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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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2Questions in high energy physics
Theoretical and experimental questions motivate a deep 

exploration of the fundamental structure of nature

Hierarchy problem Strong CP

Why is the Higgs 
boson so light?

Why do neutrons have 
no dipole moment?
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3Questions in high energy physics
Theoretical and experimental questions motivate a deep 

exploration of the fundamental structure of nature

See also: dark energy
See also: Where did all the anti-
particles go?  (Baryogengesis)
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Dark Matter Flavor puzzles

What is the extra 
gravitational matter?

Why do neutrinos 
have a mass?
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4Data analysis in High Energy Physics

Theory of everything

Physics simulators

Detector-level observables
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Nature

Detector-level observables
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Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

Parameter 
estimation / 
unfolding

Data curation

Classification to 
enhance 
sensitivity

“signal” versus “background”

calibration 
clustering 
tracking 

noise mitigation 
particle identification 

…

Fast 
simulation / 

phase space
Online 

processing & 
quality control

Data analysis in High Energy Physics
+ Machine Learning
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The search for new , 
massive particles

?

Large E means 
access to high 

masses via E = mc2
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15A simplified HEP analysis
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background 
(no ML)

background 
(w/ ML)

Reality

Learning robust classifiers

Ideal case
background 

(no ML)

background 
(w/ ML)

How can we learn a classifier that does 
not sculpt a bump in the background?

feature 1 feature 1 

Solution: ensure that the classifier 
is independent* of feature 1.

*This is actually sufficient but unnecessary.  There are many dependencies (e.g. linear) that would not sculpt bumps.



25Enforcing Independence

Train e.g. a neural network with a custom loss functional

feature m 
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Ldecor is large when f(x) 
and m are “correlated”

Lclassifier is the usual 
classifier loss, e.g. 

cross entropy or mean 
squared error.
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Recent proposals:

Adversaries: Ldecor is the loss of a 2nd NN 
(adversary) that tries to learn m from f(x). 

Distance Correlation: Ldecor is distance correlation 
(generalizes Pearson correlation) between m and f(x).

Mode Decorrelation: Ldecor is small when the CDF of 
f(x) is the same across different values of m.
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Recent proposals:

Adversaries: Ldecor is the loss of a 2nd NN 
(adversary) that tries to learn m from f(x). 

Distance Correlation: Ldecor is distance correlation 
(generalizes Pearson correlation) between m and f(x).

Mode Decorrelation: Ldecor is small when the CDF of 
f(x) is the same across different values of m.

Image credit: Denis Boigelot

Pearson Correlation Distance Correlation
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Adversaries: Ldecor is the loss of a 2nd NN 
(adversary) that tries to learn m from f(x). 

G. Louppe, M. Kagan, K. Cranmer, 1611.01046; C. Shimmin et al., 1703.03507

Pros:

Cons:

Very flexible and m can be multidimensional

Hard to train (minimax problem) & many parameters
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Distance Correlation: Ldecor is distance correlation 
(generalizes Pearson correlation) between m and f(x).

G. Kasieczka and D. Shih, 2001.05310; G. Kasieczka, BPN, M. Schwartz, D. Shih, 2007.14400

Pros:

Cons:

Convex (easier to train) and no free parameters

Memory intensive to compute distance correlation
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Mode Decorrelation (MoDE): Ldecor is small when the 
CDF of f(x) is the same across different values of m.

O. Kitouni, BPN, C. Weisser, M. Williams, 2010.09745

Pros:

Cons:

Readily generalizes beyond independence 
(can require linear, quadratic (+monotonic), …

In its simplest form, need discrete bins in m 
(does not seem to be fundamental)

No free parameters and small memory footprint
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Figure 6. Left: Distributions of signal and background events without selection. Right: Back-
ground distributions at 50% signal e�ciency (true positive rate) for di↵erent classifiers. The un-
constrained classifier sculpts a peak at the W -boson mass, while other classifiers do not.

Figure 7. Decorrelation versus background-rejection power showing that MoDe[0] performs sim-
ilarly to existing state-of-the-art decorrelation methods.

