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> Often we want to extract some physical parameter from the parameter(s)
of interest (POls) from our dataset.

> The signal yield or branching fraction
> Decay time
> Mass, width, angular parameters etc.

> Usually have other parameters we don't know but also don’t care about -
nuisance parameters

> Size and shape of backgrounds
> Signal fractions etc...

> Often we don't know the true distribution of some components

» Background compositions
> Acceptance effects
> Kinematic turn on’s due to trigger efficiencies

» A common strategy is to fit some functional form to the data so as not to
rely on simulation.

» Other strategies exist (i.e non-parameteric density estimators), not covered
here.

Nicholas Wardle
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The model choice problem

In the example of the Higgs boson decaying to photons analysis (and many
other cases), we don’t care about the background but we need to model it well
to extract the signal!
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Common problem in analysis....

Want to fit a distribution in data to model a smooth background (eg bump-hunt,
H->vy, H2up ...). Maybe we don’t know what that shape should be (insufficient MC,
trigger turn on, selection bias ...)
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The model choice problem
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Looks like a falling spectrum, why not try an exponential with a Gaussian for the
signal?
....fits well to the data at least by eye
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But then so does a power-law...

-+- Toy data
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And so would a polynomial?!

-+- Toy data
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The model choice problem B

Which one should we use (if any?)
The difference In shape can make a difference

< in the results depending on which one you pick
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1. Pick your favourite model (or the one which fits best) and ignore all others

2. Look at difference in results from your favourite model with others and
add as a systematic

3. Use toys to assess any difference and add this as a systematic
4. Increase freedom of the model to minimise systematic bias but increase
statistical uncertainty - as in the CMS discovery paper (Phys. Lett. B 716
(2012) 30)
What we want to know is:
» How do we choose which model to use?
» How do we quote the result?

» How do we assign a systematic uncertainty from any choice we've made?

Nicholas Wardle
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> Present here a method for treating model choice uncertainties like a
discrete nuisance parameter

> It summarises the work of P. Dauncey, M. Kenzie, N. Wardle and G.
Davies JINST 10 P04015 ([arXiv:1408.6865])

» CAVEAT! - This is not a “silver bullet” solution but one method, used in
CMS, to address the problem.

Nicholas Wardle
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Consider a simple situation:
> one parameter of interest - e.g the mass of the signal, x
> one nuisance parameter - e.g. background exponential slope, 6

> all other parameters fixed (we imagine they are known perfectly)

Full profile fit
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Concept of a nuisance parameter B

» Now imagine the background parameter is perfectly known also

> fix nuisance parameter which now has no variation
> equivalent to the statistical only error

o F
5 5; Full profile fit
oo Fit freezing nuisance parameter to best fit
< L
A
2. Fix 0 to it’s best fit value af \ /
> blue line r
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> What about if we fix the background parameter to some other value?

> this gives some other curve
> not necessarily near the minimum

Faull profile fit
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» Can do this for a few different values of the background parameter

Full profile fit
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» And even more values...
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> If you draw the minimum contour around all of the red dashed lines you
begin to recover the original curve

> In this case it doesn't matter because 6 is a continuous nuisance parameter

> But if we have a parameter that can ONLY take discrete values then we can
make a profile likelihood.
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> Clearly the more discrete values we sample the closer we get to the original

-
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Concept of a nuisance parameter

> Clearly the more discrete values we sample the closer we get to the original

> In principle one can mix discrete nuisance parameters with continous ones

2. Draw minimum “envelope”

> green line

Nicholas Wardle
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Full profie fit
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Choose signal strength (1) as POL. Define a binned log-likelihood ratio® as ...
AN=23,vi—ni+njln (%)

» The expectation in each bin, v; is given by a background model plus i X signal model

> If the background parameters (0) are free parameters, we let v; — v;(0) and profile them.

