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Machine learning in science and engineering

Machine learning tasks Earth science tasks

Object classification and localization Pattern classification

~ |Dog:0.994

[Cat: 0.982 ===

ML can answer questions about
"What is?"
by learning statistical associations from complex data
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LeCun, Hinton, Bengio Predict future visual
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Reichstein et al. 2019
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Causal inference

Causal inference is a framework to answer causal questions
from observational and/or experimental data.
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Causal inference

Causal inference is a framework to answer causal questions
from observational and/or experimental data.

Pearl’s hierarchy | Activity Questions Examples JupE pEARL
3. Counterfactuals | Retrospection, | Why? What If | Did Ctli)mate change cause this extreme THE
P event®
P( , |X ) m%%g:;gr;dm I had done... Was it aspirin that stopped my headache? BOOK OF
Vb ) J WHY
2. Intervention Intervening What if | What causes what in the data? Infer - s
do..? underlying mechanisms, future impacts of Lo TREN M
e greenhouse gas emissions? S
P(y|do(x)) What if | take aspirin?
1. Association Seeing What is? How | Pattern recognition, correlation networks,
are variables statistical weather forecast (if the system is
P(y|x) related? not changing)
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Causal inference framework

Pearl’s causal inference framework assumes an underlying
structural causal model (SCM) with an associated graph, for example,

Xa = fa(Xg,na)
Xo = fo(Xa, XE,n0)
Xg = fe(nE)

where the graph is acyclic and noise terms are independent. This SCM
entails a factorized distribution P(X) = P(Xc|Xa, Xg)P(Xa|Xg)P(XE)

An experiment / intervention is then represented by the intervened SCM

XA:: SUI
Xc = fo(Xa, Xg,n0)
XE = fe(nr)

Which results in the interventional distribution that defines causal effects:

P(Xc|do(Xa = ) # P(Xc|Xa = 2')
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Causal inference framework
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Causal inference: 1. Utilizing causal graphs

Causal effect estimation: Given causal graph and data, compute
causal effect of intervention from observational distribution P(V)

P (Y|do(X=x)) = function of P(V)
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Causal effect estimation: Given causal graph and data, compute
causal effect of intervention from observational distribution P(V)

P (Y|do(X=x)) = function of P(V)
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Causal inference: 1. Utilizing causal graphs

Causal effect estimation: Given causal graph and data, compute
causal effect of intervention from observational distribution P(V)

P (Y|do(X=x)) = function of P(V)
y4

L

‘Correlation’ regression Causal regression

Y =[Byx |X  E[Y|do(x = D]-E[Y]do(x = 0)] = Byx.




Causal inference: 1. Utilizing causal graphs

Causal effect estimation: Given causal graph and data, compute

causal effect of intervention from observational distribution P(V)
P (Y|do(X=x)) = function of P(V)

L

y4

‘Correlation’ regression

Y = 08yx X

Causal regression

Y =

6YX-Z

X + Byz.x2

Optimal causal effect estimators
(Runge NeurlPS 2021)
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Task: Given data and general assumptions, estimate causal
graph from observational distribution P(V)

Example assumptions:
* Statistical dependencies imply causal relations (Markov condition)
and independencies an absence thereof (Faithfulness)
- Constraint-based causal discovery (Spirtes et al. 2000)

* Assumptions on functional dependencies and noise distributions
- Restricted structural causal modeling (Peters et al. 2018)
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Task: Given data and general assumptions, estimate causal
graph from observational distribution P(V)

Example assumptions:
* Statistical dependencies imply causal relations (Markov condition)
and independencies an absence thereof (Faithfulness)
- Constraint-based causal discovery (Spirtes et al. 2000)

* Assumptions on functional dependencies and noise distributions
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Causal inference: 2. Learning causal graphs

Task: Given data and general assumptions, estimate causal
graph from observational distribution P(V)

Example assumptions:
* Statistical dependencies imply causal relations (Markov condition)
and independencies an absence thereof (Faithfulness)
- Constraint-based causal discovery (Spirtes et al. 2000)

* Assumptions on functional dependencies and noise distributions
- Restricted structural causal modeling (Peters et al. 2018)

* Score-based Bayesian network learning

V 1 Wand (V,IW) L Y|X
all others are dependent
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Causal inference: 2. Learning causal graphs

Task: Given data and general assumptions, estimate causal
graph from observational distribution P(V)

Time series case:
* PCMCI causal discovery framework
(Runge et al. SciAdv 2019, UAI 2020,
Gerhardus and Runge NeurlPS 2020)

* Assuming no instantaneous effects
— Granger causality (Granger 1969)

* ... > see Runge et al. NatComm Perspective (2019)
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Causal inference engine (Pearl): Given a query, a causal graph
and data, output estimand in terms of observational distribution P(V)

P (Y|do(X=2)) = / Plylz,)P(z)dz (K ===t (Y

N,/

y4




Causal inference and machine learning

Causal inference engine (Pearl): Given a query, a causal graph
and data, output estimand in terms of observational distribution P(V)
- estimand can be estimated with (deep) ML

P (Y|do(X=2)) = / Plylz,)P(z)dz (K ===t (Y

/

= Y:/f(X:x,Z:z)p(z)dz 7




Causal inference and machine learning

Causal inference engine (Pearl): Given a query, a causal graph
and data, output estimand in terms of observational distribution P(V)
- estimand can be estimated with (deep) ML

P (Y|do(X=2)) = / Plylz,)P(z)dz (K ===t (Y

= Y:/f(X:x,Z:z)p(z)dz \ /

y4

Causal graph learning:

HIDDEN LAYERE

N



Causal inference and machine learning

Causal inference engine (Pearl): Given a query, a causal graph
and data, output estimand in terms of observational distribution P(V)
- estimand can be estimated with (deep) ML

P (Y|do(X=2)) = / Plylz,)P(z)dz (K ===t (Y

= Y:/f(X:x,Z:z)p(z)dz \ /

y4

Causal graph learning: Eaiaen ik CMlkn
* ML for non-parametric conditional independence testing
(Runge AISTATS 2018, Strobl et al., 2017, ...)




