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Ice Sheets and Sea Level Rise

(Courtesy of NASA)

Ice sheets contain an immense amount of water

Antarctic ice sheet: equivalent of 58 m sea level rise

Greenland ice sheet: 6 m sea level rise

Greenland + Antarctic contain > 99% freshwater ice in the world
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Hurricane Gustav, New Orleans (2008)

(Richard B. Alley, Penn State PA Environmental Resource Consortium)
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Connecting Changing Temperatures to Sea Level Rise
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Statistics and Ice Sheets

Formulating reasonable hypotheses regarding climatic change requires
physical insight and ingenuity, but subsequently testing these hypotheses
demands quantitative computation. – Edward N. Lorenz (1970)

My translation: to study future climate we need physical models,
data, and statistics and innovation on all three fronts

Focus here: Studying the West Antarctic Ice Sheet (WAIS)
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Talk Summary

How can we understand the dynamics of the West Antarctic Ice Sheet
and project its future behavior?

Ice sheet model: PSU3D-ICE (Pollard and DeConto, 2012)
Key input parameters governing model behavior are uncertain
Use model runs + observations to learn about these parameters
Model runs are computationally expensive

Tradeoffs

model resolution
computational time
# of parameters to study

I will give an overview and contrast two methods for this problem

Gaussian process emulation-calibration
Calibration via particle-based sequential Monte Carlo
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Model of Ice Sheet Physics

Ice sheet dynamics are translated into a computer model
Several uncertain parameters drive the dynamics

(Courtesy of the Earth Institute at Columbia University)
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Uncertain Parameters

Many parameters are key to ice sheet dynamics. They appear as
constants in the computer model
OCFACMULT, OCFACMULTASE, CRHSHELF, CRHFAC,
ENHANCESHEET, ENHANCESHELF, FACEMELTRATE,
TAUASTH, CLIFFVMAX, CALVLIQ, and CALVNICK

Changing these parameters changes how the ice sheet evolves over
time, and how it responds to the climate
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Observations

Modern ice sheet extent satellite (spatial) data

Some parameters apply to processes that have occurred in the past
and are expected in the future, but are not active today, for instance

Timescale of bedrock rebound (TAUASTH) under varying ice loads

Or processes that are undergoing rapid change in recent decades, e.g.

Coefficients for oceanic melting at the base of floating ice shelves
(OCFACMULT)

Hence, utilize reconstructions of past ice sheet behavior, example:

From Last Interglacial period ≈ 115,000 to 125,000 years ago
Grounding line data since Last Glacial Maximum (LGM) ≈ 25,000
years ago (time series)
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Why Use Probability Models Here?

It is common to use informal approaches to learn about parameters, e.g.
find the parameter values that produce model output within x of
observations (using some metric)? Why use probability models?

1 Posterior distributions of parameters easier to interpret: “Given all the
data we have and our assumptions, P(θ > 1.4) is 0.1”

2 Easier to compare results across resolutions, kinds of data used, data
aggregation etc. if they are in the form of probability distributions

3 Can model systematic model-data discrepancies (cf. Bayarri et al.,
2007) + account for observation errors + approximation errors

4 Straightforward to use distributions of parameters to obtain model
projections, also in the form of probability distributions

5 Can easily study relationships between parameters

6 In practice we find that results are sharper/more useful
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Example of Value of Statistical Modeling

Left: informal approach. Right: statistical calibration
Chang, Haran, Olson, Keller (2014), Annals of Applied Stats
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Model Complexity

Ice sheet models vary in complexity

Key drivers: spatial and temporal resolution

Simple models (cf. Shaffer, 2014; Bakker et al., 2016)

Simplify or exclude important physical processes
Run time ≈ few seconds

Complex models, e.g. PSU3D-ICE (DeConto and Pollard, 2016) or
Larour et al. (2012)

Better represent key ice dynamics; higher spatio-temporal resolutions
Can take hours or days ro run at each setting
Hence, difficult to study the behavior of the model

Challenging to study more than ≈ 4 - 6 parameters
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Two Approaches