> As a function of u, we now calculate the profiled likelihood to obtaine a profiled likelihood
curve for each choice of background model

» Choices which are similar E {' — Laurent <2 8: — Laurent
shouldn’t effect our result 2 0 — Exponential : A — Exponential
(Laurent and Power Law) 5 — Power Law 215;\ — Power Law

— Polynomial L — Polynomial

» Choices which are poor 150 2
should have little impact 22f
(Polynomial) 100 210

» Choices which seem equally 208
valid but disagree should * sk
increase our uncertainty A m:

(Exponentlal) 110 115 120 125 130 135 14g1w1(A(53e\})50

!Procedure in general does not rely on a binned likelihood

Nicholas Wardle
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> Take the minimum of all the curves as a function of u (the envelope). If
more than one function contributes then that envelope is wider than any
of the individual curves — parameter uncertainty is increased

» No explicit model choice has to be made and we don't actually care what
model “is the best”, since this choice is dynamic in the scan

< 2207

— Minimum Envelope
I 55.3% interval Result:

4% Interval ; i
95.4% Interval > A best fit value (ii) v/

» A confidence interval
2100 _ (AN < 1)V

208" » A systematic from the
“ model choice v/
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> Can assess toys to see which PDF minimises the envelope
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How well does the method (including the procedure of obtaining a confidence
interval) behave?
> Generate toy MC from each background hypotheses and then refit to asses the bias (using
the pull) and the coverage
» For example generate with exponential background distribution:
Example: generate toys from the exponential function and try fitting with the other functions
including fitting back with the envelope procedure, define the pull as (i — pigen)/op-
Fit back with exponential Fit back with power law Fit back with envelope

enerated with exp1 at 4=0.00 and c=0. 5000 Entres Generated with expl at y=0.00 and c=0. 5000 Enres. Generated with exp1 at =000 and ¢=0, 5000 Entres
0|

o
g 240F 2 as0f £ 250F
2 o | | g | z |
g o H i i
& 180p ] & 200 £ 2001
5 il R S ‘ :
s o E E
S 140F S 150) J{H S 150 :‘{
8 ot z \ z i g
g f g W 5 (]
3 100 H ; Z 100 \ Z 1001 Jy b i \
aof ) ) \* gk
60 i i
40F # l H# 50 50(~
d
20F ‘r% \N’\«\? 0
e L | | IS ad L
3 2 40 2 T2 3 3 -2 1
Pull (1) Pull (1)
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Bias and Coverage properites B

> Generate toy MC from various background hypotheses, as a function of
the signal size, and then refit to asses the bias

08E ® Laurent

Bias: A S DomR g
—_— o e
] o SemrwmmrEnw TR
» When you generate and fit back I s e e e e 0 (B

. . . ! 08E

with the same (or similar) S e
background function the bias is v §§ R TR
neglible (green points in top S B BB
- . 0.4 o
panel, red points in second panel) o6E d

» When you generate and fit back SeE
with different functions the bias is o _
large (red. poipts in top panel, 52 e e o %
green points in second panel) 0sE :
08F S
» Using the profile envelope (black §§ e e e e g
. . . CE e e e e e e w
points) you find a small bias for 92E " AR | g
all cases SE g
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Bias and Coverage properites

> Generate toy MC from various background hypotheses, as a function of
the signal size, and then refit to asses the coverage

115

Coverage: & Fesmommenal oo
_ O 105E 5 Exponentil | &
» When you generate and fit back é 0951%j*"“”"@"*"*":"*"Wj"m'534-5‘“‘: E
with the same (or similar) L A &
background function the coverage g T -
is good (green points in top a 1°i§ s e . §
panel, red points in second panel) S oeé—z : .t j N T . 2
» When you generate and fit back g 101:,
with different functions there can  © “F
be under-coverage (red points in g e e
top panel, green points in second R R
panel) L1sE <
A kst
» Using the profile envelope (black s N o =
. L L R R T ]
points) you recover good coverage o 4% apoooe oo % |5
for all cases R T S Tl
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> How do we compare models with different numbers of parameters?

» The value of A is simply an indicator of relatively how well the data agrees
with a particular point in the model space

> It does not account for degrees of freedom used to make that agreement!

» Consequently using A without any penalty would always result in choosing
the most flexible model(s) available

> There is also no natural mechanism for ignoring higher and higher order
functions when calculating A

580 .

