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Finding the normal CDF

erf(x) = F (x) =

∫ x

−∞

1√
2π

e−u
2/2du

and the tail probability

erfc(x) = 1− erf(x)

Compute F (.25)

# in R

> pnorm( .25)

[1] 0.59870632568292
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Finding the normal CDF

How is this really computed?
(try to find pnorm.c within the R source code)
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Cody, W. D. (1993)

Rlm(x) = Pl(x)/Qm(x) a ratio of a 5th and a 4th degree polynomial.
Accurate to 14 digits!

Approximation works – but it is mysterious!
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Another computation

A 16× 16 spatial field

4.4    4 4.4    19 4.4    80

11.7    4 11.7    19 11.7    80

20.2    4 20.2    19 20.2    80

→ MLEs for covariance
parameters

The MLE estimator in this case is the function

F(field)→ θ̂, λ̂

<256 → <2

In the fields package and for a Matern
fit <- spatialProcess( x, y, smoothness=.5)
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Example of a statistical approximation

Use a deep network (CNN or dense network) to approximate
“maximum likelihood estimates”.

The F !

• Covariance parameters for a Gaussian spatial process.
• Parameters of the extreme value distribution

Approximation works – but it is mysterious!
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Climate model output

Local temperature sensitivity to global temperature
First 8 out of 30 centered ensemble members

−0.5 0.0 0.5

Goal: Simulate additional fields efficiently that match the spatial
dependence in this 30 member ensemble.
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A Statistical Approach

≈ 13K grid boxes over N and S America

Estimate a spatially varying covariance function by fitting stationary
covariances to small windows. (16× 16)

Range and variance parameter for each window.

Encode local estimates into a global model to simulate Gaussian
random fields.
This is Ashton Wiens Ph D work.

Train a convolution neural net (CNN) on the “image” to estimate
covariance parameters.

Or train a dense neural net on the variogram

We found a speedup by a factor of 100!
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Matérn covariance function

Covariance function:

k(x1, x2) = σ2Matern function ν(d)

with d = ||x1 − x2||/θ
• Matérn function is a modified Bessel function.
• Smoothness ν measures number of mean square derivatives and is
equivalent to the polynomial tail behavior of the spectral density.
• θ is the range parameter.
• For ν = .5: the classic exponential

k(x1, x2) = σ2e−||x 1−x 2||/θ

D. Nychka, F. Gerber, M. Bailey and S. Sain∗ (Colorado School of Mines and ∗Jupiter)Fall-19 September 10, 2021 9 / 31



Observational model

Y (x) = g(x) + e(x)

with g following a Gaussian process with Matérn covariance, variance σ2

and e white noise, variance τ2.

We are interested in maximum likelihood estimates for θ (range), σ2

and τ 2.

• A useful short cut is to focus on θ and λ = σ2/τ2

Can convert λ to equivalent degrees of freedom of the smoother for g .

• Analytical expresssions for MLEs of σ2 and τ2 based on MLE of λ.

D. Nychka, F. Gerber, M. Bailey and S. Sain∗ (Colorado School of Mines and ∗Jupiter)Fall-19 September 10, 2021 10 / 31



Finding the MLEs

log Likelihood for covariance parameters.

= −yT (σ2C (θ) + τ2I )−1y
2

− (1/2)ln|σ2C (θ) + τ2I | − (n/2) ln(π)

or concentrating onto λ and θ

= −(n/2)− (1/2)ln|σ̂2(θ, λ)(C (θ) + λ)I | − (n/2) ln(π)

• C (θ) correlation matrix for observations.
• No closed form for maximum.
• Often hard to find good starting values for optimization.
• Evaluating inverse and determinant can be time consuming.
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Examples of training fields

Y (x) = g(x) + e
x on a 16× 16 grid, Var(Y ) = 1,

increasing
range ( θ)
↓

→ decreasing noise (τ2)
4.4    4 4.4    19 4.4    80

11.7    4 11.7    19 11.7    80

20.2    4 20.2    19 20.2    80
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Variograms of training fields

increasing
range ( θ)
↓

→ decreasing noise (τ2)
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Neural net setup

• A neural network is a composition of many simple functions to
approximate arbitrary functions.
• It depends on estimating many parameters (weights) based on a large
training sample. Training / testing sets

Input are 16× 16 Gaussian fields or their variograms

200× 201 = 40200 values in covariance parameter space

≈ 1M fields generated for training.

