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Can machine learning help reconstruct images?
Train deep neural network to reconstruct CT images 

from sinogram measurements

This approach can require many training samples.


It also ignores everything we know about the data 
collection process.

Zhu, Liu, Rosen, Rosen, 2017; Arridge, Maass, Öktem, Schönlieb, 2019; Ongie, 
Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020; Akçakaya, Yaman, Chung, Ye, 2022; 

Sahel, Bryan, Cleary, Farhi, Eldar, 2022; Kamilov, Bouman, Buzzard, Wohlberg, 2022



Seismic  
Imaging

Climate Forecasting
Molecular Structure 

Estimation

There are 
many 

settings in 
which we 
have both 

training data 
and physical 

models.

Also fluid dynamics, turbulence, particle 
accelerators, scattering, automatic control…



Physics-based models can inform neural 
network architectures and training,  

improving the reliability, efficiency and 
interpretability of ML systems.  



Example: linear inverse problems in imaging

Observe:           

Goal:            Recover  from 

y = Hx + ε
x y

 x

 y “forward model”  reflects the 
physics of the imaging system

H



Image reconstruction by supervised learning

1. Collect training data pairs  using a known forward model: 


  


2. Train a reconstruction network    by minimizing over a loss; e.g.


 


3. Reconstruct new measurements  by 

(xi, yi)
yi = Hxi + εi

fθ
min

θ ∑
i

∥xi − fθ(yi)∥2
2

y ̂x = fθ(y)

A⊤
0 A0x

sinogram  
measurements  

y

reconstruction  
network 
fθ( ⋅ )

reconstructed  
image 
̂x = fθ(y)

e.g.,

CT Scan



Can we design the neural network 
 to reflect our knowledge of the 
underlying physics (i.e. )?

fθ
HYes! To do so, we leverage decades 

of accumulated knowledge of 
inverse problems, data assimilation, 

and optimization  
Arridge, Maass, Öktem, Schönlieb, 2019 ; Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020; Monga, Li, Eldar, 2021



Classical approach to solving inverse problems

minimize
x

∥Hx − y∥2 + R(x)

Regularization function 
measures to what extent 
an image  has expected 

geometry (e.g. smoothness 
or sharp edges)

x

Data fit term measures 
how well image  fits 
observation , taking 
physical model  into 
account

x
y

H



Learning to reconstruct

Instead of using choosing  a priori based on 
smoothness or geometric models,  

can we learn a regularizer using training data? 

R(x)

y ̂x



Optimization framework

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)

x(1)
x(2)

repeat until  
convergence

regu-
larize

z(1)

y ̂xminimize
x

∥Hx − y∥2 + R(x)

data 
consis-
tency

regu-
larize

z(2)data 
consis-
tency

x(3)

x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x)

z(k) = x(k) − ηH⊤(Hx(k) − y)

 
for k = 1, 2, . . .

data consistency step

regularization step 
(e.g. proximal operator)

regularize(z(k), R)



x(k+1) = arg min
x

∥x − z(k)∥2 + ηR(x)

z(k) = x(k) − ηH⊤(Hx(k) − y)

Deep Unrolling

 
for k = 1, 2, . . .

data 
consis-
tency

x(1) …
z(1)

x(3) x(K) = ̂xx(2) z(2) z(K−1)

CNN(z(k))

 blocksK

𝖺𝗋𝗀 𝗆𝗂𝗇
x

∥Ax − y∥2 + R(x)
y ̂xminimize

x
∥Hx − y∥2 + R(x)

data 
consis-
tency

data 
consis-
tency

data consistency step
regularization step

“Unroll” K iterations, train end-to-end in a supervised manner



Physics-guided neural network architecture

x(1) …
z(1)

x(K) = ̂xx(2) z(K−1)

ηH⊤y

x(k) z(k)

ηH⊤y

weight matrix = 
 is 

determined by 
physical model 

instead of learned 
from data

I − ηH⊤H=

data 
consis-
tency

data 
consis-
tency

data 
consis-
tency

(I − ηH⊤H)x(k)+ηH⊤y



Physical models, inverse 
problem methods and 

optimization theory lead to 
novel architectures and highly 

effective learning methods

Some elements of 
architecture and their 
weights are fixed, 
determined by choice of 
optimization  method, 
forward model , and 
observed image data .