In both cases our group ran PSU3D-ICE, a model with a sophisticated
representation of ice dynamics. The difference was in the resolution used

1 High resolution: horizontal resolution of 20 km

Takes several hours per model run
Consider only 4 parameters as uncertain
Methodology: handle computing by model emulation (approximation)

2 Coarse resolution: horizontal resolution of 80 km

Takes 10 - 15 minutes per model run
We want to use a better model for ice dynamics while still allowing for
better exploration of the model
Can now consider 11 parameters
Methodology: handle computing costs by particle methods and
massive parallelization

These approaches strike different compromises
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Statistical Framework

External forcings on ice sheet model: e.g. global mean temperature

Model Discrepancy (δ): Systematic difference between observations
and model output around the “best” parameter settings

Statistical model: Z = Y (θ) + δ + ε
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Calibration

Model for observations Z

Z = Y (θ) + δ + ε,

Y (θ): Model output
θ: Model parameter
δ: Discrepancy term

ε: Observational error w/
parameter σ2

Inference is based on posterior distribution, π(θ, δ, σ|Z ,Y ):

π(θ, δ, σ2
z |Z ,Y ) ∝ L(θ, δ, σ;Z ,Y )︸ ︷︷ ︸

Likelihood

× p(θ, δ, σ2)︸ ︷︷ ︸
Prior for θ, δ, σ

(cf. Kennedy & O’Hagan, 2001)
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Calibration via Markov chain Monte Carlo

Inference via Markov chain Monte Carlo algorithm with
π(θ, δ, σ2|Z ,Y ) as its stationary distribution

In principle, this would even work well for many parameters
(high-dimensional θ)

Problem: likelihood evaluation involves running the model: Y (θ)
If model takes hours at each θ, this is prohibitively expensive

Approach # 1: emulation-based approach that replaces slow computer
model with a fast stochastic approximation
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Approach 1: Emulation-Calibration

Study only 4 parameters; remaining are fixed at values determined by
experts and past studies. Then use emulation-calibration:

1 Emulation step: Find fast approximation for computer model using a
Gaussian process (GP) (cf. Sacks et al., 1989)

2 Calibration step: Infer climate parameter using emulator and
observations, while accounting for data-model discrepancy

Doing it in stages (“modularization”) has computational and inferential
advantages (e.g. Liu et al., 2009; Bhat, Haran, Olson, Keller, 2012)
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Gaussian Process Emulation

Idea: Fit flexible model relating parameter to model output

Model is simple (easy to evaluate/simulate)
Model allows for approximation uncertainty
Model is stochastic: useful for inference

Run model at p parameter settings to obtain
(θ1,Y (θ1)), . . . , (θp,Y (θp))

Fit Gaussian process (GP) to these pairs to obtain emulator

GP is infinite dimensional process with a positive definite covariance
function s.t. every finite collection of random variables has a
multivariate normal distribution

(Y (θ1), . . . ,Y (θp))T ∼ N(µ,Σφ)

where φ are covariance function parameters.
Fitting the GP involves estimating µ, φ from model runs
Fitted model provides probability model for Y at any new value of θ:
ηφ(θ)
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Emulation Step

Simple example: model output is a scalar and continuous

Computer model output (y-axis) Emulation (approximation)
vs. input (x-axis) of computer model using GP
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Calibration: Inference by Approximate Likelihood

Probability model for observations used to be

Z = Y (θ) + δ + εσ.