Causal inference and machine learning

Causal inference engine (Pearl): Given a query, a causal graph
and data, output estimand in terms of observational distribution P(V)
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Causal inference and machine learning

Causal inference engine (Pearl): Given a query, a causal graph
and data, output estimand in terms of observational distribution P(V)
- estimand can be estimated with (deep) ML

P (Y|do(X=2)) = / Plylz,)P(z)dz (K ===t (Y

= Y:/f(X:x,Z:z)p(z)dz \ /

y4

Causal graph learning:
* ML for non-parametric conditional independence testing
(Runge AISTATS 2018, Strobl et al., 2017, ...)
* Structure learning as continuous optimization problem
- Brouillard et al., 2020, and many more recently
* Dimension-reduction to reconstruct variables
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Schélkopf et al. (2020)

Toward Causal

Representation Learning

This article reviews fundamental concepts of causal inference and relates them to crucial
open problems of machine learning, including transfer learning and generalization,
thereby assaying how causality can contribute to modern machine learning research.

By BERNHARD ScnoLkopr® | Francesco LocareLo®™ | Steran Bauer™ | Nan RosEMARY K,

NAL KALCHERENNER, ANIRUDH GOYAL, AND YosHU& BENGio™

ABSTRACT | The two fields of machine learning and graphical
causality arose and are developed separately. However, there
is. now, cross-pollination and increasing interest in both fields
to benefit from the advances of the other. In this article,
we review fundamental concepts of causal inference and relate
them to cruclal open problems of machine leaming, including
transfer and generalization, thereby assaying how causality
can contribute to modern machine learning research. This also
applies in the opposite direction: we nate that most work in
causality starts from the premise that the causal variables
are given. A central problem for Al and causality is, thus,
causal representation learning, that is, the discovery of high-
level causal variables from low-level observations. Finally,
we delineate some implications of causality for machine learn-
ing and propose key research areas at the intersection of both
communities.

LINTRODUCTION

If we compare what machine learning ean do to what
animals accomplish, we observe that the former is rather
limited at some crucial feats where natural intelligence
excels. These include transfer to new problems and any
form of generalization that is not from one data point
to the next (sampled from the same distribution), but
rather from one problem to the next—both have been
termed generalization, but the latter is a much harder form
thereof, sometimes referred to as horizontal, strong, or out-
of-distribution generalization. This shortcoming is not too
surprising, given that machine learning often disregards
information that animals use heavily: interventions in the
world, domain shifts, and temporal structure—by and
large, we consider these factors a nuisance and try to engi-
neer them away. In aceordance with this, the majority of

enrrent snreasses nf machine learning hnil dawn t laree.
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11 Measurement errors we delineate some implications of causality for machine learn-  world, domain shifts, and temporal structure—by and
12 Selection bias ing and propese key research areas at the intersection of beth  large, we consider these factors a nuisance and try to engi-
13 Discrete data communities neer them away. In aceordance with this, the majority of
enrrent sneeasses af machine learning hail dawn o laras.

14 Dating uncertainties
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Applications

1. Learning causal graphs to understand mechanisms
2. Quantifying causal mechanisms: link strength and

mediation analysis
3. Causally robust forecasting

4. Causally validating ML methods
5. Evaluating climate models and constraining climate

change projections

6. Hybrid physical-ML modeling
Detection and attribution of extreme events

~
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Causal mediation analysis

* Pathway mechanisms between El Nino and
Indian monsoon through sea-level pressure

system
a Complex system b Dimension reduction € Causal reconstruction

data given on a spatio-temporal grid yielding regional componants including time lags

Exploratory
analysis
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via aggregated node measures perturbation / information transfer

Runge et al., NatComm 2015



Causal mediation analysis

* Pathway mechanisms between El Nino and
Indian monsoon through sea-level pressure
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Causal mediation analysis
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Simulation model evaluation

Simple statistics can be right for the wrong reasons
Idea: Compare climate models and observations in

terms of causal relationships

Observed data causal network
Causal
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Causal networks for climate model evaluation

and constrained projections
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Nowack et al. NatComm. (2020)



Simulation model evaluation

* Simple statistics can be right for the wrong reasons
* Idea: Compare climate models and observations in
terms of causal relationships
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Causal inference: Framework to answer causal
guestions from empirical data
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Take-home message

Causal inference: Framework to answer causal
guestions from empirical data

Two settings:
1) Utilize qualitative causal knowledge (graphs)

2) Learn causal graphs (then utilize them)

Causation, Prediction, and Search
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* Causal inference: Framework to answer causal
guestions from empirical data

* Two settings:
1) Utilize qualitative causal knowledge (graphs)

2) Learn causal graphs (then utilize them)

* Causal reasoning requires assumptions about
underlying system and data
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Take-home message

Causation, Prediction, and Search

* Causal inference: Framework to answer causal
guestions from empirical data
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* Two settings:
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* Causal inference well complements Al and machine
learning on complex datasets




Take-home message

* Causal inference: Framework to answer causal
guestions from empirical data

* Two settings:
1) Utilize qualitative causal knowledge (graphs)

2) Learn causal graphs (then utilize them)

* Causal reasoning requires assumptions about
underlying system and data

* Causal inference well complements Al and machine
learning on complex datasets

Software:
* Tigramite, pcalg, TETRAD, causalfusion, CauseMe, ...
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Thank you! Questions?
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