578F E

576 E

. . 574t E

» We aim to correct the A for this s72F E

but it is not obvious by how one o 3

should do this (we tried a few in 566 E

the paper) o 3
560 ‘ ‘ ,

Nicholas Wardle
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> For binned fits, in the high statistics limit then A ~ distributed as a x>
with degrees of freedom : npjns — Npars.

> Convert this to a p-value using p =1 — F(A, npins — Npars)

» Now find A’ which would have given the same p-value but with degrees of
freedom (npars = 0) i.e the one which satisfies,

p=1—F(N, npins) (1)

» The “correction” to the log-likelihood is just A" — A. It depends on
number of bins, number of parameters and the value of p.?

Change of 2 for change of DoF o 160

o
001702703704 05 06 0.7 08 09
pvalue Change of 2 for Ghangs of DoF 10 160

» The correction could be applled as a function of x but in a wide range of
p-values, this correction yields

’
N—-—N=~ Npars SO Acorrected ~ N + Npars (2)

2TMath: : ChisquareQuantile(1-p,160) — TMath::ChisquareQuantile(1-p,160-N)

Nicholas Wardle
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London Back to the example spectrum

> Take the same dataset and now try many functions (of different orders)

» Scan the likelihoods as before now applying the correction

N
13
=]

Polynomial (2pars)
Polynomial (3pars)
Polynomial (4pars)
Polynomial (5pars)
Polynomial (6pars)
Exponential Sum (2pars)
,,,,, Exponential Sum (4pars)
-~ Exponential Sum (6pars)
- Power Law Sum (2pars)
Power Law Sum (4pars)
-~ Power Law Sum (6pars)
- Laurent Series (2pars)
Laurent Series (3pars)
Laurent Series (4pars)
Laurent Series (5pars)
Laurent Series (6pars)

Events /(1)
N
8
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> Profile same dataset with many functions (of different orders)
» With no correction
> Best Fit: 6th order polynomial (highest order tried)

= oo G s F
S 26 T e S 216l
g No Correction —— rononoary g F Minimum Envelope (No Correction)
8 214 8 2147 - 68.3% Interval
+ N + C
< 2121~ < 2121~ 95.4% Interval
210 210
[ Vvt S (spre) =
r Laurent Series (6pars) r
[ : L
2081~ 2081~
206~ 206/ /
204 204
202 ~—— 202
T TS B e T R S A PN T R R R
1 05 0 05 1 15 2 25 1 05 0 05 1 15 2 25
n M
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> Profile same dataset with many functions (of different orders)
» With approx. p-value correction (A +1 per dof)

> Best Fit: 2 parameter power law

5 222y Patynomial (zpars) 5 2221
S S r
o o -
8 220 8 220 Minimum Envelope (Approx. p-value)
S S F
o o = 68.3% Interval
+ 218 + 218f L
< r < C 95.4% Interval
2161 2161
[ Carnt s (s F
214 Laen: Soes g 214
2121 2121 /
210F 210 ’
208 ) S 2081 . g
L = L M
2060 e L LT L | 206 DL e T T
1 05 0 05 1 15 2 25 1 05 0 05 1 15 2 25
1 H
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» Now comparing envelope of all functions with different correction schemes

oo e R TR i
E o o e H o £ 68.3% Interval H
e g v ER . G H

A e e H D B e H
o [ H L H

o N Y H > 0 E o H

2 wE o E -

= E s O uE 7

CGE H ° B i
- H 8 3

S E TEWEEEETE|E § g e

[V EIE R H
s =%
0s S e
e R s

H Do a
Miw*mw@w*@wu&twg % s ST g £t ..,_.E
e s e :
oo z 3 =F s
= 4 e z
wE s O uE H
o e | e .,.g
2e H sE- H
s H s H

et - 1 e - 1
a2E- i B e i e
nE H oos - 3
06 = 115
o2 @w*:&mw e E Lo TR
SE - os o
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» Using the p-value argument suggests:
Acorr = —21In L + Npar 3)

