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CHAQOS

When the flap of a butterfly’s wings

in Brazil sets off a tornado in Texas.
- Edward Lorenz (1972)

=/ ...small differences in the initial positions may
= lead to enormous differences in the final

phenomena. Prediction becomes impossible.
- Henri Poincare (1903)



The earth system is exceedingly complex and often
naotic in nature, making prediction incredibly
challenging.

@)

We cannot expect to make perfect predictions all of the
time...




FO recaStS Of Beyond the weather timescale we

must look for specific states of the

! *
O p pO rtu N Ity earth system, i.e. “opportunities”, that

lead to enhanced predictable behavior.

certain conditions lead to more
predictable behaviour than others

*also known as “State-dependent predictability”
See also Mariotti et al. (2020) and also Albers and Newman (2019)
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ELl Nino Southern
Oscillation [ENSO]

Timescales of seasons-to-years
Long-studied tropical
phenomenon that, when active,
impacts weather across the
globe

COLORADD STATE
UNIVERSITY
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@ Finding forecasts of opportunity

1. When? Under what conditions do we have skillful
forecasts of opportunity?

2. Why? Where is this predictability coming from?

3. How do we leverage these opportunities?
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Global teleconnections

Climate phenomena can influence weather across the globe via atmospheric teleconnections

Madden-Julian Oscillation and midflatiggde impacts
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Tropical outgoing longwave radiation (OLR)

Post-processing
by predicting B~ D"
forecast errors -

Identifying state-dependent forecasts
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Testing Performance

errors in the NOAA Unified Forecast 100
System
90
Network Task: Train a neural network to > 8
ingest daily maps of outgoing longwave % 70 4
radiation (OLR) to predicting the 5-day ‘5 -
averaged precipitation error elsewhere at (@)
10-14 day lead & 50
Forecasts of Opportunity: Confident 07
predictions lead to more accurate 0{ T T TTTTT T T T T T T
predictions = forecasts of opportunity 100 80 60 40 20 0

% of Most Confident Samples

Explainable Al Approach: Learn tropical
patterns of variability that lead to
predictable forecast errors

Preliminary work by Jack Cahill

X0z, Eg:.\(IJE!!"As[:gysTATE Co-advised by E. Barnes and E. Maloney, CSU




Subseasonal
weather prediction

Exploring how tropical information can
lend predictability to midlatitude
circulation on S2S timescales

Network Task: Train a neural network to
ingest daily maps of outgoing longwave
radiation (OLR) to predict the sign of the
subseasonal circulation anomalies over the
North Atlantic 22 days in advance

Forecasts of Opportunity: Confident
predictions lead to more accurate
predictions = forecasts of opportunity

Explainable Al Approach: Learn tropical
patterns of variability that lead to
enhanced predictability of midlatitude
weather on subseasonal timescales
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Subseasonal
weather prediction

Exploring how tropical information can
lend predictability to midlatitude
circulation on S2S timescales

Network Task: Train a neural network to
ingest daily maps of outgoing longwave
radiation (OLR) to predict the sign of the
subseasonal circulation anomalies over the
North Atlantic 22 days in advance

Forecasts of Opportunity: Confident
predictions lead to more accurate
predictions = forecasts of opportunity

Explainable Al Approach: Learn tropical
patterns of variability that lead to
enhanced predictability of midlatitude
weather on subseasonal timescales
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b) Single Model Prediction Accuracy
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Abstract

The method of neural networks {1ka deep Jearming) has apeaed up msy new
opporsunities W uiilize renmotely sensed imsges in meteorlogy, Commeon applications
include image g, todet whesher an mmagy tropical
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thist only hive passive chanmels. However, there see yet sany open guestions regarding
the use of nesral neworks for working with meseorological images, such as best
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strategies jans for newral netwoek

that have not yet
reosived much atiention i the metearological community, such as the concspt of
recsptive fields, underutibized meseorological performance measures, and meshods for
neeral network interpretation, such as synthetic experiments and layer-wise relevance
propagstion, We also coesider the process of neural neswoek interpretation 38 a whole,
recognizng it & an iterative meteorologist.driven discovery process that beilds on
experimental design and hypothesis generation and testing. Fimally, while most work oa
neseal netwoek interpretation in meteorology hiss so far focused on netwarks for image
classification tasks, we expand the focus 10 also Includs networks for (mage-to-image
traaslaticn.
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Layerwise