H
y

Physics-guided neural network architecture

x(1) … ̂x

ηH⊤y
One big neural network

Some 
weights to 
be learned 
from training 
data



Example: MRI reconstruction

Machine learning 
method 

higher accuracy

16 s to compute

Classical 
method 

lower accuracy

350 s to compute

Original Image



Data assimilation

European Centre for Medium-Range Weather Forecasts: 


“To make a forecast we need to know the current state of the 
atmosphere and the Earth's surface (land and oceans). The weather 
forecasts produced at ECMWF use data assimilation to estimate initial 
conditions for the forecast model from meteorological observations.” 


Here  and  
, and data is  

collected in 6-hour windows.


Additional applications in tracking,  
molecular chemistry, robotics,  
phylogenetics, economics,  
geosciences, and much more.

dim(xt) = 108

dim(yt) = 106

https://www.ecmwf.int/en/research/data-assimilation 

https://www.ecmwf.int/en/research/data-assimilation


State space modeling
x0 ∼ p0(x0)
xt = F(xt−1) + Q1/2ξt, ξt ∼ 𝒩(0,I)
yt = Hxt + R1/2ηt, ηt ∼ 𝒩(0,I)

time-varying state xt

observed projections yt

Transition

Observation

Initialization



Machine learning for data assimilation

• Making accurate  
forecasts requires  
having a good 
model of underlying  
dynamics


• These models may  
have unknown  
parameters or only 
be approximate — 
and sometimes we 
have no model at all!



Data assimilation: estimating dynamics from indirect data
x0 ∼ p0(x0)
xt = Fα(xt−1) + Q1/2

β ξt, ξt ∼ 𝒩(0,I)

yt = Hxt + R1/2ηt, ηt ∼ 𝒩(0,I)

time-varying state xt

observed projections yt

Transition

Observation

Initialization

Goal: Given , estimate dynamical model 
(  and )


Collection of inverse problems ( ) 
where dynamics regularize solutions

y1:T
α β

yt = Hxt + ε



Our approach
• General strategy: choose  (e.g. neural network weights) 

that maximizes likelihood of observations


 


• Challenge: log-likelihood generally does not have closed-form 
expression and must be numerically approximated


• Insight 1: Stochastic filtering tools like the Ensemble Kalman Filter 
(EnKF) yield approximate likelihood


• Insight 2: Using auto-differentiation to calculate likelihood gradients 
improves accuracy of learning optimal parameters

θ := (α, β)

̂θ = arg max
θ

ℒ(θ) where ℒ(θ) := log p(y1:T |θ)

Our method: gradient ascent on approximate 
likelihood calculated using EnKF



Stochastic filtering & prediction
• Goal: estimate the current state of an 

evolving dynamical system observed via 
indirect measurements


• Example: tracking


• State is position and velocity at time 


• But we only observe noisy location at 
each time  


• Filtering: At each time, given past 
observations, estimate true location 
and velocity


• Prediction: At each time, given past 
observations, predict future location 
and velocity

t

t

Image from Li, Wang, Wang, & Li 2010

https://ieeexplore.ieee.org/document/5512258


Ensemble Kalman Filter — Forecast step

Let  be the value of the  particle 
at time . First, for each particle, 
we predict where it will be at the 
next time given dynamics : 


xn
t−1 nth

t − 1

(Fα, Qβ)