» There are other forms of likelihood correction out there

Aikaike information criterion (AIC):

v

Acorr = —21In L + 2Npar (4)
» Bayesian information criterion (BIC):
Acorr = —21In L + Npayr In(n) (5)
> In general they take the form:
Acorr = —2In L + cNpar (6)

where ¢ is some ‘“correction value” to be determined

Nicholas Wardle
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> Over a set of pseudoexperiments the error when using the envelope
increases

» This quantifies the systematic uncertainty contribution from the model
choice

> The size of this systematic is smaller depending on the choice of ¢

16001

o
€
E E + fit power law
Fuoo- EE—
3t
gzt + prae
k] L
510007 —+ Akaike
S
£ 800F
51
z E
600F
400
200}
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» As we have seen the corrected
likelihood takes the form,

Polynomial (5 pars)

Acorr = —2In ,C + CNpa.r

> The coverage is largely independent
of the choice of ¢
> Within reason the choice for the
value of ¢ can be motivated by
other considerations

Polynomial (5 pars)

<H - u> or <68.3% interval>

Laurent (2 pars)

> This will depend on the application s
and the size of the dataset available os) g
> Ends up being a trade off between: H H
> the size of the correction (eventual i :
bias) e e
R | ——
» Depends on specific analysis and 3 g

75

individual preference Correction / par

Nicholas Wardle

32 The discrete profiling method:



Imperial College

tondon entral value and error dependence on the correction

> As a function of the correction value the uncertainty (and central value)
can change
> At lower values of ¢ you have a large statistical uncertainty
> In principle for this example if ¢ = 0 the statistical error is infinite

> At larger values of ¢ you have a potentially large bias

= Fit value
Il 68.3% Interval
95.4% Interval

E PO S S S S S ST S S T S ST S |

00,07,02,03,04,05,06,0,,08,09,410,4.7,12,13,14,15,16,1.7,1.8,1.9,20,21,22,2.3,24,25 PV
O/Uo}:/j’yf/da??/do?Wo?’"of/daf 7o/ dof/ dof Oiéztf/da??Mop”o?’"of/%f /duf/dof/dolry/do}:/zﬁ/do‘f?/do;’/doﬁldofa/"e
oy Uk,

Cop "% p. i
"ectiy, Pvalye A correction
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» Difference in 2xLog-likelihood between the true and fitted values of u in
general follows a x? distribution with 1 d.o.f (Wilks'theorem.)

» This appears to be the case in this example! Also true whether or not the
same function which was used to generate is fitted back or the discrete
profiling picks another function

c=0 c=1 c=2
2 2 2
5 i —x*ndof=1 5 A — ¥*ndof=1 5 —x*ndof=1
E = { AllToys E } Al Toys E { AllToys
3 —— same function 3 —— Same function 3 —— Same function
< 10tk Y —— Different function < — Different function < —— Different function

Nicholas Wardle

34 The discrete profiling



\

Imperial College Cy
London Open questions for (any?) method like this =

> Is there an analytical proof / better motivation of a correction for A to
use?

» How can we use the method to set Bayesian credible intervals rather than
frequentist confidence intervals?

> What, if any, prior should be used

» How do you decide how many models to include in the envelope if the
choice is infinitely many?
> Fisher test used to find a reasonable range of npas in each model family.

» How should one assess how many “model” choices is appropriate?
> Are there other ways of sampling more of the “model phase space”?

> Is there a way to get a “complete set”.

» What restrictions should be placed on this set?
> Should avoid hiding the signal — Restrict higher derviatives/inflections?.

Nicholas
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» So far the method discussed has been in a

5
. . 8 — Laurent

frequentist formalism 5. v —

I% — Power Law

» In Bayesian context, the “discrete” — Polynomial

profiling equates to adding up posterior
PDFs each with a weight o e~V

» Would make an interesting study for a
student?

