:

• Have m evaluations of the computer model with d-dimensional 
inputs 

• Design matrix: 

• Outputs: 

X = (x1, x2, . . . , xm)0

y = (y1, y2, . . . , ym)0
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Often Gaussian processes are used to emulate 
response surface with estimates of uncertainty

• View the computer code as a single realization of a Gaussian 
process (GP):

where,

• For m observations, will have the covariance matrix,
• Vector of responses follow a multivariate normal, N(μ, C ) 

y(x) = µ+ z(x)

E (z(x)) = 0

V ar (z(x)) = �2

Corr (z(x), z(x0)) =
dY

i=1

e�
(xi�x0

i)
2

�i

C = �2R
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Gaussian process emulates response surface with 
estimates of uncertainty

ŷ(x*) = µ̂ + r ' R̂−1(y− µ̂)

s2 (x*) = σ̂ 2 1− r ' R̂−1r +
1−1' R̂−1r( )

2

1' R̂−11

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

GPs tend to do well for 
small-moderate sample 
sizes and smoothly varying 
functions
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Need an emulator that will adjust for 
discontinuities

• The usual GP specification will struggle with simulators like 
COMPAS

• COMPAS is smoothly varying in active regions, but only get 
response in some areas of the input space
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Deep Gaussian processes (DGPs)

• There are broadly two formulations to DGPs 
(i) Damianou and Lawrence (2013) 
(ii) Dunlop et al. (2018)

• Recent interest in DGPs and emulation (Dutordoir et al., 2017, 
Sauer et al., 2020, Ming et al., 2021, … )

• Our work:
– Adapts Dunlop et al. (2018) DGP to incorporate prior information 

about the smoothness of the computer model
– Develops some theoretical results
– Variational inference
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DGP  - Damianou and Lawrence

• A DGP with N hidden layers in this form is defined by composition of 
functions 

that are conditionally Gaussian

• Comments: 
– Is an example of space warping
– Final layer is a stationary GP, with design points uN(X)
– Is a generalization of the non-stationary GP model of Schmidt and 

O’Hagan (2003), which is builds on Sampson and Guttorp (1992)

un : Rd0
n�1 ! Rd0

nu1 : D ✓ Rd ! Rd0
1 and

u1(x) ⇠ GP (0, k1(x;✓1))

un(x)|un�1(x) ⇠ GP (0, kn(✓n(un�1(x)))) for n = 2, . . . , N + 1
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DGP  - Dunlop, Stuart, Girolami, and 
Teckentrup

• A DGP with N hidden layers in this form is defined by sequences of 
length-scale functions that are conditionally Gaussian 

that are conditionally Gaussian

• Comments: 
– Covariance still a function of the original inputs, but the covariance 

between observations varies across the input space
– Builds on non-stationary modeling of Paciorek and Schervish (2004)

u1(x) ⇠ GP (0, k1(x;✓1))

un : D ✓ Rd ! R

un(x)|un�1(x) ⇠ GP (0, kn(x;✓n(un�1(x)))) for n = 2, . . . , N + 1
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DGP  - Dunlop, Stuart, Girolami, and 
Teckentrup

• Specify covariance as (Paciorek and Schervish, 2004):

where

k1(x,x
0) = �2

1⇢s(k x� x0 k2)

= �2
n
|⌃(un�1(x))|1/4|⌃(un�1(x0))|1/4

|(⌃(un�1(x) + ⌃(un�1(x0))/2|1/2
⇢s

⇣p
Q(x,x0,⌃(un�1(x)),⌃(un�1(x0))

⌘
kn(x,x

0; [(un�1(x), un�1(x
0)]) =

For n = 2, …, N+1

Q(x,x0) = (x� x0)T
 
⌃(un�1(x)) + ⌃(un�1(x0))

2

!�1

(x� x0), x,x0 2 Rd

⌃(un�1(x)) = F (un�1(x))Id = e↵u(x)Id

Adapts to local anisotropy
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DGP  - Dunlop, Stuart, Girolami, and 
Teckentrup

• Comments:

– The u’s in this setting adjust the correlation length-scale as a 
function of x and x’

– Dunlop et al. suggested ⍺ = 1 in F( ), but this parameter controls 
smoothness of the response surface… we estimate ⍺

= �2
n
|⌃(un�1(x))|1/4|⌃(un�1(x0))|1/4

|(⌃(un�1(x) + ⌃(un�1(x0))/2|1/2
⇢s

⇣p
Q(x,x0,⌃(un�1(x)),⌃(un�1(x0))

