Building Robust Al/ML Methods

for High Energy Physics

Benjamin Nachman

[awrence Berkeley National Laboratory 2 e

bpnachman.com @bpnachman O bnachman
bpnachman@Ibl.gov

- - —
/\‘ A
EEEEEREEE 1]
o B | DS STAMPS-CMU

SIAVGANAGMIPN=]  BERKELEY INSTITUTE October 14, 2022

FOR DATA SCIENCE



http://bpnachman.com

: symmetry magazine

image source

Questions in high energy physics

Theoretical guestions motivate a deep
exploration of the fundamental structure of nature
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Questions in high energy physics

experimental guestions motivate a deep
exploration of the fundamental structure of nature

What is the extra Why do neutrinos
gravitational matter? have a mass”?
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Data analysis in High Energy Physics

Theory of everything Nature
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Data analysis in High Energy Physics

+ Machine Learning "

Theory of everythinn Nature
Fast Parameter
simulation / ( v ) estimati_on/ v
phase space uniolding .
Physics simulators Experiment ~ ©niine
processing &
) quality control
Detector-level observables  Detector-level observables
' Vo)
Pattern recognition «—— Pattern recogn Pata curation
Classification to cellioteliion
clustering
enhance tracking
sensitivity noise mitigation

particle identification
“signal” versus “background”



The search for new
massive particles

~ Large E means

«r access to high
- wmasses via E = mc?

ATLAS

EXPERIMENT

Run: 302347
Event: 753275626
2016-06-18 18:41:48 CEST



A simplified HEP analysis
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A simplified HEP analysis
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A simplified HEP analysis
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A simplified HEP analysis

Event counts

features 2 - N
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Event counts

features 2 - N

+ Machine Learning,

feature 1

Train a classifier to distinguish
signal from using
features 2 - N
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+ Machine Learning,
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+ Machine Learning,
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Correlations between features
features 2 - N sculpts the background to look
like the signal — not fittable!




Learning robust classifiers

How can we learn a classifier that does
not sculpt a bump in the background?

Ideal case Reality

feature 1 feature 1



Learning robust classifiers

How can we learn a classifier that does
not sculpt a bump in the background?

Solution; ensure that the classifier
IS independent® of feature 1.

*This is actually sufficient but unnecessary. There are many dependencies (e.q. linear) that would not sculpt bumps.



Enforcing Independence

Train e.g. a neural network

L[f(aj)] — ZieS Lclassiﬁer(f(ﬂfi), 1)
_I—Z@’eb Lclassiﬁer(f(afi), O)

Event counts

[ ciassifier 1S the usual
classifier loss, e.qg.
Cross entropy or mean

feature m squared error.

features x



Enforcing Independence

Train e.g. a neural network with a custom loss functional

LIf(x)] = 2 ics Leassifier (f (i), 1)
__Zieb ClaSSIﬁer(f(xi)y O)
+A Zieb Laecor (f(x:), m4)

Event counts

[ ciassifier 1S the usual
classifier loss, e.qg.
Cross entropy or mean

feature m squared error.

Laecor1S large when f(x)

features x and m are “correlated”
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Enforcing Independence

Train e.g. a neural network with a custom loss functional

£[f(x)] — ZiES Lclassiﬁer(f(aji); 1) __Zieb Lclassiﬁer(f(xi)a O)
+A Zieb Ldecor(f(mi)a mz)

Recent proposals:

Distance Correlation: Lqecoris distance correlation
(generalizes Pearson correlation) between m and 7(x).



Enforcing Independence

Distance Correlation
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Image credit: Denis Boigelot

Distance Correlation: Lqecoris distance correlation
(generalizes Pearson correlation) between m and 7(x).



Enforcing Independence

Train e.g. a neural network with a custom loss functional

£[f(x)] — ZiES Lclassiﬁer(f(aji); 1) __Zieb Lclassiﬁer(f(xi)a O)
+A Zieb Ldecor(f(mi)a mz)

Recent proposals:

Mode Decorrelation: Lgecoris small when the CDF of
f(x)Is the same across different values of m.



Adversaries

Adversaries: [ gecoris the loss of a 2nd NN
(adversary) that tries to learn m from f(x).

Pros: Very flexible and m can be multidimensional

ard to train (minimax problem) & many parameters

G. Louppe, M. Kagan, K. Cranmer, 1611.01046; C. Shimmin et al., 1703.03507



Distance Correlation

Distance Correlation: Lq.coris distance correlation
(generalizes Pearson correlation) between m and 7(x).

