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Video credit: Samuli Siltanen https.//www.youtube.com/watch?v=q/Rt OY /tU



https://www.youtube.com/watch?v=q7Rt_OY_7tU

Can machine learning help reconstruct images”?

Train deep neural network to reconstruct CT images
from sinogram measurements

This approach can require many training samples.

It also ignhores everything we know about the data
collection process.

Zhu, Liu, Rosen, Rosen, 2017, Aridge, Maass, Oktem, Schénlieb, 2019; Ongie,
Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020, Akcakaya, Yaman, Chung, Ye, 2022;
Sahel, Bryan, Cleary, Farhi, Eldar, 2022; Kamilov, Bouman, Buzzard, \Wohlberg, 2022
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Also fluid dynamics, turbulence, particle
accelerators, scattering, automatic control...



Physics-based models can inform neural
network architectures and training,

improving the reliabllity, efficiency and
interpretability of ML systems.




—xample: linear inverse problems in imaging

Observe: y=Hx+¢
Goal: Recover x from y

y v T— “forward model” H reflects the
physics of the imaging system




Image reconstruction by supervised learning

1. Collect training data pairs (x;, y;) using a known forward model:
y; = Hx; + ¢
2. Train a reconstruction network f, by minimizing over a loss; e.g.

min ) 1% = f003
l

3. Reconstruct new measurements y by X = f,(y)

sinogram reconstruction reconstructed
measurements network image
y JoC+) X = Jo(y)

e.g.,
CT Scan




Can we design the neural network

J@ to reﬂect our kngvv\ed e of the
10 d ever
Dy ey
inverse problems, data assimilation,
and optimization

Arridge, Maass, Oktern, Schénlieb, 2019 ; Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020; Monga, Li, Eldar, 2021



Classical approach to solving inverse problems

minimize ||Hx — y||* + R(x)

Data fit term measures Reqularization function
how well image x fits measures to what extent
observation y, taking an image x has expected
ohysical model H into geometry (e.g. smoothness

account or sharp edges)



earning to reconstruct

<>

Instead of using choosing R(x) a priori based on
smoothness or geometric models,
can we learn a regularizer using training data?



Optimization framework

y minimize ||Hx — sz + R(x) £
X

fork=1,2,...
7W = x® nH T(Hx® — y) data consistency step
x*+D =regularize(z, R) regularization step

(e.g. proximal operator)
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Deep Unrolling

y minimize ||Hx — v||* + R(x) £
X
fork=1,2,...
7W = x® nH T(Hx® — y) data consistency step
x*D = CNN(z®) regularization step
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“Unroll” K iterations, train end-to-end in a supervised manner
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Physics-guided neural network architecture
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Some elements of
architecture and their
weights are fixed,
determined by choice of
optimization method,

forward model H, and

observed image data y.

L

Some
weights to
be learned
from training
data

Physics-guided neural network architecture

One big neural network
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Physical models, inverse
problem methods and

optimization theory lead to
novel architectures and highly
effective learning methods




—xample: MRI reconstruction

Original Image Machine learning Classical

method method

higher accuracy lower accuracy
16 s to compute 350 s to compute




Data assimilation

European Centre for Medium-Range Weather Forecasts:

“To make a forecast we need to know the current state of the
atmosphere and the Earth's surface (land and oceans). The weather
forecasts produced at ECMWF use data assimilation to estimate initial
conditions for the forecast model from meteorological observations.”

2012-10-20_00

Here dim(x,) = 10° and
dm(y,) = 10°, and data is
collected in 6-hour windows.

Additional applications in tracking,
molecular chemistry, robotics,
phylogenetics, economics,
geosciences, and much more.

https.//www.ecmwi. int/en/research/data-assimilation



https://www.ecmwf.int/en/research/data-assimilation

State space modeling

Initialization Xo ~ Po(Xp)

x=Fa_)+0%, &~ /0D
y, = Hx, + R, n, ~ N (O.0)
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Machine learning for data assimilation

* Making accurate
forecasts requires
naving a good
mMmodel of underlying
dynamics

 These models may
nave unknown
pDarameters or only
0e approximate —
and sometimes we
have no model at all!