3.2.3 Beyond Decorrelation

Moving beyond decorrelation the 1/JSD metric is no longer relevant. Figure 6 shows that

neither MoDe[1] nor MoDe[2] sculpts a peaking structure in the background, but their

1/JSD values are small since neither seeks to decorrelate from the mass. Therefore, we

replace the 1/JSD metric with the signal bias induced by the classifier selection, which

is what actually matters when searching for resonant new physics. Specifically, we use

the signal estimators obtained by fitting the selected background-only samples to a simple

polynomial function as proxies for the signal biases. These are divided by their uncertainties

such that values of roughly unity are consistent with no bias, while values significantly larger

– 13 –

O. Kitouni, BPN, C. Weisser, M. Williams, 2010.09745

Real world example: the search for Lorentz-
boosted W bosons at the Large Hadron Collider

W boson 
mass

MoDE[0] enforces independence, [1] is linear, [2] is monotonic quadratic, … 
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What does decorrelation have to do with other 
areas of science, society and industry? 

This is solving the same problem as fairness.

e.g. you train a classifier to screen CVs of job 
candidates and you want it to not indirectly learn 

age, race, ethnicity, gender, …

Can tools from HEP be applied more broadly?  For 
example, when we have continuous categories and/or 
monotonicity (and not independence) requirements? 
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A common task in HEP is calibration: learning a map 
from measured quantities to true (pre-detector) values.
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A common task in HEP is calibration: learning a map 
from measured quantities to true (pre-detector) values.

For example, a particle of a given energy hits our detector 
and registers measurements in a number of sensors

A good calibration is universal: it should be 
unbiased even if the true values in the training 

dataset follow a different spectrum than the test set.



40A related topic: prior dependence

A common task in HEP is calibration: learning a map 
from measured quantities to true (pre-detector) values.

For example, a particle of a given energy hits our detector 
and registers measurements in a number of sensors

A good calibration is universal: it should be 
unbiased even if the true values in the training 

dataset follow a different spectrum than the test set.

e.g. the particle energy is uniform during training, 
but exponential for certain running conditions.
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A common task in HEP is calibration: learning a map 
from measured quantities to true (pre-detector) values.

For example, a particle of a given energy hits our detector 
and registers measurements in a number of sensors

Your first instinct here might have been to train a 
classifier to estimate the true value given 
measured values using simulated data.
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A common task in HEP is calibration: learning a map 
from measured quantities to true (pre-detector) values.

For example, a particle of a given energy hits our detector 
and registers measurements in a number of sensors

Your first instinct here might have been to train a 
classifier to estimate the true value given 
measured values using simulated data.

Claim: this is prior dependent !



43What goes wrong?

Suppose you have some features x and you want to predict y.

One way to do this is to find an f that 
minimizes the mean squared error (MSE):

f = argming
P

i(g(xi)� yi)2

Then, f(x) = E[y|x].

Why is this a problem?

detector energy true energy
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f(x) = E[y|x] =
R
dy y p(y|x)

E[f(x)|y] =
R
dxdy0 y0 ptrain(y0|x)ptest(x|y)

this need not be y even if ptrain = ptest (!)  

What goes wrong?

Suppose you have some features x and you want to predict y.
detector energy true energy

Why is this a problem?
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(a) (b)

FIG. 1. (a) 2D Histogram of the reconstructed value xD distribution versus the true value zT distribution, in the Gaussian
example with µ = 0, ‡ = 1, and ‘ = 2. The dashed line represents a linear fit to the data points. (b) For test values of xD,
the vertical axis is the calibrated target value ẑT (xD). The blue dots are the results from a numerical MSE fit fMSE(xD), and
the error bars correspond to the numerical point resolution �MSE(xD), with the analytic prediction in the red dotted line. For
comparison, the Gaussian Ansatz calibration is indicated by the red points fMLC(xD), with the error bars indicating the point
resolution �MLC(xD). For both fits, the colored lines and bands are the analytically expected results for the fits and resolutions,
respectively.

(a) (b)

FIG. 2. The same MSE results as Fig. 1b, but plotted in bins of true zT rather than xD. Points correspond to numerical fit
results with associated resolution �MSE(zT ), while the dashed lines and bands correspond to analytic results. Multiple values of
the prior parameters (a) µ and (b) ‡ are shown to illustrate the prior dependence of the bias. Though not shown, we verified
that the Gaussian Ansatz gives results consistent with the unbiased calibration in dashed red.

R. Gambhir, BPN, J. Thaler, 2205.05084 
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(a) (b)

FIG. 1. (a) 2D Histogram of the reconstructed value xD distribution versus the true value zT distribution, in the Gaussian
example with µ = 0, ‡ = 1, and ‘ = 2. The dashed line represents a linear fit to the data points. (b) For test values of xD,
the vertical axis is the calibrated target value ẑT (xD). The blue dots are the results from a numerical MSE fit fMSE(xD), and
the error bars correspond to the numerical point resolution �MSE(xD), with the analytic prediction in the red dotted line. For
comparison, the Gaussian Ansatz calibration is indicated by the red points fMLC(xD), with the error bars indicating the point
resolution �MLC(xD). For both fits, the colored lines and bands are the analytically expected results for the fits and resolutions,
respectively.