Tested on 10K fields from 2000 parameter combinations.4 F. Gerber and D. W. Nychka

FIGURE 1 Scatter plot of the ✓ (y-axis) and log(�) (x-axis) parameters. The 40,200 gray points represent the parameter con�gurations used to train
the NNs and �nd the ML estimates. The 2,000 pink points represent parameter con�gurations used for testing. Each line of points corresponds to
models having the same degrees of freedom (indicated on top).

To detail the grid search approach to maximize (2) we make further assumptions motivated by the data application of Section 4. First, we set
the covariance function c(s, s0, ✓) to be Matérn with range ✓ and a �xed smoothness parameter ⌫ = 1, which is a standard model used in spatial
statistics. Second, we exploit the fact that the ML estimates for �2 and ⌧2 have a closed-form given the estimate for � = ⌧2/�2. Without loss
of generality, we can set �2 = 1 implying ⌧2 = �, and hence, the parameters to be inferred are ⇠ = (✓,�)T. And third, the �eld y consists of
a 16 ⇥ 16 �elds with n = 256 observations. With these assumptions and the considerations on the EDFs, we construct an e�cient parameter
grid to maximize (2) based on a strati�ed design. More speci�cally, we choose a grid of 201⇥ 200 = 40,200 parameter con�gurations, where the
✓ values are equally spaced between 2 and 50, and for each choice of ✓, log(�) values are chosen such that the EDFs of the associated models are
equally spaced between 1 and 255; see Figure 1 for visualization. This design makes the � values comparable across di�erent range parameters.
To �nd the ML estimates we evaluate the log-likelihoods for all those parameter con�gurations, and the con�guration leading to the largest log-
likelihood identi�es the estimates. Note that this design provides a robust estimate while entailing attractive computational features, such as the
ability to reuse Cholesky factors among parameter con�gurations with the same values of ✓ and parallel computing opportunities. Other numerical
optimization methods might �nd the global optimum with fewer evaluations of the likelihood but at the price of losing some of these advantages.

2.2 NN framework for parameter estimation

TheNN framework allows us to take a di�erent view on this estimation problem by determining themapping between data and parameters directly.
Instead of deriving FNN from (1), it is de�ned as

FNN : Rn ! D, FNN(y) = b⇠NN, (6)
where y is the input data, which is in our case a sample of a 16⇥16 �eld and b⇠NN is the corresponding estimate. In contrast toFML,FNN depends on
pweightsw = (w1, . . . ,wp)T to be determined.With this formulation, we can express the main results of this work. We show thatFNN can give an
accurate approximation to FML and that FNN can be evaluated at least two orders of magnitude faster than FML. Inferring w is also called training
the model and requires training data consisting of (y, ⇠) pairs and a loss function L(b⇠NN, ⇠) that quanti�es the accuracy of b⇠NN compared to ⇠.
The weights are found by minimizing this loss function, which is a non-trivial task. Fortunately, there are numerical optimizers built around batch
gradient descent methods that perform well at this task, in part because they harness state-of-the-art CPU and GPU computing (Ruder 2017).

The speci�c form of FNN is termed model architecture and is de�ned through the sequence (composition) of layers (functions) f1, . . . , fl, i. e.,
FNN(x) = (fl � · · · � f1)(x). In our case, we use a combination of dense and convolutional layers together with linear and ReLU activation functions.
A dense layer with nI inputs produces nO outputs and is fully connected, i. e., it involves O(nI ⇤ nO) weights. A convolutional layer consists of m
linear �lters of a given kernel size, e. g., M ⇥ M, which are convolved with the input �eld. In this setup, there are O(m ⇤ M2) weights to optimize.
We refer to Lopez Pinaya, Vieira, Garcia-Dias, and Mechelli (2020) for more details on convolutional layers and www.tensorflow.org/api_docs

for information on the TensorFlow implementation of both dense and convolutional layers. We found the reported model architecture by using
our intuition and a small number of experiments. This approach was adequate given the robustness of the results as we varied the architectures.
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Inputs and artificial neurons

Three neurons with four available inputs:
Each neuron creates a linear combination of the
inputs followed by a nonlinear transformation.