Pros: Convex (easier to train) and no free parameters

Memory intensive to compute distance correlation

G. Kasieczka and D. Shih, 2001.05310; G. Kasieczka, BPN, M. Schwartz, D. Shih, 2007.14400



Mode Decorrelation

Mode Decorrelation (MoDE): Lgecoris small when the
CDF of f(x) is the same across different values of m.

Readily generalizes beyond independence

Pros: o . .
(can require linear, quadratic (+monotonic), ...

No free parameters and small memory footprint

In its simplest form, need discrete bins in m
(does not seem to be fundamental)

O. Kitouni, BPN, C. Weisser, M. Williams, 2010.09745



Real world example: the search for Lorentz-
boosted W bosons at the Large Hadron Collider
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Connections

What does decorrelation have to do with other
areas of science, society and industry”

This Is solving the same problem as fairness.

e.g. you train a classifier to screen CVs of job
candidates and you want it to not indirectly learn
age, race, ethnicity, gender, ...

Can tools from HEP be applied more broadly? For
example, when we have continuous categories and/or
monotonicity (and not independence) requirements?
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A related topic: prior dependence

A common task in HEP is calibration: learning a map
from measured guantities to true (pre-detector) values.

For example, a particle of a given energy hits our detector
and registers measurements in a number of sSensors

A good calibration is universal: it should be
unbiased even if the true values in the training
dataset follow a different spectrum than the test set.

e.g. the particle energy is uniform during training,
but exponential for certain running conditions.



Why standard methods are bad

A common task in HEP is calibration: learning a map
from measured guantities to true (pre-detector) values.

For example, a particle of a given energy hits our detector
and registers measurements in a number of sSensors

Your first instinct here might have been to train a
classifier to estimate the true value given
measured values using simulated data.



Why standard methods are bad

A common task in HEP is calibration: learning a map
from measured guantities to true (pre-detector) values.

For example, a particle of a given energy hits our detector
and registers measurements in a number of sSensors

Your first instinct here might have been to train a
classifier to estimate the true value given
measured values using simulated data.

Claim: this is prior dependent !



What goes wrong?

Suppose you have some features x and you want to predict .

One way to do this is to find an f that
minimizes the mean squared error (MSE):

S = afgmiﬂg Zi(g(ﬂfz‘) — %)2
Then, f(x) = E[ylX].

Why is this a problem?



What goes wrong?

Suppose you have some features x and you want to predict .

f(x) = Elylz] = | dyyp(y|z)

E[f(ZE) |y] — f dCB dy/ y/ Ptrain (y/ ‘x) Ptest ($\y)

th|S ﬂeed ﬂOt be yeveﬂ |f ,Oz‘ra/'n — ,Oz‘est (')

Why is this a problem?



Gaussian Example

Simulation-Based Gaussian Example
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R. Gambhir, BPN, J. Thaler, 2205.05084



Gaussian Example

Simulation-Based Gaussian Example Simulation-Based Gaussian Example
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Gaussian Example

Simulation-Base
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The search for new
massive particles

HEP Example \&

~ Large E means

.~ = access to high
-~ - wmasses via E = mc?

ATLAS

EXPERIMENT

Run: 302347
Event: 753275626
2016-06-18 18:41:48 CEST



HEP Example
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QCD = quarks
and gluons

BSM = new
pNhysSICS

Looking for new
massive particles that
produce |ets



HEP Example

Simulation-Based Dijets Example Simulation-Based Dijets Example
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Connections

What does prior independence have to do with
other areas of science, society and industry?

This IS also related to fairness.

e.g. you expect the scale at the doctor’s office to
be correct for you on average even if the spread
of weights is different than the calibration sample

Can tools from HEP be applied more broadly?



Conclusions and Outlook

Al/ML has a great potential
to enhance, accelerate, ano R e s oS

empower HEP analyses B EeRumnes b ERmEmnncas

INn order to make the best use
of these tools, we need to
ensure that they are robust

A tool is only as good
as its calibration !

We can build robustness into classitier training and tools
developed for HEP may be useful in other contexts.
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Double DisCo
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Mode Decomposition (MoDe)
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Mode Decomposition (MoDe)
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Distance Correlation (DisCo)
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