Relevance input S e output
Propagation

LRP is an XAl method that produces a Prediction

heatmap of the most relevant regions of of 1 sample
the input for each prediction

Ty
Pr(cat)=.8

LRP is largely consistent with how many
climate scientists analyze and interpret
data methods

While many visualization tools are coming
out of the computer science community,
LRP has been most useful for our group
thus far

= Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing
éa COLORADO STATE

X9/ UNIVERSITY




Layerwise

Relevance input S e output
Propagation

LRP is an XAl method that produces a Prediction

heatmap of the most relevant regions of of 1 sample
the input for each prediction

Zy

e

Pr(cat)=.8

LRP is largely consistent with how many
climate scientists analyze and interpret

data methods output

While many visualization tools are coming

out of the computer science community,

LRP has been most useful for our group LR P
thUS fal" of 1sample

Pr(cat)=.8

Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing
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Why use XAlI?

One use of LRP is to ensure the right
answers for the right reasons

Example Task:
Decide whether there is a horse in a given
image.

Interpretable Al Approach:
What strategy did the network use? Is it
focusing on the right things?

Lapuschkin et al. “Unmasking Clever Hans Predictors and Assessing What Machines Really Learn.”

COLORADO STATE Nature Communications, vol. 10, no. 1, Mar. 2019, p. 1096, doi:10.1038/s41467-019-08987-4.
UNIVERSITY
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Why use XAlI?

One use of LRP is to ensure the right
answers for the right reasons

Example Task:
Decide whether there is a horse in a given
image.

Interpretable Al Approach:
What strategy did the network use? Is it
focusing on the right things?

Lapuschkin et al. “Unmasking Clever Hans Predictors and Assessing What Machines Really Learn.”
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Why use XAlI?

#1 ldentify problematic strategies
#2 Evaluate trust
#3 Choose the approach

#4 Learn something new

ﬁ COLORADO STATE
)\Vg} UNIVERSITY



Why use XAlI?

#1 ldentify problematic strategies
#2 Evaluate trust

#3 Choose the approach

. data Machine — prediction
#4 Learn Somethlng new learning )

what did the network learn in the data?

»ye\ COLORADO STATE
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Subseasonal
weather prediction

Exploring how tropical information can
lend predictability to midlatitude
circulation on S2S timescales

Network Task: Train a neural network to
ingest daily maps of outgoing longwave
radiation (OLR) to predict the sign of the
subseasonal circulation anomalies over the
North Atlantic 22 days in advance

Forecasts of Opportunity: Confident
predictions lead to more accurate
predictions = forecasts of opportunity

Explainable Al Approach: Learn tropical
patterns of variability that lead to
enhanced predictability of midlatitude
weather on subseasonal timescales

COLORADD STATE
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Input Layer
[number of grid points]  Hidden Layers
[128 Nodes] [8 Nodes] Output Layer
[2 Nodes]

Confidence that 500 > 0

Confidence that 2500 <0

Softmax Output

Kirsten Mayer

output XAI

apply explainable Al methods (e.g. post-hoc attribution
approaches) to create a heatmap of relevant regions in
the input for the network’s prediction

Mayer and Barnes (2021)
Bach et al. (2015)



Input Layer
[number of grid points]  Hidden Layers
[128 Nodes) [8 Nodes] Output Layer
[2 Nodes]

Confidence that 2500 >0

Confidence that 2500 <0

Subseasonal " i \&
weather prediction

Kirsten Mayer

LRP: OLR patterns that lead to accurate &
confident Z500<0 predictions over the North Atlantic

f) Neative Sign Prediction Cluster 1 (N=127)

Network Task: Train a neural network to
ingest daily maps of outgoing longwave
radiation (OLR) to predict the sign of the
subseasonal circulation anomalies over the
North Atlantic 22 days in advance

Forecasts of Opportunity: Confident
predictions lead to more accurate
predictions = forecasts of opportunity

Explainable Al Approach: Learn tropical
patterns of variability that lead to
enhanced predictability of midlatitude
weather on subseasonal timescales 80°F 100°E  120°E  140°E  160°E  180°E  160°W

COLORADO STATE Mayer and Barnes (2021)
%) UNIVERSITY




What about regression problems?