• Outputs from one layer become the inputs for another layer.
• Linear transformation is estimated (learned) for every neuron
• ”Deep Learning” considers many neurons and mulitple layers.

Two hidden layers:

4/8/2021 A NeXUal NeWZoUk PUimeU _ Condp NaVW Technolog\

hWWSV://Wechnolog\.condenaVW.com/VWoU\/a-neXUal-neWZoUk-SUimeU 1/11

OcWRbHU 30, 2017

MacKLQH LHaUQLQJ aW CRQd« NaVW, PaUW 1: A NHXUaO
NHWZRUN PULPHU

WULWWHQ b\ y JRKaQ EdYLQVVRQ

Over the last few years, the adoption of "deep learning" approaches has

engendered a great deal of progress in computer vision. Deep learning, also

known as ‘representationÕ learning, refers to a family of algorithms that use

Artificial Neural Networks (ANNs; often shorted to Neural Networks, Neural Nets,

or NNs within conversation) to directly learn to perform tasks such as

classification from labeled raw data (in this case images). The algorithm

automatically will detect and determine what features of the input data are

essential for a given task. This is opposed to more traditional computer vision

approaches, where features are engineered and extracted from the data

manually. The most commonly used and successful type of neural network used

for computer vision is Convolutional Neural Networks (CNNs or ConvNets). In

/ TechQRORg\

TZLWWHU GLWHXb JRbV

• 4× (3 + 1) = 16 parameters in second layer
• 4× (4 + 1) = 20 parameters in third layer
• 4 + 1 = 5 parameters in output layer
See Neural Networks and Deep Learning, Michael Nielsen, for a good introduction
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A convolution version CNN

Designed to work on images

A linear filter is applied to every 3× 3 block of the input field followed by
a nonlinear transformation.

In this case the 5×5 image is reduced to a 2×2 output image.

• These filter results are then filtered again . . . and again !

• Many filters (128) are considered. [ ] [ ] . . . [ ]
• Filter weights found by training (of course!).
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Basic functional step

Where is the neuron?

yj = φ(b + w1x1 + . . .+ w9x9)

• {x1, x2, . . . , x9} pixel values from 3× 3 ”image” (aka a tensor)

• yj – the j th pixel value for ”image” (tensor) at next layer

• w the weights and b offset to be estimated/optimized

• φ(u) = u+ Rectified linear unit
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Net architecture

Form for finding MLEs based on an image

Layer Operation Size

1 Input 16×16 image
2 2D convolution 128 7×7 filtered images
3 2D convolution 128 3 × 3 filtered images
4 2D convolution 128 outputs
5 dense 500 outputs
6 dense 2 outputs ( θ and λ)

636K parameters!
E.g at layer 5 there are 500 neurons each with 128 inputs, (128 +1)X 500
parameters

• Simpler 2 layer dense network used for finding MLEs based on a
variogram
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Parameter estimates on 10K test samples

• Recall that the MLEs are “optimal” for large n based on Cramer-Rao
lower bound.

CNN Image NN Variogram MLEs
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Results continued

Training:

• CNN , NN, and MLE estimates tend to track the red lines (truth)

• CNN and NN overall has comparable accuracy to the MLEs

• Potential tradeoff between bias in CNN estimates and variance in MLEs
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Climate model emulation

Estimated log Variance and range

MLE NN variogram
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Timing

Training the network 2− 6 hours using cloud computing
(but this can be shortened for a slightly less accuracy)

For the climate model output

• 12,769 windowed estimates

• 10s of seconds using the CNN , 2 minutes using the NN variogram

• ≈ 1.5 hours using standard MLE fitting in R (fields package)

In general we find a factor of 100 or more speedup.