̂xn
t = Fα(xn

t−1) + Q1/2
β ξn

t , ξn
t ∼ 𝒩(0,I) Particles


from past, 
{xn

t−1}
N
n=1

Forecast

particles, 
{ ̂xn

t }N
n=1

Evensen, 2009



Ensemble Kalman Filter — Analysis step

Next, we observe  and use this 
observation plus knowledge of  to 
improve our estimate of each :





where


 


is called the Kalman gain

yt
H

xn
t

xn
t = ̂xn

t + K̂t(yt + R1/2γn
t − H ̂xn

t ),
γn

t ∼ 𝒩(0,I)

K̂t = ĈtH⊤(HĈtH⊤ + R)−1

Forecast

particles, 
{ ̂xn

t }N
n=1

Observation
-corrected 
particles, 
{xn

t }N
n=1

Evensen, 2009



The Ensemble Kalman Filter sequentially 
estimates filtering distributions 

. 


The distributions are represented using a 
collection of  particles. 


Using ensemble mean and covariance, we can 
approximate the likelihood 

pθ(x1:t |y1:t), 1 ≤ t ≤ T

N

ℒ(θ)



Expectation Maximization
• for 


• 


•

k = 1,2,…

x1:N
0:T = EnKF(θk, y1:T)

θk+1 = θk+η∇θ[∑
n,t

log 𝒩 (yn
t ; Fθk(xn

t−1), Qθk)]

Brajard, Carassi, 
Bocquet, & Bertino, 2020

ℒEM−EnKF

θ y1:T

x1:N
0:T



Key insight
In contrast to the EM method, we 


• treat the particles as functions of  and 

• compute likelihood gradients that reflect this dependence

• by leveraging automatic differentiation

θ

Automatic differentiation is different from numerical 
differentiation 


• autodiff uses compositions of elementary functions whose 
derivatives are known


• autodiff to compute gradients incurs negligible extra 
computational cost compared to evaluation of likelihoods


• finite difference approximations cause discretization errors



Expectation Maximization
• for 


• 


•

k = 1,2,…

x1:N
0:T = EnKF(θk, y1:T)

θk+1 = θk+η∇θ[∑
n,t

log 𝒩 (yn
t ; Fθk(xn

t−1), Qθk)]

Brajard, Carassi, 
Bocquet, & Bertino, 2020

ℒEM−EnKF

θ y1:T

x1:N
0:T

• for 


• 


•



Compute accurate gradients using autodifferentiation

k = 1,2,…

x1:N
0:T (θk) = EnKF(θk, y1:T)

θk+1 = θk+η∇θ[∑
n,t

log 𝒩 (yn
t ; Fθk(xn

t−1(θ
k)), Qθk)]

ℒAD−EnKF

θ y1:T

x1:N
0:T

Our Autodiff-EnFK approach



Lorenz-96 system
Let  be flow map of vector field: 





with , 


F*

dx
ds

= f*(x), F* : x(s) ↦ x(s + Δs)

f *(i)(x) = − x(i−1)(x(i−2) − x(i+1)) − x(i) + 8 i = 1,…,40

st
at

e-
sp

ac
e 

co
or

di
na

te

time t

Majda & Harlim, 2012

• Common test model for filtering algorithms and low-frequency climate models

• Prototypical turbulent dynamical system; our setting: strong chaotic turbulence

• Dynamics exhibit strong energy-conserving non-linearities

• Can be defined for any desired state space dimension dx

https://www.math.nyu.edu/faculty/majda/Submitted/Majda_Harlim_Gershgorin.pdf


Example on turbulent dynamics with partial obs.
We only observe 66% of the state and use a neural network to 

estimate the underlying dynamics

unknown dynamics is most likely due to the convolutional-type architecture of the NN fNN
↵ , which implicitly

assumes that each coordinate only interacts with its neighbors, and that this interaction is spatially invariant.
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Figure 8: Learning Lorenz-96 from fully unknown dynamics (§5.2.2) v.s. model correction (§5.2.3) with partial

observations (H = [e1, e2, e4, e5, e7, · · · ]>). All performance metrics are evaluated after each training iteration. Red

dashed lines correspond to metric values obtained with the reference model f
⇤
and Q

⇤
. The absence of lines for EM

in the fully unknown setting is due to its low and unstable performance.