(a) (b)

FIG. 2. The same MSE results as Fig. 1b, but plotted in bins of true zT rather than xD. Points correspond to numerical fit
results with associated resolution �MSE(zT ), while the dashed lines and bands correspond to analytic results. Multiple values of
the prior parameters (a) µ and (b) ‡ are shown to illustrate the prior dependence of the bias. Though not shown, we verified
that the Gaussian Ansatz gives results consistent with the unbiased calibration in dashed red.

R. Gambhir, BPN, J. Thaler, 2205.05084 
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(a) (b)

FIG. 1. (a) 2D Histogram of the reconstructed value xD distribution versus the true value zT distribution, in the Gaussian
example with µ = 0, ‡ = 1, and ‘ = 2. The dashed line represents a linear fit to the data points. (b) For test values of xD,
the vertical axis is the calibrated target value ẑT (xD). The blue dots are the results from a numerical MSE fit fMSE(xD), and
the error bars correspond to the numerical point resolution �MSE(xD), with the analytic prediction in the red dotted line. For
comparison, the Gaussian Ansatz calibration is indicated by the red points fMLC(xD), with the error bars indicating the point
resolution �MLC(xD). For both fits, the colored lines and bands are the analytically expected results for the fits and resolutions,
respectively.

(a) (b)

FIG. 2. The same MSE results as Fig. 1b, but plotted in bins of true zT rather than xD. Points correspond to numerical fit
results with associated resolution �MSE(zT ), while the dashed lines and bands correspond to analytic results. Multiple values of
the prior parameters (a) µ and (b) ‡ are shown to illustrate the prior dependence of the bias. Though not shown, we verified
that the Gaussian Ansatz gives results consistent with the unbiased calibration in dashed red.

R. Gambhir, BPN, J. Thaler, 2205.05084 

Maximum likelihood without 
full density estimation

Note that MLE is 
prior independent!
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FIG. 4. The data-driven calibration functions corresponding
to Fig. 3. The blue points correspond to the calibration
function htrain derived from the training set and the red points
correspond to the ideal calibration htest one would derive from
the test set.

For the training set with µtrain = 0, we have

htrain(x) =


‡2 + ‘2
data

‡2 + ‘2
sim

x (43)

© – x.

The test set only di�ers in the value of µtest, so the correct
calibration function should be:

htest(x) = –(x ≠ µtest) + µtest (44)
= –x + µtest(1 ≠ –).

As long as – ”= 1, then htrain ”= htest and so the calibration
is not universal.

A numerical demonstration of this bias is presented in
Fig. 3, where histograms of the data and simulation are
presented along with the calibrated result. In Fig. 3a, we
see the calibration derived in the training sample, where
by construction, the calibrated simulation matches the
data. Since the truth distribution is di�erent in the test
set, however, the training calibration applied in the test
set is biased, as shown in Fig. 3b. The actual calibration
function is plotted in Fig. 4 and compared to the analytic
expectation from Eqs. (44) and (43). The fact that the
calibration derived on the train set is not the same as
the calibration derived on the test set shows that the
calibration derived in one and applied to the other will
lead to a residual bias.

FIG. 5. The mjj distributions for QCD (blue) and BSM (red)
events in the fast and full simulation. The shaded histograms
correspond to the zT = mtrue

jj truth-level distributions, whereas
the light triangles and dark circles correspond to xD = mreco

jj

for the fast (Delphes) and slow (Geant4) distributions re-
spectively.

V. CALIBRATING JET ENERGY RESPONSE

Jets are ubiquitous at the LHC and their calibration is
an essential input to a majority of physics analyses per-
formed by ATLAS and CMS. In this section, we consider
a simplified version of simulation-based and data-based
jet energy calibrations. To illustrate the impact of the
prior dependence, we use a realistic and also extreme
example where calibrations are derived in a sample of
generic quark and gluon jets and then applied to a test
sample of jets from the decay of a heavy new resonance.
To further simplify the problem, we consider a calibration
of the invariant mass mjj of the leading two jets. In prac-
tice, jet energy calibrations are derived for individual jets,
but this requires at least including calibrating the jet ra-
pidity in addition to the jet energy. We keep the problem
one-dimensional in order to ensure the problem is easy
to visualize and to mitigate the dependence on features
that are not explicitly modeled. For a high-dimensional
study of jet energy calibrations in a prior-independent
way, see Ref. [43].

