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Introduction: The Radial Velocity Method

Doppler Shift due to
v, : radial velocity Stellar Wobble

A : wavelength of light

VI"
y, =14+ —
C
Christian Doppler
(1803-1853)
A, =7, A

Two steps:

1. At each observed time, 7, detect a Doppler-shift and infer a v (¢).

2. Fita “RV Curve” over time to v (?).
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RV Method Techniques

e Cross-Correlation Function (CCF)

* (e.0. )

e Other Techniques
 Template Matching (e.g.
 Forward-Modeling (e.g.
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Current State of Discovered Exoplanets

| | | exoplanetsl.org | 3/28/2020
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Exoplanets discovered via RV Method



Underlying Issue: Stellar Activity

Stellar activity (starspots, faculae, granulation, etc.)
can mimic the signal of exoplanets!

The effects of stellar activity do not
currently have a well-known (and accurate)
physical model.

There does exist a detectable difference
between signals of stellar activity and a
Doppler shift ( ).




Attempts to Disentangle Stellar Activity

RV Estimation RV Curve Fitting

 Detect, and remove, absorption

features that are sensitive to stellar * Fitthe estimated RV's

simultaneously with a time

activity. ( . .
) series of stellar activity
indicators using Gaussian
o Drawback: at least 89% of absorption Processes. (
features are sensitive to stellar activity )

e This Work: Reformulate the RV
estimation in terms of an easily
extendable statistical method.




Hermite-Gaussian Radial Velocity (HGRV)
method at a glance

Assume the true velocity is small (i.e. due to an exoplanet) and estimate
the velocity with (weighted) simple linear regression of the difference flux
on a sum of first-degree Hermite-Gaussian functions.
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W, (X; U, 0) : nth degree generalized Hermite — Gaussian function
| (x — p)°
rTHN T . . .
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D(¢ || @) : standardized approximation error for approximating ¢ with ¢

T (@) = p())dx
D] ) = ==
| p(x)2dx

(=)’ (Ex — p)*

Theorem: For any 6 > 0 and any u, & and g(x;&) = e  20° —e¢ 20>  decomposed in the Hermite-

o0

Gaussian basis as g(x; &) = Z c, (O, (x; u, 0), ?_I)I} D(ci(&yp(x; 1, 0) || g(x; &) =
n=0

2u?
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At small radial velocities, the difference between a Gaussian and a Doppler-
shift of it can be well approximated as a constant multiple of the first-
degree Hermite-Gaussian function.
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HGRYV Linear Model
L \/ﬁdi”j
Yi = Vrz
= \/27;]

y: difference flux of pixel ] y, - first — degree Hermite — Gaussian function

lljl (xi; //tja 6]) + 8i ’ gi ~ N(Oan)

x; : wavelength of pixel C : speed of light

m : number of absorption features . additional parameters

Vo

.. unknown velocity coefficient

easily estimated separately
with template spectrum



HGRYVY Linear Model

’ gi ~ N(Oan)

\ First-degree Hermite-Gaussian

Coefficient to  sumacrossm  Relative amplitude of function centered at ;
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Application to 51 Pegasi

Step 1: Stack all observed spectra and estimate the template through local
quadratic regression
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Application to 51 Pegasi

Step 2: Identify wavelength intervals of absorption features in the estimated
template (using Absorption Feature Finder algorithm in ).

Step 3: Estimate d;, p;, and o; for each j by fitting Gaussians to all
absorption features in the estimated template.
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Application to 51 Pegasi

Step 4: Estimate v, and its uncertainty, using simple linear regression
(without an intercept).
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Application to 51 Pegasi

HGRV CCF FM
K 56.48 + 0.16 m s~ ! 56.20 + 0.19m s~ ' | 56.17 + 0.18 m s~}
P | 4.2308 + 0.0001 days | 4.2304 + 0.0002 days | 4.2306 + 0.0002
b —1.333 + 0.006 —1.326 + 0.007 —1.331 + 0.007
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v(t) = K - sin
A1) b

K : velocity sem1 — amplitude
P : orbital period
@ : phase offset

b : velocity offset

CCF and FM (Forward-modeling) velocities provided by
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Simulation Studies:
Comparison to the classical Cross-Correlation Function (CCF)
approach

RMS Difference
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Simulation Studies:

Comparison to the classical Cross-Correlation Function (CCF)

approach |
100 15.0 gogl 2le 390
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10
The HGRV is an I,
example of reducing £
the overall MSE by © ol
adding in a small 0.01 J
amount of bias.
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Sources of bias:

* Assuming absorption features are Gaussian shaped
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* Treating a multiplicative shift (Doppler shift) as an additive shift



Extending the HGRV Method

1. Indicate the presence of stellar activity

« HGRV Extension: F-test with additional variables composed of
higher-degree Hermite-Gaussian functions. (Holzer et al. (in prep)

2. Model out stellar activity

« HGRV Extension: estimate stellar activity signal using variables
built to be orthogonal to HGRV variable.  (Holzer et al. (in prep)




Conclusions

* The Radial Velocity method for finding exoplanets can be formulated as

simple (weighted) linear regression using generalized Hermite-Gaussian
functions.

 The Hermite-Gaussian Radial Velocity (HGRV) approach outperforms the

traditional CCF approach in the simulation study and 51 Pegasi data
considered.

Based on the paper arxiv 2005.14083

Methodology implemented in:

* R package (publicly available through the CRAN)

* Python available at


https://arxiv.org/abs/2005.14083
https://CRAN.R-project.org/package=rvmethod
https://github.com/parkerholzer/hgrv_method
https://arxiv.org/abs/2005.14083
https://CRAN.R-project.org/package=rvmethod
https://github.com/parkerholzer/hgrv_method
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