Data assimilation: estimating dynamics from indirect data

Goal: Given yy.r, gstimate dynamical model
(j@c and f)

c025

Collection of inverse problems: (yt th
Where dynamics reqularize soluhons
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Our approach

 General strategy: choose 0 := (a, ) (e.g. neural network weights)
that maximizes likelihood of observations

VaN

0 = argmax £(0) where Z(0) :=logp(y,.r|0)
0

* Challenge: log-likelihood generally does not have closed-form
expression and must be numerically approximated

* Insight 1: Stochastic filtering tools like the Ensemble Kalman Filter
(EnKF) yield approximate likelihood

* Insight 2: Using auto-differentiation to calculate likelihood gradients
Improves accuracy of learning optimal parameters

Our method: gradient ascent on approximate

ikelihood calculated using EnKF



Stochastic filtering & prediction

e Goal: estimate the current state of an
evolving dynamical system observed via
INdirect measurements

 Example: tracking

o State is position and velocity at time ¢

« But we only observe noisy location at
each time ¢

* Filtering: At each time, given past
observations, estimate true location
and velocity

* Prediction: At each time, given past
observations, predict future location
and velocity

Imaage from Li, Wang, Wang, & Li 2010



https://ieeexplore.ieee.org/document/5512258

—nsemble Kalman Filter — Forecast step

th

Let x| be the value of the n™" particle

at time t — 1. First, for each particle,
we predict where it will be at the

next time given dynamics (F,, Oy):

A Forecast Particles ¥

B =F,(x )+ Q8 E~ H(0) N For
particles, from past,
(2 (X )

Evensen, 2009



Next, we observe y, and use this

observation plus knowledge of H to

improve our estimate of each x;,:

XP=R"+ K(y, + Ry —

vy ~ N(O,])

where

— Hi),

K.=CH"(HCH™ +R)™!

s called the Kalman gain

—nsemble Kalman Filter — Analysis step

Observation #
-corrected

\. Forecast

" particles,
~ A N parhcles
t n= 1

Evensen, 2009



The Ensemble Kalman Filter sequentially
estimates filtering distributions

pe(xlzt‘yl:t)a 1 <1< T.

The distributions are represented using a

CO|
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mate the likelihood & (6)



Brajard, Carassi,

=Xpectation Maximization socoue: & geriin, 2020
. fork=1,.2,...

. x,. = EnKF(0", y,.7)

041 = 0n V| X log (7). Q)|
n,t




Key Insight

In contrast to the EM method, we

* treat the particles as functions of € and

 compute likelihood gradients that reflect this dependence

* by leveraging automatic differentiation

Automatic differentiation i1s different from numerical
differentiation

autodiff uses compositions of elementary functions whose
derivatives are known

autodiff to compute gradients incurs negligible extra
computational cost compared to evaluation of likelihoods

finite difference approximations cause discretization errors



Brajard, Carassi

=Xpectation Maximization socoue: & geriin, 2020
. fork=1,.2,...

. x,. = EnKF(0", y,.7)

00 =0 T tor r (oG} 00)]

Our Autodiff-EnFK approach
« fork=1,2,...

. )0 = EnKF(0", y,.7)

. ok+1 — 6’k_|_;7 Velz lOg,/V Q@")]

Compute accurate gradients using autodifferentiation




_orenz-96 system

et F™* be flow map of vector field:

dx
— = f*(x), F*:x(s) — x(s + AS)
ds

with £ O(x) = — xED(x =2 — x+Dy _ xO 1.8 1 =1,...,40

>
o

state-space
coordinate
N
o

time t

« Common test model for filtering algorithms and low-frequency climate models
* Prototypical turbulent dynamical system; our setting: strong chaotic turbulence
* Dynamics exhibit strong energy-conserving non-linearities

« Can be defined for any desired state space dimension d,
Majda & Harim, 2012



https://www.math.nyu.edu/faculty/majda/Submitted/Majda_Harlim_Gershgorin.pdf

—xample on turbulent dynamics with partial obs.

We only observe 66% of the state and use a neural network to
estimate the underlying dynamics

0.20 - Our method with ZERO knowledge
of dynamics

[ ]
p—_t
Ut

Our method correcting inaccurate
model of dynamics

Competing method with ZERO
knowledge of dynamics

0.00° Competing method correcting
Inaccurate model of dynamics

0.00 1

Forecast Error
[->)
=

0 25 50 75
lterations

Our method is more accurate and more stable




—Xample — estimating simulation parameters

o Climate simulator takes parameters x and outputs
simulation y = H(x)

 Given observations y5pg, What are the corresponding
parameters x?

e Similar to previous inverse problem settings, but now

o« H is nonlinear

 we don’t have an explicit

form for H, can only access
through simulations

* we want to quantity
uncertainty about x




Past approaches
Classical method: For some predefined moment function m,

X = argmin ||m(y) — m(H (x))H%[m(y)].

o need expert knowledge to choose m,

* requires repeated (slow) runs of H for each new observation y,
* gradient-free optimization methods like ensemble Kalman inversion highly
dependent on prior p,.

