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CHAOS

When the flap of a butterfly’s wings 
in Brazil sets off a tornado in Texas. 

- Edward Lorenz (1972)

…small differences in the initial positions may 
lead to enormous differences in the final 
phenomena. Prediction becomes impossible. 

- Henri Poincare (1903)



The earth system is exceedingly complex and often 
chaotic in nature, making prediction incredibly 
challenging. 

We cannot expect to make perfect predictions all of the 
time...



Forecasts of 
Opportunity*

certain conditions lead to more 
predictable behaviour than others

Beyond the weather timescale we 
must look for specific states of the 

earth system, i.e. “opportunities”,  that 
lead to enhanced predictable behavior.

* also known as “State-dependent predictability”
See also Mariotti et al. (2020) and also Albers and Newman (2019) 



El Nino Southern 
Oscillation [ENSO]

● Timescales of seasons-to-years
● Long-studied tropical 

phenomenon that, when active,  
impacts weather across the 
globe

Sea surface temperature anomalies 
Dec. 1997 El Nino

https://psl.noaa.gov/enso/mei/



Finding forecasts of opportunity

1. When? Under what conditions do we have skillful 
forecasts of opportunity?

2. Why? Where is this predictability coming from?

3. How do we leverage these opportunities?



Global teleconnections
Climate phenomena can influence weather across the globe via atmospheric teleconnections



Post-processing 
by predicting 
forecast errors
Identifying state-dependent forecasts 
errors in the NOAA Unified Forecast 
System

Network Task: Train a neural network to 
ingest daily maps of outgoing longwave 
radiation (OLR) to predicting the 5-day 
averaged precipitation error elsewhere at 
10-14 day lead 

Forecasts of Opportunity: Confident 
predictions lead to more accurate 
predictions = forecasts of opportunity

Explainable AI Approach: Learn tropical 
patterns of variability that lead to 
predictable forecast errors

Jack Cahill

Preliminary work by Jack Cahill
Co-advised by E. Barnes and E. Maloney, CSU



Subseasonal 
weather prediction
Exploring how tropical information can 
lend predictability to midlatitude 
circulation on S2S timescales

Network Task: Train a neural network to 
ingest daily maps of outgoing longwave 
radiation (OLR) to predict the sign of the 
subseasonal circulation anomalies over the 
North Atlantic 22 days in advance

Forecasts of Opportunity: Confident 
predictions lead to more accurate 
predictions = forecasts of opportunity

Explainable AI Approach: Learn tropical 
patterns of variability that lead to 
enhanced predictability of midlatitude 
weather on subseasonal timescales

Mayer and Barnes (2021)

Kirsten Mayer

daily maps of OLR
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Opening the Black 
Box with XAI
In the past few years multiple papers have 
come out demonstrating the use of 
explainable AI (XAI) methods for 
geoscience



Layerwise 
Relevance 
Propagation
LRP is an XAI method that produces a 
heatmap of the most relevant regions of 
the input for each prediction

LRP is largely consistent with how many 
climate scientists analyze and interpret 
data methods

While many visualization tools are coming 
out of the computer science community, 
LRP has been most useful for our group 
thus far

Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing

Prediction
of 1 sample

Pr(cat)=.8

Pr(cat)=.8LRP
of 1 sample
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Why use XAI?
One use of LRP is to ensure the right 
answers for the right reasons

Example Task:
Decide whether there is a horse in a given 
image.

Interpretable AI Approach:
What strategy did the network use? Is it 
focusing on the right things?

Lapuschkin et al. “Unmasking Clever Hans Predictors and Assessing What Machines Really Learn.” 
Nature Communications, vol. 10, no. 1, Mar. 2019, p. 1096, doi:10.1038/s41467-019-08987-4.

red shading: relevant regions for making the network think there is a horse
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Why use XAI?

#1 Identify problematic strategies

#2 Evaluate trust

#3 Choose the approach

#4 Learn something new



Why use XAI?