Simple uncertainty for neural network regression tasks

0.3 4
input hidden output u=05,0=15y=0,t=1.0
layer layers layer
/1/ 0.2 4
H=05,0=15y=-12,t=1.0 y=35,0=10,y=109, t=1.0
o
0.0 1

trained with -log(p), based on maximum likelihood estimation
@ ngg;s??vsnﬁ Barnes, Barnes and Gordillo (2021)



Simple uncertainty for neural network regression tasks

(a) Data
3:5:4
input hidden output

layer layers layer 3.0 -
2.9

o

>

X ~ 2.0 1
t 1.5 4
1.0 4

0.0 0.2 0.4 0.6 0.8 1.0

trained with -log(p), based on maximum likelihood estimation
@ EglL\?ER;s::?YSTATE Barnes, Barnes and Gordillo (2021)



Simple uncertainty for neural network regression tasks

(a) Data (b) Predictions
3.5+
input hidden output ; :
layer layers layer 3.0 - « predicted median il
’ predicted 80% bounds
/1/ 80% data envelope
2.5+
o
>
X 2.0 1 38
,y 26412y,
¢ 154 20 [,
1.0 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

trained with -log(p), based on maximum likelihood estimation
@ Eﬂ:'\%:segvsnﬁ Barnes, Barnes and Gordillo (2021)



The loss function

input hidden output
layer layers layer !

+ 2 Q T

X
bi = P(yz|/'l’a ag,7, T)
L(x;) = —logp;
> trained with -log(p), based on maximum likelihood estimation
@ UNIVERSITY T Barnes, Barnes and Gordillo (2021)




The loss function

(a) Overconfident (b) Underconfident (c) Just right
1.6 4 | i '
1y 1 i
] | ]
14 4 n | | |
] | ]
1.2 1 I | |
| | |}
predictad 1 1
1.0 9 N o) 1 1 H
| 1 1
input hidden output 0.8 4 : : !
] | ]
layer layers layer 06 ! ! :
| | |}
0.4 1 : ! b 12
' |
024 \ : : ’
" i /———\ H
0.0 4 : :

+ 2 Q T

X
bi = P(y’LLu’a ag,7, T)
L(x;) = —logp;
. trained with -log(p), based on maximum likelihood estimation
@ UNIVERSITY T Barnes, Barnes and Gordillo (2021)




b INTENSITY FORECASTS
ANN VICKY
Sept. 14,2020, 1200

Operational
hurricane
forecasts

° Network Task: Train neural networks - - - - . ,
20 30 40 50 60 70
to predict error of the “Consensus” intensity [knots]
forecast of physics-based models (used
by the National Hurricane Center) 6001 TRACK FORECASTS
THETA
®  Predicted PDF: Allows us to update the - 991 Nov 11,2020 at 0000
forecast as well as understand the iz 200 -
uncertainty of the ANN £
£ 01
e
¥ -2004
~400 -
-600 4

-600 —-400 -200 0 200 400 600
track X correction [km]

OLORADO STATE .
NIVERSITY Barnes, Barnes and DeMaria (in prep)




Decadal
Prediction

i

Emily Gordon

0.45
Network Task: Train a neural network
to ingest maps of Ocean Heat Content 0.40 -
and predict future sea-surface :
temperatures averaged over the next

_ hidden output
1->years L layer layers layer
<0354

State-Dependent Predictability: = ———— M
Confident predictions lead to more G, == =3 |
smaller errors =S -

0.30 - a
Explainable Al Approach: Learn misskeontident
decadal patterns of variability that lead predictions
to predictability 0.25 T T T T T T T T T

100 9 80 70 60 50 40 30 20 10

PERCENT MOST CONFIDENT

Gordon and Barnes (in prep)

ﬁ COLORADO STATE
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Controlled Abstention
Networks (CAN)

The abstention loss works by incorporating uncertainty in the
network's prediction to identify the more confident samples and
abstain (say ‘I dont know") on the less confident samples.

...the abstention loss is applied during training to preferentially
learn from the more confident samples.