A. Datasets

Our study is based on generic dijet production in quan-
tum chromodynamics (QCD). For these studies will con-
sider two di�erent datasets to demonstrate simulation-
based and data-based jet energy calibrations. The first
dataset is made with a full detector simulation. The full

QCD = quarks 
and gluons

BSM = new 
physics

Looking for new 
massive particles that 

produce jets 

R. Gambhir, BPN, J. Thaler, 2205.05084 
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(a) (b)

FIG. 6. The reconstructed mjj divided by the true mjj for the QCD and BSM samples, using (a) the MSE-based approach
and (b) the maximum likelihood approach with the Gaussian Ansatz. Shown are results with and without the simulation-based
calibration applied.

(a) (b)

FIG. 7. The reconstructed mjj for (a) QCD and (b) BSM events in the fast and full simulation, with and without the
data-based OT calibration. The calibration is performed on the QCD sample, which closes, and the same calibration is applied
to the BSM sample. Note that for the BSM sample, the ratio plot is in log-scale, indicating a very large bias.

functions. On the QCD sample, this calibration closes
by construction. In particular, as shown in Fig. 7a, the
blue dashed line in the ratio plot fluctuates around unity,
with deviations due to statistical fluctuations that di�er
between the two halves of the event samples.

When this calibration is applied to the BSM events,

however, the calibration overshoots, as shown with the
red dashed line in the ratio plot in Fig. 7b. While the
resulting dashed distribution agrees better with the data
histogram in dark red than does the fast sim histogram
in light red, the overall agreement is still rather poor.
This again highlights the issue of prior-dependence in

R. Gambhir, BPN, J. Thaler, 2205.05084 
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What does prior independence have to do with 
other areas of science, society and industry? 

This is also related to fairness.
e.g. you expect the scale at the doctor’s office to 
be correct for you on average even if the spread 
of weights is different than the calibration sample

Can tools from HEP be applied more broadly?
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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

AI/ML has a great potential 
to enhance, accelerate, and 

empower HEP analyses

In order to make the best use 
of these tools, we need to 

ensure that they are robust

A tool is only as good 
as its calibration !

We can build robustness into classifier training and tools 
developed for HEP may be useful in other contexts.
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54Double DisCo

G. Kasieczka, BPN, M. Schwartz, D. Shih, 2007.14400

f g

A
B

C

D

f

g

D

C

B

A

Figure 1. The ABCD method is used to estimate the background in region A as NA =
NBNC

ND
. It requires the signal to be relatively localized in region A and the observables to

be independent on background. The shaded planes (left) or lines (right) denote thresholds

which isolate the signal in region A.

small uncertainties — either because the e↵ect itself is small, or because the correction

is robust. But such corrections, together with the fact that simple kinematic features

are typically not optimal discriminants of signal versus background, generally limit

the e↵ectiveness of the ABCD method and the sensitivity of the analysis in question.

(See [8], however, for a proposal for extending the ABCD method using higher-order

information when the features are not independent.)

In this paper, we will explore the systematic application of deep learning to the

ABCD method. Deep learning has already demonstrated impressive success in finding

observables that are e↵ective at discrimination [9–63] and that are uncorrelated with

other observables [64–79]. Building on previous success, we will aim to use deep learn-

ing to automate the selection of features used in the ABCD method, simultaneously

optimizing their discrimination power while ensuring their independence.

The main tool we will use in automating the ABCD method will be a recently pro-

posed method for training decorrelated deep neural networks [71]. This method uses

a well-known statistical measure of non-linear dependence known as Distance Correla-

tion (DisCo) [80–83]. DisCo is a function of two random variables (or samples thereof)

and is zero if and only if the variables are statistically independent, otherwise it is

positive. Therefore it can be added as a regularization term in the loss function of a

neural network to encourage the neural network output to be decorrelated against any

other feature. In [71] it was shown that DisCo decorrelation achieves state-of-the-art

decorrelation performance while being easier and more stable to train than approaches

– 3 –

Figure 7. A scatter plot of background rejection and normalized signal contamination (r)

across DisCo parameters, epochs and thresholds on the two features, for ✏signal = 30% and

background ABCD closure better than 10%. High density regions are depicted with individual

data points while low density regions are drawn as shaded regions.