#1 Identify problematic strategies

#2 Evaluate trust

#3 Choose the approach

#4 Learn something new
data prediction

what did the network learn in the data?

Machine 
learning



Subseasonal 
weather prediction
Exploring how tropical information can 
lend predictability to midlatitude 
circulation on S2S timescales

Network Task: Train a neural network to 
ingest daily maps of outgoing longwave 
radiation (OLR) to predict the sign of the 
subseasonal circulation anomalies over the 
North Atlantic 22 days in advance

Forecasts of Opportunity: Confident 
predictions lead to more accurate 
predictions = forecasts of opportunity

Explainable AI Approach: Learn tropical 
patterns of variability that lead to 
enhanced predictability of midlatitude 
weather on subseasonal timescales

Mayer and Barnes (2021)
Bach et al. (2015)

Kirsten Mayer

daily maps of OLR

apply explainable AI methods (e.g. post-hoc attribution 
approaches) to create a heatmap of relevant regions in 

the input for the network’s prediction

XAI
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LRP: OLR patterns that lead to accurate & 
confident Z500<0 predictions over the North Atlantic

daily maps of OLR



What about regression problems?



Simple uncertainty for neural network regression tasks

output
layer

input
layer

hidden
layers

x

trained with -log(p), based on maximum likelihood estimation
Barnes, Barnes and Gordillo (2021)
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Operational 
hurricane 
forecasts

● Network Task: Train neural networks 

to predict error of the “Consensus” 
forecast of physics-based models (used 
by the National Hurricane Center)

● Predicted PDF: Allows us to update the 

forecast as well as understand the 
uncertainty of the ANN

INTENSITY FORECASTS
VICKY

Sept. 14, 2020, 1200

TRACK FORECASTS
THETA
Nov 11, 2020 at 0000

Barnes, Barnes and DeMaria (in prep)



Decadal 
Prediction

● Network Task: Train a neural network 

to ingest maps of Ocean Heat Content 
and predict future sea-surface 
temperatures averaged over the next 
1-5 years

● State-Dependent Predictability: 

Confident predictions lead to more 
smaller errors

● Explainable AI Approach: Learn 

decadal patterns of variability that lead 
to predictability

Emily Gordon

Gordon and Barnes (in prep)



The abstention loss works by incorporating uncertainty in the 
network’s prediction to identify the more confident samples and 
abstain (say “I don’t know”) on the less confident samples.

...the abstention loss is applied during training to preferentially 
learn from the more confident samples.

Controlled Abstention 
Networks (CAN)



General Idea of CANs
1. Estimate uncertainty of each prediction during training

○ Classification: simple - just use the softmax output

○ Regression: we need a way to predict uncertainty [more later]

2. Implement a loss function that learns to identify more 
confident predictions and learn them better

○ Classification: we introduce the NotWrong Loss
○ Regression: we introduce a modified negative log likelihood

3. Compare to baseline methods that filter out samples post 
training

○ While the baseline methods perform very well, we find that the 

abstention method outperforms the baseline for a variety of tasks 

Our work has heavily informed 
by the dissertation of Dr. Sunil 
Thulasidasan (2020):

● https://arxiv.org/abs/1905.10964
● https://github.com/thulas/dac-label-noise/blob/

master/dac_loss.py
● https://digital.lib.washington.edu/researchwork

s/handle/1773/45781

https://arxiv.org/abs/1905.10964
https://github.com/thulas/dac-label-noise/blob/master/dac_loss.py
https://github.com/thulas/dac-label-noise/blob/master/dac_loss.py
https://digital.lib.washington.edu/researchworks/handle/1773/45781
https://digital.lib.washington.edu/researchworks/handle/1773/45781
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Sample Model

The output from the model is a 
distribution for each sample
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The output from the model is a 
distribution for each sample

Very certain

Certain

Less certain

Not certain at all

Baseline:
● Train the model

● Sort the results by sigma

● Keep only the x% most certain 
distributions.