6 Conclusions and Future Directions

This paper introduced AD-EnKFs for the principled learning of states and dynamics in DA. We have

shown that AD-EnKFs can be successfully integrated with DA localization techniques for recovery of high-

dimensional states, and with TBPTT techniques to handle large observation data and high-dimensional

surrogate models. Numerical results on the Lorenz-96 model show that AD-EnKFs outperform existing EM

and PF methods to merge DA and ML.

Several research directions stem from this work. First, gradient and Hessian information of LEnKF

obtained by autodi↵ can be utilized to design optimization schemes beyond the first-order approach we

consider. Second, the convergence analysis of EnKF estimation of the log-likelihood and its gradient may be

generalized to nonlinear settings. Third, the idea of AD-EnKF could be applied to auto-di↵erentiate through

other filtering algorithms, e.g. unscented Kalman filters, and in Bayesian inverse problems using iterative

ensemble Kalman methods. Finally, the encouraging numerical results obtained on the Lorenz-96 model

motivate the deployment and further investigation of AD-EnKFs in scientific and engineering applications

where latent states need to be estimated with incomplete knowledge of their dynamics.
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Our method with ZERO knowledge 
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model of dynamics
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Competing method correcting 
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Example — estimating simulation parameters

• Climate simulator takes parameters  and outputs 
simulation 


• Given observations , what are the corresponding 
parameters 


• Similar to previous inverse problem settings, but now

x
y = H(x)

yobs
x?

•  is nonlinear


• we don’t have an explicit 
form for , can only access 
through simulations


• we want to quantify 
uncertainty about 

H

H

x



Past approaches
Classical method: For some predefined moment function ,


 


• need expert knowledge to choose , 

• requires repeated (slow) runs of  for each new observation ,

• gradient-free optimization methods like ensemble Kalman inversion highly 

dependent on prior .


Supervised regression: Learn a neural network  so that


; 


difficult to get accurate uncertainty estimates.

m

̂x = arg min
x

∥m(y) − m(H(x))∥2
Σ[m(y)].

m
H y

px

fθ

̂x = fθ(y)

Schneider, Tapio, Lan, Shiwei, Stuart, Andrew, et al., 2017



Standard Emulator Approach

high-dimensional dynamics y

̂gθ

fθ

̂x = arg min
x

∥fθ(y) − ̂gθ(x)∥2

embedded dynamics

embedded parameters and 
dynamics ≈ fθ ∘ H

high-dimensional dynamics ylow-dimensional parameter x Ĥθ

̂x = arg min
x

∥m(y) − m(Ĥθ(x))∥Σ[m(y)]

low-dimensional parameter x

Embed & Emulate (ours)



Leveraging ideas from computer vision

embedding 
of text 
string 1

embedding 
of text 
string N

embedding 
of image N

embedding 
of image 1

Text N and image 
N have similar 
embeddings

Text 3 and image N 
have dissimilar 
embeddings

• CLIP = 
Contrastive 
Language-Image 
Pre-Training


• Learns 
embedding so 
that

• if an image and 
text go together, 
their embeddings 
are similar


• if an image and 
text are 
unrelated, their 
embeddings are 
far apart



 Embed & Emulate key ideas
• We design an “emulator” 

that fits well in the 
context of parameter 
estimation problem.


• We use CLIP-wise loss to 
align the metric space of 
the “emulator” and the 
embedding network.


• We use contrastive loss 
to capture intra-domain 
structural information to 
learn meaningful 
embeddings.