Part of this may be due to the efficiency of the tensor flow libraries and
low level coding.
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More about irregular spatial data

Build a deep net based on the variogram statistic.

Can the variogram serve as an approximate “sufficient statistic” for a
stationary covariance function?

log parameter estimates for λ and the range
log  lambda

Test
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Loose ends

• How to adjust variogram NN for different bin counts.?

• Train on a SAR model (LatticeKrig, SPDE) directly instead of Matérn .

• Train for the likelihood surface instead of just the estimates.
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Hydrologic models and extremes

Steve Sain, Jupiter , Maggie Bailey Mines
Simulating flooding from extreme precipitation
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Elevations Oahu, Hawaii Aerial view of study region and grid cell 
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Simulated high water field for 60 cm 

D. Nychka, F. Gerber, M. Bailey and S. Sain∗ (Colorado School of Mines and ∗Jupiter)Fall-19 September 10, 2021 25 / 31



Hydrologic models and extremes

Goal is to estimate the shape (ξ) and scale parameters (σ) of a
generalized Pareto distribution
at many (millions) of pixels.

f (x) =
(1/σ)(1 + ξ (x−µ)σ )

−ξ+1

ξ ξ 6= 0

(1/σ)e− (x−µ)
σ ξ = 0

and
x ≥ µ ξ ≥ 0
µ ≤ x ≤ µ− (σ/ξ) ξ ≤ 0

• Train a neural net on finely binned histograms to obtain estimates
comparable to the MLEs.

• Potential speedup will allow for data analysis on high resolution model
output.
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Prelimnary results

Sample size of 2500, 8000/2000 cases for training/testing, µ = 1 i.e.
threshold is fixed.

Training neural networks opens numerous options for inputs and architecture. Therefore training can turn
into a method of trial and error. For the architecture presented below, two inputs are considered and
compared against one another for estimation accuracy. The first input type used are the bin counts for unit
spacing of the histogram for each sample. For example, in many of the generated data sets, the first bin has
several hundred observations or more and the counts often fall to zero rather quickly, by about the 30th bin.
Thus, unit bin spacing for each histogram regardless of the maximum of the dataset results in 1,317 bins for
each sample. This input will be referred to as the “fine” input option.

A second method to generate the input is more adaptive and avoids unnecessarily large bin counts. The 99th
percentile of the dataset is calculated. The sample is then sliced o� at the 99th percentile and remaining
data is split into 100 bins for a histogram. The counts for each bin are used as input. While the spacing is
no longer uniform, the input is smaller. This will be referred to as the “percentile” input option.

The neural network has many opportunities for optimization, from the number of layers to the number of
units for each layer. Optimizing each network is done largely through trial and error. However, two options
for the network architecture remain the same: (1) the output layer has two units in order to estimate the
shape and scale parameters simultaneously and (2) the linear activation function is used for the final layer.
The final network shown at the end of this project utilizes a deep network with four hidden layers. The
network utilizes the Rectified Linear Unit (ReLU) and linear activation functions.

Results

While the fine input does better than the percentile input in estimating both parameters, neither do as well
as the maximum likelihood estimates. The final network structure chosen for the following results performed
the best out of numerous variations of network architectures tested. This architecture structure was tested
for both input types where the input size was changed depending on which input was being used. The
architecture is printed in the Appendix.

The plots below show the fitted versus predicted values for both parameters. Figure 1 shows plots for the
scale parameter and Figure 2 shows plots for the shape parameter. It is clear from this plot that the fine
input results in more accurate scale parameter estimates while the percentile input does better for the shape
parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a
reasonable estimation for the scale parameter using the percentile input was di�cult. Often, an improvement
in the scale estimation resulted in poorer estimation for the shape parameter for the percentile input.

