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Machine learning in science and engineering

Reichstein et al. 2019

Turing-Award 2018
LeCun, Hinton, Bengio

ML can answer questions about 
"What is?" 

by learning statistical associations from complex data
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Some challenges in Earth sciences

Michael Mann / Scientific American

IPCC, Gentine

What causes extremes?

Causal mechanism of 
aerosol-cloud interactions

Reconstruct 
teleconnection networks

Understand ecosystem 
respiration

Krich, 2021
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Answering causal questions

1.Experimentation: Randomized controlled 
trials, gene knockout experiments, etc.

2.Simulation models: Based on underlying 
physics (if available)

3.Causal inference: Based on observational 
and/or experimental data 

Ill. Niklas Elmehed © 
Nobel Prize Outreach

Nobel prize in physics 
2021 for Klaus 
Hasselmann and 
Syukuro Manabe 

Expensive, time consuming, and 
only approximation of reality, ...

www.scq.ubc.ca

Ethical issues, expensive, 
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Causal inference
Causal inference is a framework to answer causal questions 
from observational and/or experimental data.
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Pearl’s hierarchy Activity Questions Examples

3. Counterfactuals

      P(y’
x’
|x, y)

Retrospection, 
Imagining, 
Understanding

Why? What If 
I had done...

Did climate change cause this extreme 
event?
Was it aspirin that stopped my headache?

2. Intervention

      P(y|do(x))

Intervening What if I 
do…?

What causes what in the data? Infer 
underlying mechanisms, future impacts of 
greenhouse gas emissions?
What if I take aspirin?

1. Association
    
         P(y|x)

Seeing What is? How 
are variables 
related?

Pattern recognition, correlation networks,
statistical weather forecast (if the system is 
not changing)

Causal inference
Causal inference is a framework to answer causal questions 
from observational and/or experimental data.

  

Ill. Niklas Elmehed © Nobel Prize Outreach

J Pearl 
Turing-Award 2011

Spirtes, 
Glymour, 
Scheines

JD Angrist and GW Imbens
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An experiment / intervention is then represented by the intervened SCM

Which results in the interventional distribution that defines causal effects:
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Causal inference framework

Two types of tasks:

1. Utilize qualitative causal knowledge in form of directed 
acyclic graphs including observed and unobserved / latent 
variables

2. Learn causal graphs based on general assumptions
        
    

X Y

Z
L

X Y

Z

?

Aerosols Clouds

Environmental
factors
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Causal inference: 1. Utilizing causal graphs

Causal effect estimation: Given causal graph and data, compute 
causal effect of intervention from observational distribution P(V)
       

    

X

M

Y

Z
1

Z
2 Z

3

X Y

Z
L

XX

Optimal causal effect estimators 
(Runge NeurIPS 2021)

X|Z

Y
|Z

 ‘Correlation’ regression    Causal regression
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Causal inference: 2. Learning causal graphs

Y

X

V W

Task: Given data and general assumptions, estimate causal 
graph from observational distribution P(V)
       

    Example assumptions: 
● Statistical dependencies imply causal relations (Markov condition) 

and independencies an absence thereof (Faithfulness)
→ Constraint-based causal discovery (Spirtes et al. 2000)

● Assumptions on functional dependencies and noise distributions
→ Restricted structural causal modeling (Peters et al. 2018)

● Score-based Bayesian network learning

● ...
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Causal inference: 2. Learning causal graphs

Task: Given data and general assumptions, estimate causal 
graph from observational distribution P(V)
       

    Time series case: 
● PCMCI causal discovery framework 

(Runge et al. SciAdv 2019, UAI 2020, 
Gerhardus and Runge NeurIPS 2020)

● Assuming no instantaneous effects
→ Granger causality (Granger 1969)

● … → see Runge et al. NatComm Perspective (2019)
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Causal inference and machine learning

Causal inference engine (Pearl): Given a query, a causal graph 
and data, output estimand in terms of observational distribution P(V)
→ estimand can be estimated with (deep) ML
       

    

Causal graph learning: 
● ML for non-parametric conditional independence testing

(Runge AISTATS 2018, Strobl et al., 2017, ...)
● Structure learning as continuous optimization problem

→ Brouillard et al., 2020, and many more recently
● Dimension-reduction to reconstruct variables
● ...
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Challenges

Schölkopf et al. (2020)Runge et al. (2019)

Need for close collaboration between 
method developers and domain scientists



Applications

1. Learning causal graphs to understand mechanisms
2. Quantifying causal mechanisms: link strength and 

mediation analysis
3. Causally robust forecasting
4. Causally validating ML methods
5. Evaluating climate models and constraining climate 

change projections
6. Hybrid physical-ML modeling
7. Detection and attribution of extreme events
8. …
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Take-home message

● Causal inference: Framework to answer causal 
questions from empirical data

● Two settings:

1) Utilize qualitative causal knowledge (graphs)

2) Learn causal graphs (then utilize them)

● Causal reasoning requires assumptions about 
underlying system and data

● Causal inference well complements AI and machine 
learning on complex datasets

Software: 
● Tigramite, pcalg, TETRAD, causalfusion, CauseMe, ...
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