Supervised regression: Learn a neural network f, so that

X = fo(y);

difficult to get accurate uncertainty estimates.

Schneider, Tapio, Lan, Shiwei, Stuart, Andrew, et al., 2017



Standard Emulator Approach

low-dimensional parameter x ©

—mbed &

high-dimensional dynamics y

X = argmin ||m(y) — m(ﬁe(x))uﬁ[m(y)]
X

—mulate (ours)

embedded parameters and
low-dimensional parameter x & .\ dynamics %fe o H

x = arg min ||fy(y) — g4(X)|[»

x/
high-dimensional dynamics y ' ./ empedded dynamics




Leveraging ideas from computer vision

e CLIP =
Contrastive
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—mbed & Emulate key ideas

* We design an “emulator”
that fits well in the
CLIP-based inter- N context of parameter

domain contrastive encoder &g estimation problem.
loss

!  \We use CLIP-wise loss to
o | B | e | s align the metric space of
the “emulator” and the

embedding network.

X)) s x0) (s x3) (g, Xy)

(2, X)) (s 5) (), X3) (72, X4)

encoder fy

trajectory

(V35 %) (V35 %) (V3 23) (V3 %)

e \We use contrastive loss

R to capture intra-domain
Inter-domain contrastive learning structural information 1o
scheme: Diagonals are dot learn mgamngful
products between representations embeddings.

of “positive” pairs (x;, y;) -



Contrastive losses

parameter
encoder &

Contrastive losses like £y identify
positive and negative pairs based
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on simulation parameters X In the
training data, making pairs robust
to chaotic effects
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—xample estimating Lorenz-96 parameters

42 . :
B EnKl w/ our approach (gives posterior)

B Supervised regression (point estimates)

" NPE-C (gives posterior)
B EnKl w/o learning (gives posterior)
—
@
—
-
L
X
Method EnKI w/ our approach Supervised Regression NPE-C EnKl w/o leaming
Time in minutes 52.0 (0.87 h) 43.0 (0.72 h) 52.0 (0.87 h) 8,000 (5.5 d)

Computation time for 500 training samples + 200 testing samples (including time to
generate training data, reported in minutes).



—mbed & Emulate architecture

embedding
@—E» Backbone i—»]cg(y)
-~ ' | Cyy(0)
regression
head
: £ mape(0)
g £ 5y(0)
@'_;’ T T—8e) " Oxx(0)
A

emulator



Regression head informs EnKI prior

" No regression head
B E&E, fixed prior

14

MAPE

Regression head helps guide contrastive learning

Using regression head to set prior used by EnKI further reduces
errors




2hysics-based models can inform neural
network architectures and training,

improving the reliability and interpretabllity
of ML systems.




Al & Science @ UChicago

We envision Al as an integral
component of the scientific
method, guiding the
construction of hypotheses,
designing sequences of
experiments, and analyzing
data to develop new
Nypotheses, while advancing
core Al principles.

IIIIIIIIIIIIIIIIIIIIII

i THE UNIVERSITY OF CHICAGO

g e Argon ne ° # Fermilab 3 MARINE BIOLOGICAL

INSTITUTE S~ NaTIONAL LABORATORY LABORATORY




Key challenges of Al in science

* Effective ML training for small or sparse datasets
* |ncorporation of physical models into Al structure
* Creation of surrogates

* Dimensional reduction, data synthesis and
compression, and reduced order models

e Control and Al-enabled experimental design
* Operation of experimental facilities

* Robustness, inference, and calibration

* Real-time decision-making

* Predictive maintenance and event prediction
* [raining data variability and noise

* Interpretable models and algorithms

e Coupling simulations and experiment

2020 DOE Report
“Opportunities and
Challenges from
Artificial Intelligence
and Machine
Learning for the
Advancement of
Science,
Technology, and the
Office of Science
Missions”

Opportunities and Challenges from Artificial Intelligence and
Machine Learning for the Advancement of Science,
Technology, and the Office of Science Missions




New Schmidt Futures fellowship at
UChicago to foster next generation of Al-

driven scientists

=@)> SCHMIDT FUTURES

https://aiscience.uchicago.edu/



https://aiscience.uchicago.edu/
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Yuming Daniel Sanz-
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