Our work has heavily informed
by the dissertation of Dr. Sunil

e General Idea of CANs

master/dac loss.py
. ST .
s/handle/1773/45781

1. Estimate uncertainty of each prediction during training
o  Classification: simple - just use the softmax output
o Regression: we need a way to predict uncertainty more ter

2. Implement aloss function that learns to identify more

confident predictions and learn them better
o Classification: we introduce the NotWrong Loss
o Regression: we introduce a modified negative log likelihood

3. Compare to baseline methods that filter out samples post

training
o  While the baseline methods perform very well, we find that the
abstention method outperforms the baseline for a variety of tasks

6') COLORADO STATE
@ UNIVERSITY



https://arxiv.org/abs/1905.10964
https://github.com/thulas/dac-label-noise/blob/master/dac_loss.py
https://github.com/thulas/dac-label-noise/blob/master/dac_loss.py
https://digital.lib.washington.edu/researchworks/handle/1773/45781
https://digital.lib.washington.edu/researchworks/handle/1773/45781

Our work has heavily informed
by the dissertation of Dr. Sunil

Trdsdeen G020, General Idea of CANs

s/handle/1773/4578

3. Compare to baseline methods that filter out samples post

training
o  While the baseline methods perform very well, we find that the
abstention method outperforms the baseline for a variety of tasks

éﬁ COLORADD STATE
N9/ UNIVERSITY



https://arxiv.org/abs/1905.10964
https://github.com/thulas/dac-label-noise/blob/master/dac_loss.py
https://github.com/thulas/dac-label-noise/blob/master/dac_loss.py
https://digital.lib.washington.edu/researchworks/handle/1773/45781
https://digital.lib.washington.edu/researchworks/handle/1773/45781

The output from the modelis a
distribution for each sample

Sample m==)p [Model} )

Y-\ COLORADO STATE
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The output from the modelis a
distribution for each sample

any - [Model} -

Samples




Very certain

The output from the modelis a
distribution for each sample

Certain

Not certain at all

COLORADD STATE
UNIVERSITY



Very certain

The output from the modelis a
distribution for each sample

Baseline:

e Train the model

_ Certain
e Sorttheresults by sigma

e Keeponly the x% most certain
distributions.

Less certain

Not certain at all

COLORADD STATE
UNIVERSITY



Now for abstention
during neural network

training



Abstention
During Training 9.2.1 Abstention loss

. . o Unlike the baseline ANN, the CAN loss is designed to identify the less confident
®  Abstentionlossis very similar for predictions so as to preferentially learn from the more confident predictions. The CAN
both classification and regression loss for sample z; is defined as

e The abstention regression loss is a L(z;) = —q;logp; — alogg;. (4)
modified log loss, weighted by the

« .. e am . where ntrols the amount of abstention (see next subsection) and g; represents th
prediction weight” determined by s e ol (3 = Hogtian) L

prediction weight defined as

the uncertainty sigma <12
¢i = min | 1.0, [—] " (5)
e Anadditional term penalizes o
abstention

6 5 A ATE
EEIL\?ERRSEI"?YST T Barnes and Barnes (2021)



Abstention
During Training

e Abstention loss is very similar for
both classification and regression

e Theabstentionregression loss is a
modified log loss, weighted by the
“prediction weight” determined by
the uncertainty sigma

e Anadditional term penalizes
abstention

»la) COLORADO STATE
2/ UNIVERSITY

3.2.1 Abstention loss

Unlike the baseline ANN, the CAN loss is designed to identify the less confident
predictions so as to preferentially learn from the more confident predictions. The CAN
loss for sample z; is defined as

controls amount
of abstention

L(z;) = —q;logpi — alogg;. (4)

xt subsection) and g; represents the

2
¢ = min (1.0, [i . 5)

where a controls the amount of abstention (se
prediction weight defined as

prediction
weight
data-specific
scale

Barnes and Barnes (2021)



Abstention
During Training

e Abstention loss is very similar for
both classification and regression

e Theabstentionregression loss is a
modified log loss, weighted by the
“prediction weight” determined by
the uncertainty sigma

e Anadditional term penalizes
abstention

e alpha: abstention fraction can be
set by a PID controller or user can
have network predict the best
abstention fraction

g\ COLORADD STATE
%) UNIVERSITY

3.2.1 Abstention loss

Unlike the baseline ANN, the CAN loss is designed to identify the less confident
predictions so as to preferentially learn from the more confident predictions. The CAN
loss for sample z; is defined as

controls amount
of abstention

L(z;) = —q;logpi — alogg;. (4)

where a controls the amount of abstention (se
prediction weight defined as

xt subsection) and g; represents the

¢; = min (1.0, [ﬁ‘}g\ (5)

prediction
weight
data-specific
scale

Abstention Fraction
« ftraining
* volidation

Barnes and Barnes (2021)



A simple 1D example

(a) Data
6.0 -
4.0 - 80% of the data
20 ) f
20% of the day g
> 001
20
A
604

60 -40 20 00 20 40 60

3\ COLORADO STATE
%) UNIVERSITY Barnes and Barnes (2021)