All the features are rescaled to be between 0 and 1. The neural network specification

is 3 hidden layers of 64 nodes each, ReLU activations, and batch normalization after

the first hidden layer. We train for 200 epochs with fixed learning rate of 10�3 and the

default Adam optimizer. We use a large batch size of 10k to ensure an accurate DisCo

sampling estimate.

For Single DisCo, we train a single neural network on just the subjettiness variables

(we could have included bm and pT too with little change). For Double DisCo, we train

two neural networks on all the features (bm, pT , and the subjettiness variables). The

neural networks specifications, feature preprocessing, and training details are all the

same for Single and Double DisCo. However, for Double DisCo, in addition to the usual

DisCo loss term described in Eq. (3.2), we include a second DisCo term which only

takes the tail of the neural network outputs (again for background only) as inputs. This

was found to help with the stability of the ABCD prediction for lower signal e�ciencies,

which can be sensitive to the extreme tails of the background. For the tail we required

the simultaneous cuts of y1 > (y1)bg,50 and y2 > (y2)bg,50, where y1,2 are the outputs of

the two neural networks and “bg,50” refers to the 50th percentile cut on the background

distributions.

– 16 –

correction is useful when N is low, but for su�ciently large training datasets with large

enough batches, the correlation has little impact on the results.

For the Double Disco ABCD method, we use the loss function

L[f, g] = Lclassifier[f(X), y] + Lclassifier[g(X), y] + � dCorr2y=0[f(X), g(X)], (3.2)

where now f and g are two neural networks that are trained simultaneously. When � =

0, the loss will be minimized when f = g is the optimal classifier (up to degeneracies).

When � ! 1, f and g will be forced to be independent even if one or both of them

does not classify well at all. In practice, if � is taken too large, the DisCo term will tend

to overwhelm the training and poor classification performance will result. Thus there

should be an optimal � at some finite value which we can be determined by scanning

over �.

4 Applications

This section explores the e�cacy of Single and Double DisCo in some applications of

the ABCD method.

4.1 Simple Example: Three-Dimensional Gaussian Random Variables

We begin with a simple example to build some intuition and validate our methods.

Consider a three-dimensional space (X0, X1, X2), where the signal and background are

both multivariate Gaussian distributions. We choose the means ~µ and a covariance

matrix ⌃ for background and signal as

~µb = (0, 0, 0), ⌃b = �
2
b

0

@
1 ⇢b 0

⇢b 1 0

0 0 1

1

A , �b = 1.5, ⇢b = �0.8 , (4.1)

and

~µs = (2.5, 2.5, 2), ⌃s = �
2
s

0

@
1 0 0

0 1 0

0 0 1

1

A , �s = 1.5 . (4.2)

So for the background, all three features are centered at the origin and features X0

and X1 are correlated with each other but independent of X2. For the signal, all three

features are independent but are centered away from the origin. The first feature X0

will play the role of the known feature for Single DisCo in Sec. 3.

All of the neural networks presented in this section use three hidden layers with

128 nodes per layer. The rectified linear unit (ReLU) activation function is used for

– 10 –
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Figure 4. Top: False positive rate versus mass at various signal e�ciencies for non-monotonic
MoDe[2] on the modified simple-model example; see Eq. (3.3). Bottom: False positive rate for
monotonic MoDe[2]. N.b., the right panels show the same curves as the left but on log scales.
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Figure 5. Results for MoDe[1] on the modified simple-model example requiring various maximum
slope values.
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Figure 5. Results for MoDe[1] on the modified simple-model example requiring various maximum
slope values.
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Figure 6. Left: Distributions of signal and background events without selection. Right: Back-
ground distributions at 50% signal e�ciency (true positive rate) for di↵erent classifiers. The un-
constrained classifier sculpts a peak at the W -boson mass, while other classifiers do not.
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Figure 7. Decorrelation versus background-rejection power showing that MoDe[0] performs sim-
ilarly to existing state-of-the-art decorrelation methods.