Figure 1: The actual parameters (x-axis) versus the estimated scale parameter (y-axis) for each method are
shown. Maximum likelihood appears comparable to the neural net fit using the fine histogram input while
the percentile input performs poorly.

2

Figure 2: The actual parameters (x-axis) versus the estimated shape parameter (y-axis) for each method are
shown. Maximum likelihood outperforms the neural network for both inputs.

Table 1: The accuracy of the MLEs outperforms the neural network but is slower to compute.

Method Input type RMSE (Shape) RMSE (Scale) Estimation Time
MLE 6.75 0.802 151 sec
Neural Network Histogram (fine) 7.73 2.01 8.19 sec

Histogram (percentile) 95.7 3.26 7.49 sec

The root mean squared error (RMSE) for the three estimates compared to the true parameters are shown
above, in addition to the time to compute the estimates. There is a trade o� between the accuracy but
slowness of maximum likelihood and the quickness but less accurate neural networks. Despite the fast
computing of the percentile input for the neural network, the accuracy of the fine histogram bins as input
makes it a more desireable input. Additionally, the neural network using the fine input results in an RMSE
that is close to the MLE, however the RMSE for the scale parameter is much higher.

Conclusion and Future Work

The utilization of neural networks for parameter estimation is an attractive method for quick computation
and, often, the potential accuracy of the estimates. We compared two classes of bin counts for input to the
neural network, but both were outperformed by maximum likelihood estimation. While the neural network
estimates the parameters much faster (by a factor of more than 10), the accuracy of maximum likelihood
cannot be overlooked and may be better suited for GPD parameter estimation.
It is important to note that there are various methods for optimizing the accuracy of a neural network and
many options could still be considered. For example, in this analysis two types of bin counts were used as
input. A di�erent set of inputs, however, may be better suited for parameter estimation. Changing the
number of bins may also have an impact on the network’s ability to accurately estimate the shape and scale
parameters of the GPD.
Finally, network structure can take numerous forms. The structure of the network presented in this report had
four hidden layers and estimated 88,418 parameters for the percentile binned input and 127,362 parameters
for the fine binned input. This is one option out of many considered but there could be a better performing
architecture. A network with additional hidden layers, a 1D convolutional layer, or dropout layer could
improve results. Overall, the accuracy of the fine binned histogram input is more promising than the
percentile input and further exploration into improving network architecture for the fine binned input could
prove worthwhile.

3

Fine bins ≈ 1300, Percentile bins ≈ 100 • Speedup is about a factor of
15 over exact MLEs
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Summary

• Exploit fast simulation of statistical samples to train a neural net.

• Neural nets can accurately reproduce statistical computations but
evaluate much more quickly.

• Training and test samples provide a rigorous way to insure neural net
approximations.
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Thank you
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An example of a Keras/R specification

• NxN image initial image, and 3X3 filters interspersed with max pooling
reductions.
• Final step takes the last ”image” and feeds to a dense neural network
with 2 outputs

modelMatern11 %>%

layer_conv_2d( 32, kernel_size=3, activation=’relu’,

input_shape=c(N,N,1) ) %>%

layer_max_pooling_2d() %>%

layer_conv_2d( 32, kernel_size=3, activation=’relu’) %>%

layer_max_pooling_2d() %>%

layer_flatten() %>% layer_dense(2)
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Keras model summary

> modelMatern11

Model

Model: "sequential"

_________________________________________________________________________________________________

Layer (type) Output Shape Param #

=================================================================================================

conv2d (Conv2D) (None, 14, 14, 32) 320

_________________________________________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 7, 7, 32) 0

_________________________________________________________________________________________________

conv2d_1 (Conv2D) (None, 5, 5, 32) 9248

_________________________________________________________________________________________________

max_pooling2d_1 (MaxPooling2D) (None, 2, 2, 32) 0

_________________________________________________________________________________________________

flatten (Flatten) (None, 128) 0

_________________________________________________________________________________________________

dense (Dense) (None, 2) 258

=================================================================================================

Total params: 9,826

Trainable params: 9,826

Non-trainable params: 0

_________________________________________________________________________________________________
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