A simple 1D example

(c) CAN Predictions
(o) Data coverage = 19%

6.0 - 6.0 -

404 80% of the data 40 -
L) Y >

2.0 " 8 2.0 -

20% of the dat i
> 00 : ea/ e © 00- /

O

20- O 2.0
Q

4.0 1 4.0

6.0 - 6.0

60 40 20 00 20 40 60 60 40 20 00 20 40 60
X Y

R%7) COLORADD STATE Barnes and Barnes (2021)




A simple 1D example

(d) Error by percent coverage

( O) D OT a standard MAE model Baseline ANN @ CAN-regression
6.0 1 6 0.8 1 worse
b 80% of the data = 0.7
¢ . O
2.0 1 - _9_) 0.6 1
20% of the data i
> 001 / e = 05+
2
w2 0 04+
ip O
c 0.3 4 —
et g 0.2«
60 -40 20 00 20 40 60 QE) '
X 0.1 -
better o
0.0~

1 E;O Q0 80 70 60 50 4.0 30 20 10 0
_ coverage (%)

@ UNIVERSITY T Barnes and Barnes (2021)




A simple 1D example

(d) Error by percent coverage

( Cl) D 01, a standard MAE model Baseline ANN @ CAN-regression
6.0 1 ;6 0.8 1 worse
b 80% of the data = 0.7
; ) o)
2.0 1 - +q_) 0.6 1
20% of the dat .
> 001 : ea}/ = = 05+
2
w2 0 04+
-4.0 1 O
C 0_3 - i
et . 0.2 9
60 40 20 00 20 40 60 qé '
X 0.1 4
OO - .beﬁer | | J | ] | J | J | | . ] L]
100 Q0 80 70 60 50 40 30 0 10 0

_ coverage (%)

@ UNIVERSITY T Barnes and Barnes (2021)




A more complex
example



Synthetic Climate . ...
Data o

e Created by CSU postdoc
Dr. Antonios Mamalakis

e Eachsampleis one global map of
“SSTs” computed from
real-world spatial covariances

e Use aknown nonlinear function
F to map each map x_to a
scalary,

10 20 30 40 50 80 70 80 80 100

sample number n

g 9 COLORADO STATE .
UNIVERSITY Mamalakis, Ebert-Uphoff and Barnes (2021)




Synthetic Climate
Data

input hidden hidden hidden output

layer layer layer layer layer
e Created by CSU postdoc )
Dr. Antonios Mamalakis @ @) ) ()
. @ @ () ()
e Eachsampleis one global map of () @ @ )
“SSTs” computed from @ @ (@) ()
real-world spatial covariances : : : : v
e Use a known nonlinear function . . . .
F to map each map x_toa . . . .

scalary_

e Network Task: predict the value
“y” for each input map

Barnes and Barnes (2021)

»ye\ COLORADO STATE
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Synthetic Climate
Data

input hidden hidden hidden output

layer layer layer layer layer
e Created by CSU postdoc )
Dr. Antonios Mamalakis @ 9 @ @
. @ @ () ()
e Eachsampleis one global map of () @ ) 5
“SSTs” computed from @ @ () () Q@
real-world spatial covariances 4 @ © ©
@ @) ©) @ Q@0
e Use aknown nonlinear function . . . .
F to map each map x_toa . ® ® ®

scalary_

e Network Task: predict the value
“y” for each input map

Barnes and Barnes (2021)
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Forecasts of
Opportunity
Experiment

\ Shuffledy =-2.3
\ m » Truey=0.19
\ Shuffledy = 1.34

e AllENSO+ samples (average ENSO
region > 0.5) are untouched A m ') Shurdedy 2077

[ ] 100% Of the Other Samples are \ im \‘ g\:eff\]/ezzyzlz.n-donotshufﬂe,stmngElNino

corrupted (shuffled) N m Shufedy - 221
29% UntOUChEd \ jm\\ g\:eff\]/ez%zjo.ﬂ-donotshufﬂe,stmngElNino

0, . ruey = 0.
71/) corru pt \ A zhufged?/gz—Z.W
only Samples Wlth Strong EI Nlno \' g ¥ \‘ g\:eff\]/ez-ff?OAS-donotshume,strongElNino
signals have a learnable relationship
with their labels
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Abstention

outperforms
: (d) Error by percent coverage
base ll n e standard MAE model Baseline ANN ® CAN-regression
| 0.8 1 worse
e Train abstention network for % 0.7 4
different abstention setpoints 45 106> “ocefige © Boull 0en.
5 %
= 0.5+ s
2 it
e  The best CAN models are always 0 044 * :
better (lower error) than the O o %% 8 .
best baseline ANN = b‘uP
8 0.2 - -
E 0.1+
better
0.0 -