RTINS LTI
110 115 120 125 130 135 140 145 150
m,, (Gev)

—— Envelope equivalent
0.4 —— Polynomial
—— Power Law

—— Exponential

—— Laurent Series

Prior probability
o
&
Posterior probability

0 I I

Polynomial  Power Law _ExponentialLaurent Series %
Discrete nuisance parameter value

Levnlid Lol
05 115 2 25 3 35 4 45
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Summary

» Demonstrated a new method for treating model choices as discrete
nuisance paramters
> “Profile” the choice and take the “envelope”
> Choice of correction open to user
> Choice of which models to include open to user

v

The method in a toy example shows small bias and good coverage
The method has been used in real data analyses (at CMS)
> Small bias and good coverage found in those scenarios

v

v

Similar studies are highly recommended for each use case

v

Several possible extensions and open questions

Nicholas Wardle
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i Higgs to two photons at CMS =

» This is what the technique was developed for

> 25 analysis categories all with different signal to background, resolution
and background shapes

> Perform a simultaneous fit across all 25 for signal size

> Profile between 4-16 background functions in each category
» Order of 50 additional continuous nuisance parameters in this fit also
> Many of which are correlated across categories

> Without nuisance parameter correlation then number of combinations goes

like .
Nc = Z n; (7)

for c categories with n; functions in each.
> With correlated nuisances then every combination is required which goes

like .
Nc = H n; (8)

» For CMS H — vy = 16% ~ 10*° combinations
» For any reasonable practical use this has to be reduced

Nicholas Wardle
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London Technical implementation =

> These studies were developed and performed in RooFit

> Specialised class written: RooMultiPdf
> Not in RooFit public release yet
> Private version being used by both CMS and ATLAS

» How to reduce numbers of combinations (given 10°° minimisations is
impractical for Higgs combination)

> Run continuous and discrete
parts of minimisations separately
in iterative procedure

> Have found that in the H — ~v /
case the true likelihood is found
after =~ 3 — 4 iterations

» Now number of minimisations
goes like

Step 1:
Fix all continuous
nuisance parameters
to some sensible
starting value

Stepa:
Compare the values of
the min likelihood for

Step2:
Find discrete nuisance
parameter values
which minimise
likelihood

Steps 2and 3 (if itis
fails some threshold
criterion then repeat
from Step 1)

Step3:
Now fix discrete
nuisance parameters
and float all
continuous
parameters

c
Ne=N; Y nj (9)

for N, iterations
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Use in Higgs analyses
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Imperial College

\d

London Bias and Coverage properites

1%
i

How well does the method (including the procedure of obtaining a confidence
interval) behave?
> Generate toy MC from each background hypotheses and then refit to asses the bias (using
the pull) and the coverage
» For example generate with exponential background distribution:
Example: generate toys from the exponential function and try fitting with the other functions
including fitting back with the envelope procedure, define the pull as (i — pigen)/op-
Fit back with exponential Fit back with power law Fit back with envelope

enerated with exp1 at 4=0.00 and c=0. 5000 Entres Generated with expl at y=0.00 and c=0. 5000 Enres. Generated with exp1 at =000 and ¢=0, 5000 Entres
0|

o
g 240F 2 as0f £ 250F
2 o | | g | z |
g o H i i
& 180p ] & 200 £ 2001
5 il R S ‘ :
s o E E
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Pull (1) Pull (1)
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Imperial College

London Example case with higher order functions

> Profile same dataset with many functions (of different orders)
» With Aikaike correction, ¢ =2 (A 42 per dof)

> Best Fit: 2 parameter power law

g 224 P 5 22
k3] Akaike B i i
8 222 8 222\ Minimum Envelope (Akaike)
8 8 r B o nena
+ 220 + 2201~
< < r 95.4% Interval

218 218~

Laurent Series (4pars) r
216 e Sz ) 216~

/

el e LT L 7\\#\\\
208 5 2

-0.5 0 0.5 1 1.5 2 25 -1 -0.5 0 0.5 1 1. 25
1 u

T
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Hndon Does the uncertainty make sense? -

\

b

» Difference in 2x Log-likelihood between the true and fitted values of p in
general follows a x? distribution with 1 d.o.f (Wilks'theorem.)

» This appears to be the case in this example! Also true whether or not the
same function which was used to generate is fitted back or the discrete
profiling picks another function

j2}
5 —x?nd.of=1
- 1
s B t Al Toys
s a —— Same function
<
1 — Different function

107y

10°?

10°

0o 1 2 3 4 5 6 7 8 9 10
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