3.2.3 Beyond Decorrelation

Moving beyond decorrelation the 1/JSD metric is no longer relevant. Figure 6 shows that

neither MoDe[1] nor MoDe[2] sculpts a peaking structure in the background, but their

1/JSD values are small since neither seeks to decorrelate from the mass. Therefore, we

replace the 1/JSD metric with the signal bias induced by the classifier selection, which

is what actually matters when searching for resonant new physics. Specifically, we use

the signal estimators obtained by fitting the selected background-only samples to a simple

polynomial function as proxies for the signal biases. These are divided by their uncertainties

such that values of roughly unity are consistent with no bias, while values significantly larger
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Figure 8. Signal bias relative to resolution, which is roughly the square root of the background in
the signal region, versus background-rejection power. The flexibility beyond simple decorrelation
provided by MoDe[1] and MoDe[2] result in improved performance, i.e. larger rejection power.

than unity indicate substantial bias that could result in false claims of observations.

Figure 8 shows that the DisCo and MoDe[0] decorrelation methods provide unbiased

signal estimators for R50 . 9, which from Fig. 7 corresponds to 1/JSD & 1000. While

achieving higher decorrelation values is possible, this does not provide any tangible gains in

the bump-hunt analysis. Figure 8 also shows that the flexibility to go beyond decorrelation

provided by MoDe[1] and MoDe[2] results in achieving unbiased signal estimators at

larger background-rejection power. This would directly translate to improved sensitivity

in a real-world analysis.

4 Conclusions and Outlook

In summary, a key challenge in searches for resonant new physics is that classifiers trained to

enhance potential signals must not induce localized structures. In particular, if classifiers

can infer the mass of the parent resonance, then selecting signal-like events will simply

pick out background events with a reconstructed mass near the target resonance mass

creating an artificial structure in the background. Such structures could result in a false

signal when the background is estimated from data using sideband methods. A variety

of techniques have been developed to construct classifiers which are independent from the

resonant feature (often a mass). Such strategies are su�cient to avoid localized structures,

but are not necessary.

In this article, we presented a new set of tools using a novel moment loss function

(Moment Decomposition or MoDe) which relax the assumption of independence without

creating structures in the background. Using MoDe, analysts can require independence,

linear dependence, quadratic dependence, etc. In addition, analysts can place bounds on
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FIG. 3: Decorrelation against background rejection for di↵er-
ent approaches.

FIG. 4: QCD mass distribution before and after a cut on
CNN plus DisCo (W -tagging) with signal e�ciency of 50%
and JSD ⇠ 10�3.

adds exactly one hyperparameter and no additional neu-
ral network parameters to the DNN, the adversary more
than doubles the number of hyperparameters and adds
an entire second NN to the story. See the Appendix for
a complete list of hyperparameters for the adversarial
training. These were found through manual tuning and
their sheer complexity nicely illustrates the need for a
simpler method of decorrelation.

We see that DisCo regularization is equally capa-
ble of decorrelating the more powerful CNN classi-
fier, and again achieves comparable performance to
CNN+adversary. One concern could have been that a
more powerful deep learning method such as the CNN
could overpower the DisCo regularizer, but our result

demonstrates that this is not the case. At the highest
levels of decorrelation, we note that both DNN and CNN
performances are comparable.
In fig. 4, we indicate more directly the level of decorre-

lation in the background mass distribution for the pure
CNN case (no decorrelation), and for the CNN+DisCo
method at a working point that achieves 1/JSD50 ⇠ 103.
We see that DisCo is quite e↵ective at stabilizing the
background mass distribution against a cut on the clas-
sifier.
Finally, let us also comment briefly on the performance

of planing. Unlike DisCo regularization and some of the
other methods studied here, planing yields a single work-
ing point, instead of a tunable tradeo↵ between decorre-
lation and classifier performance. Since its performance
depends on the joint probability distribution for mass
and the other observables,8 planing is not guaranteed to
achieve strong results. But it is interesting to see that
in this case (and in many of the cases studied in [63]),
planing the DNN and CNN classifiers achieves very good
performance. The performance lies on the DisCo regu-
larization curve, and DisCo is capable of further decor-
relation.

Conclusions
Deep learning is greatly increasing the classification per-
formance for a wide number of reconstruction problems
in particle physics. With the increasing adoption of these
powerful machine learning solutions, a thorough under-
standing of their stability is needed.
In this paper it was shown how a simple regularisation

term based on the distance correlation metric can achieve
state-of-the-art decorrelation power. Training is easier to
set-up, with far less hyperparameters to optimise, and is
more stable than adversarial networks, while simultane-
ously being more powerful than simpler approaches.
DisCo regularization is an e↵ective and promising new

method for decorrelation which should have a host of
immediate experimental applications at the LHC. At the
same time, the potential use cases are much wider and
include problems of fairness and bias of decision algo-
rithms in social applications. This will be an extremely
interesting direction for future exploration.
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