1 O'O 90 80 70 60 50 4'0 30 20 10 0
coverage (%)
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Abstention
outperforms
baseline

e Train abstention network for
different abstention setpoints

e Thebest CAN models are always
better (lower error) than the
best baseline ANN

»la) COLORADO STATE
2/ UNIVERSITY

mean absolute error

0.8 4

0.7 +

0.6 -

0.5 +

0.4 4

0.3 -

0.2 4

0.1+

0.0 -

(d) Error by percent coverage

standard MAE model Baseline ANN ® CAN-regression
worse
@ 0 - e
w o “ =
W oy
(A *
T
g
better
100 Q0 80 70 60 50 40 30 20 10 0

coverage (%)

Barnes and Barnes (2021)



CAN outperforms baseline networks

Abstention

outperforms
b l Corrupted
inputs
ase I ne (input dE:a cleaner) Sthﬂed
sample
e Train abstention network for _Iabels .
different abstention setpoints (arbitrary label noise)
Forecasts of
opportunit
e  Thebest CAN models are always (gﬂr.)fu.predictions,y Specific
better (lower error) than the labels
best baseline ANN
corrupted

(structured noise)

Regression tasks: Barnes and Barnes (2021)

»ye) COLORADO STATE Classification tasks: Barnes and Barnes (2021b)
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Forecasts of Opportunity




Leveraging “Forecasts of Opportunity”

1. Thisis more than just uncertainty quantification and more thanjust a
post-processing application.

it is worthwhile for anyone working on Al for climate science to consider taking this mindset

2. Impossible predictions may be hampering learning of predictable behaviour

e.g. predicting climate variables, predicting dynamical forecast errors, etc.
could this be helpful in filtering out the “harder” predictions to train them separately?

3. May support hybrid approach to climate model parameterizations

e.g. use uncertainty measures or abstention to kick predictions to the ML or physics-based parameterizations in real-time; could
this be helpful for out-of-sample climate change?

4. Utility of this concept revolves around the fact that we have a “small” amount
of datato trainon

if we had lots and lots of data, presumably the ML could figure out what to ignore and what to use?

Prof. Elizabeth A. Barnes

2 eabarnes@colostate.edu
«\ COLORADO STATE

https://barnes.atmos.colostate.edu
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A few reference links

° Mamalakis, Antonios, Imme Ebert-Uphoff and Elizabeth A. Barnes: Neural Network Attribution Methods for Problems in
Geoscience: A Novel Synthetic Benchmark Dataset, submitted to IEEE Transactions on Neural Networks and Learning Systems,
03/2021, preprint available https://arxiv.org/abs/2103.10005.

° Barnes, Elizabeth A. and Randal J. Barnes: Controlled abstention neural networks for identifying skillful predictions for regression
problems, submitted to JAMES, 04/2021, preprint available at https://arxiv.org/abs/2104.08236

o https://github.com/eabarnes1010/controlled_abstention_networks

° Barnes, Elizabeth A. and Randal J. Barnes: Controlled abstention neural networks for identifying skillful predictions for
classification problems, submitted to JAMES, 04/2021, preprint available at https://arxiv.org/abs/2104.08281

o https://github.com/eabarnes1010/controlled_abstention_networks

° Barnes, Elizabeth A., Randal J. Barnes and Nicolas Gordillo: Adding Uncertainty to Neural Network Regression Tasks in the
Geosciences, 2021: https://arxiv.org/abs/2109.07250

° Thulasidasan, Sunil. 2020. “Deep Learning with Abstention: Algorithms for Robust Training and Predictive Uncertainty.”
https://digital.lib.washington.edu/researchworks/handle/1773/45781.

° Thulasidasan, Sunil, Tanmoy Bhattacharya, Jeff Bilmes, Gopinath Chennupati, and Jamal Mohd-Yusof. 2019. “Combating Label
Noise in Deep Learning Using Abstention.” arXiv [stat.ML]. arXiv. http:/arxiv.org/abs/1905.10964.

o https://github.com/thulas/dac-label-noise/blob/master/dac_loss.py
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