Inter-domain contrastive learning 
scheme: Diagonals are dot 

products between representations 
of “positive” pairs  .(xi, yi)

tr
aj

ec
to

ry
 

en
co

de
r 
f θ

(y1, x1) (y1, x2) (y1, x3) (y1, x4)

(y2, x2) (y2, x3) (y2, x4)(y2, x1)

(y3, x4)(y3, x1) (y3, x3)(y3, x2)

(y4, x1) (y4, x2) (y4, x3) (y4, x4)

̂gθ(x1) ̂gθ(x2) ̂gθ(x3) ̂gθ(x4)

fθ(y1)

fθ(y2)

fθ(y3)

fθ(y4)

parameter 
encoder ̂gθ

x

y

CLIP-based inter-
domain contrastive 

loss



Contrastive losses

tr
aj

ec
to

ry
 

en
co

de
r 
f θ

(y1, x1) (y1, x2) (y1, x3) (y1, x4)

(y2, x2) (y2, x3) (y2, x4)(y2, x1)

(y3, x4)(y3, x1) (y3, x3)(y3, x2)

(y4, x1) (y4, x2) (y4, x3) (y4, x4)

̂gθ(x1) ̂gθ(x2) ̂gθ(x3) ̂gθ(x4)

fθ(y1)

fθ(y2)

fθ(y3)

fθ(y4)

parameter 
encoder ̂gθ

x

y

(y1, ỹ1) (y1, ỹ2) (y1, ỹ3) (y1, ỹ4)

(y2, ỹ2) (y2, ỹ3) (y2, ỹ4)(y2, ỹ1)

(y3, ỹ4)(y3, ỹ1) (y3, ỹ3)(y3, ỹ2)

(y4, ỹ1) (y4, ỹ2) (y4, ỹ3) (y4, ỹ4)

(x1, x̃1) (x1, x̃2) (x1, x̃3) (x1, x̃4)

(x2, x̃2) (x2, x̃3) (x2, x̃4)(x2, x̃1)

(x3, x̃4)(x3, x̃1) (x3, x̃3)(x3, x̃2)

(x4, x̃1) (x4, x2) (x4, x̃3) (x4, x̃4)

fθ( ỹ1) fθ( ỹ2) fθ( ỹ3) fθ( ỹ4)

̂gθ(x̃1)

̂gθ(x̃2)

̂gθ(x̃3)

̂gθ(x̃4)

ℓXY(θ)

ℓXX(θ)

ℓYY(θ)

Contrastive losses like  identify 
positive and negative pairs based 
on simulation parameters  in the 
training data, making pairs robust 

to chaotic effects

ℓYY

x



Example estimating Lorenz-96 parameters

Computation time for 500 training samples + 200 testing samples (including time to 
generate training data, reported in minutes).

Method EnKI w/ our approach Supervised Regression NPE-C EnKI w/o learning
Time in minutes 52.0 (0.87 h) 43.0 (0.72 h) 52.0 (0.87 h) 8,000 (5.5 d)



Embed & Emulate architecture

Backbone

Residual

MLP

x

y fθ(y)

̂gθ(x)

MLP

̂x

ℓYY(θ)

ℓXY(θ)

ℓXX(θ)

ℓMAPE(θ)

emulator

embedding

regression 
head



Regression head informs EnKI prior
M

AP
E

0

3.5

7

10.5

14

F h c b

No regression head
E&E, fixed prior
E&E, empirical Bayes

Regression head helps guide contrastive learning


Using regression head to set prior used by EnKI further reduces 
errors



Physics-based models can inform neural 
network architectures and training, 

improving the reliability and interpretability 
of ML systems.  



AI & Science @ UChicago

We envision AI as an integral 
component of the scientific 

method, guiding the 
construction of hypotheses, 

designing sequences of 
experiments, and analyzing 

data to develop new 
hypotheses, while advancing 

core AI principles.



Key challenges of AI in science
• Effective ML training for small or sparse datasets

• Incorporation of physical models into AI structure

• Creation of surrogates

• Dimensional reduction, data synthesis and 

compression, and reduced order models 
• Control and AI-enabled experimental design 
• Operation of experimental facilities

• Robustness, inference, and calibration

• Real-time decision-making

• Predictive maintenance and event prediction 
• Training data variability and noise

• Interpretable models and algorithms

• Coupling simulations and experiment
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