⌘

⌃(un�1(x)) = F (un�1(x))Id = e↵u(x)Id

p
Q(x,x0) =

||(x� x0)||2p
[F (un�1(x)) + F (un�1(x0))]/2
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We have inputs and outputs

Look at final (data layer)
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A useful proposition

• Proposition 1: un-1(x) is constant iff un(x)|un-1(x) is a 
stationary GP

• Gives an idea if it is necessary to use a DGP at all

• Can prove a similar result for Damianou and Lawrence (2013)

• Can also derive equivalence conditions between the two 
specifications for 1-hidden layer
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Model

• A DGP with N hidden layers in this form is defined by sequences of length-
scale functions that are conditionally Gaussian 

that are conditionally Gaussian

• Comment: 

– θn( ) is a parameter vector
– Can view as a Bayesian hierarchical model with a prior, hyper-prior, …

on the length scale functions

u1(x) ⇠ GP (0, k1(x;✓1))

un : D ✓ Rd ! R

un(x)|un�1(x) ⇠ GP (0, kn(x;✓n(un�1(x)))) for n = 2, . . . , N + 1
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Inference

• We have a lot of things to estimate

• Need to estimate u’s for each x at each layer

• If interested in complex function, like the COMPAS model, need 
a lot of data 

• Found MCMC not suitable for our settings, though could be 
useful for smaller dimensions and less complex functions

• Used variational methods instead
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Variational inference

• Idea: Choose a family of distributions, q( ), for the unknowns at 
each layer (e.g., the u’s) and estimate the parameters of q( ) so that 
it as close a possible to the true posterior distribution

• Closeness is measure via the KL divergence between the simple 
model and the posterior that is hard to evaluate(cannot be done 
directly

• Instead minimize evidence lower bound (ELBO) that function that 
is equal to it up to a constant

ELBO = Evariational posterior


log(

joint distribution of data and parameters

variational posterior
)

�
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Doubly stochastic variational inference (DVSI) 

• DSVI was proposed for inference in the DGP for the other 
formulation of DGPs (Salimbeni et al. (2017))

• Fast Inference using DSVI
– Employ a sparse inducing point variational framework (Matthews 

et al., (2016))
– Using two sources of stochasticity in evaluation of the ELBO
– Using Tensorflow (Abadi et al., 2015) 
– Using GPflow, Python package for GPs (Matthews et al., 2017)

• Need to adapt to our model and ELBO 
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Key modifications

• Well, the model is different

• Include inference on the smoothness parameter

• Have to adapt the variational inference accordingly

• Need to derive ELBO… lots of marginalization since choose 
variational distributions to be Gaussian
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Simple example

• Design: 25 x 25 grid in [0,1]2
• Use 200 inducing points
• Validation on 70 x 70 grid in [0,1]2
• Measure goodness using Nash-Sutcliffe efficiency

R̃2 = 1� MSPEvalidation

V ar (Y (Xvalidation))
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Simple example

DGP	 !2	 Coverage	probability	
(95%)	

Variational	
inference	on	"		

0.92	 94%	

Optimized	"	 0.91	 92%	
"	=	1	 0.88	 90%	
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Back to COMPAS

• Has 12-dimensional input

• Have about 2,000,000 simulations… about 552,010 giving a BBH
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Building an emulator

• Have about 2,000,000 simulations… about 552,010 giving a BBH

• Kept 1,000 validation runs as validation (450 active active and 
550 inert)

• Fit a three layer DGP using mini-batch size of 5,000 samples 
and 100 inducing points

• Priors on all parameters were Gaussian, in particular, 
⇡(↵) ⇠ N(4, 1.5)
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Predictions from the emulator
Predicted vs actual - validation Absolute prediction error - validation

DGP	 !2	 Coverage	probability	
(95%)	

Variational	
inference	on	"		

0.96	 92%	

	
Lin et al. (2021) used the same data using a local GP classifier 
and local GP.  Misclassified 40% of training data and thus overall 
explanation of data is far less
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Recap

• Have adapted DGP for emulating computer models with an to 
include prior information on smoothness of the function

• Developed some theory to explore model performance

• Developed variational Bayes estimation approach

• Applied method emulate COMPAS data

• Next step is to use distribution of observations and emulator to 
constrain inputs (e.g., a type of calibration problem)
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