Now for abstention 
during neural network 
training 



Abstention 
During Training

● Abstention loss is very similar for 
both classification and regression

● The abstention regression loss is a 
modified log loss, weighted by the 
“prediction weight” determined by 
the uncertainty sigma

● An additional term penalizes 
abstention

Barnes and Barnes (2021)
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Abstention 
During Training

prediction 
weight

baseline -log(p)
controls amount 

of abstention

data-specific 
scale 

● Abstention loss is very similar for 
both classification and regression

● The abstention regression loss is a 
modified log loss, weighted by the 
“prediction weight” determined by 
the uncertainty sigma

● An additional term penalizes 
abstention

● alpha: abstention fraction can be 
set by a PID controller or user can 
have network predict the best 
abstention fraction

Barnes and Barnes (2021)



A simple 1D example

Barnes and Barnes (2021)
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A more complex 
example



Synthetic Climate 
Data

● Created by CSU postdoc 
Dr. Antonios Mamalakis

● Each sample is one global map of 
“SSTs” computed from 
real-world spatial covariances

● Use a known nonlinear function 

F  to map each map xn to a 
scalar yn

Mamalakis, Ebert-Uphoff and Barnes (2021)

yn =  F (xn)

Dr. Antonios
Mamalakis
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turn into predicting an 
underlying distribution



Forecasts of 
Opportunity 
Experiment

● All ENSO+ samples (average ENSO 
region > 0.5) are untouched

● 100% of the other samples are 
corrupted (shuffled)

● 29% untouched
● 71% corrupt
● Only samples with strong El Nino 

signals have a learnable relationship 
with their labels 

True y = -4.48
Shuffled y = -2.21

True y = 1.14
Shuffled y = -2.3

True y = 0 .19
Shuffled y = 1.34

True y = 2.71
Shuffled y =2.71 - do not shuffle, strong El Nino

True y = 0.22
Shuffled y  = 0.22 - do not shuffle, strong El Nino

True y = 0.02
Shuffled y = -2.99

True y = -0.43
Shuffled y = -0.43 - do not shuffle, strong El Nino

True y = 0.87
Shuffled y = 0.77



Abstention 
outperforms 
baseline

● Train abstention network for 
different abstention setpoints

● The best CAN models are always 
better (lower error) than the 
best baseline ANN

Barnes and Barnes (2021)
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Abstention 
outperforms 
baseline

● Train abstention network for 
different abstention setpoints

● The best CAN models are always 
better (lower error) than the 
best baseline ANN

Specific 
labels 

corrupted 
(structured noise)

Shuffled 
sample 
labels

(arbitrary label noise)

Forecasts of 
opportunity

(skillful predictions)

Corrupted 
inputs

(input data cleaner)

CAN outperforms baseline networks

Regression tasks: Barnes and Barnes (2021)
Classification tasks: Barnes and Barnes (2021b)



Forecasts of Opportunity

*aka “State-Dependent Predictability”



Leveraging “Forecasts of Opportunity”
1. This is more than just uncertainty quantification and more than just a 

post-processing application.
it is worthwhile for anyone working on AI for climate science to consider taking this mindset

2. Impossible predictions may be hampering learning of predictable behaviour
e.g. predicting climate variables, predicting dynamical forecast errors, etc. 
could this be helpful in filtering out the “harder” predictions to train them separately?

3. May support hybrid approach to climate model parameterizations
e.g. use uncertainty measures or abstention to kick predictions to the ML or physics-based parameterizations in real-time; could 
this be helpful for out-of-sample climate change?

4. Utility of this concept revolves around the fact that we have a “small” amount 
of data to train on
if we had lots and lots of data, presumably the ML could figure out what to ignore and what to use?

Prof. Elizabeth A. Barnes
eabarnes@colostate.edu

https://barnes.atmos.colostate.edu
@atmosbarnes

mailto:eabarnes@colostate.edu
https://barnes.atmos.colostate.edu
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