Now approximate model for observations is

Z = ηφ(θ) + δ + εσ,

δ is discrepancy; ε is observation error
ξ, σ2 are parameters for each process respectively

Discrepancy model needs to be flexible enough to adapt to systematic
differences between observations and model but not so flexible that it
causes identifiability issues. E.g. Gaussian process with strong priors

Above leads to approximate likelihood, L̂φ(θ, ξ, σ2;Z ,Y )

Inference for θ using observations is now

π(θ, ξ, σ2|Z ,Y ) ∝ L̂φ(θ, ξ, σ2;Z ,Y )︸ ︷︷ ︸
Approximate likelihood

× p(θ, ξ, σ2)︸ ︷︷ ︸
Prior for θ, σ2, ξ
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Calibration Step

Simple example: model output, observations are scalars

Combining observation Posterior PDF of θ
and emulator given model output and observations
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Challenges in Emulation-Calibration Approach

Very common for the model output and the observations to be
high-dimensional and multivariate, especially spatial or time series

One approach: low-dimensional representation of the model output
(Y → Y R) and data (Z → ZR), then carry out emulation and
calibration using low-dimensional representation e.g. principal
components (Higdon et al., 2008; Chang et al, 2014) or wavelets
(Bayarri et al, 2007)

Data are often non-Gaussian

Use spatial generalized linear mixed model for this (Chang et al., 2016)
For high-dimensional + non-Gaussian: principal components for
non-Gaussian data

Major challenge: as the # of model parameters increases, emulation
deteriorates. We only consider 4; rest are fixed

How would adding in more parameters impact results/uncertainties?
This motivates the development of Approach # 2
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Approach # 2

Reduce the resolution of ice sheet model from 20 km to 80 km

Use massively parallel sequential Monte Carlo approach
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Computing Costs and Methods

?

MCMC

Gaussian 
Process 

Emulation
Particle-Based

# Parameters

Model 
Run 
Time

15 
minutes

6 
seconds

5 20
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Sketch of Particle-Based Calibration

1 Sequential Monte Carlo with mutation

Adaptive target distributions
Automated stopping rules

2 Massive parallelization: 2,000+ processors on NCAR’s Cheyenne
supercomputer

3 Considerably reduces sequential computer model runs

Our approach is designed for

Computer models with moderate run times (≈ 6 sec to 15 min)

≈ 5− 20 model parameters

High performance computing systems

CMU STAMPS Lecture Series, November 2020 25



Sampling Importance Resampling

Idea: Sample from q(θ) + resample according to target π(θ)

Based on importance sampling approximation to Eπg(θ). Because

Eπ

[
g(θ)

]
= Eq

[
g(θ)

π(θ)

q(θ)

]
= Eq

[
g(θ)w(θ)

]
for q(·) s.t. π(θ) > 0⇒ q(θ) > 0 the Monte Carlo approximation is

1 Simulate θ(1), ..., θ(J) ∼ q(·) and generate weights w (j) such that:

1

J

J∑
j=1

w (j)g(θ(j))→ Eπ

[
g(θ)

]
2 Resample θ1, ..., θJ ∼ {θ1, ..., θJ} with weights {w (1), ...,w (J)}

π̂(θ) = 1
J

∑J
j=1 δθ(j)(θ) ≈ π(θ)
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Sequential Monte Carlo with Mutation

(cf. Jasra et al., 2011; Del Moral et al., 2006; Schaffer and Chopin, 2013)
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Comments on Particle-based Calibration

Easy to parallelize. E.g. each particle on a different processor

Mutation via Metropolis-Hastings is primary driver of cost so we use
an automated rule to efficiently control this cost

Automate # resampling steps and stopping rule

Verified via simulated examples that this method works well. For
simple examples similar results to MCMC

For analysis: priors are selected based on physical knowledge or past
data; also conducted prior sensitivity analysis

We find calibration information from the Pliocene era (5.3 to 2.6 mil
years ago) impacts parameters CALVLIQ and CLIFFMAX that affect
important process called marine ice cliff instability (MICI).

MICI: Subaerial ice cliffs exceeding 90 m in height are likely to collapse
under their own weight, and could lead to runaway ice sheet retreat
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Projections
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Lots of Caveats

We focused on parametric uncertainty for the ice sheet model. There
are many other uncertainties

Climate forcings
Impact of including or excluding various observations

Model (“structural”) uncertainty about the ice sheet model itself

Impact of resolution
The effect of changing the time frame

Translation: our conclusions depend heavily on the model

CMU STAMPS Lecture Series, November 2020 30



Summary

Emulation-calibration

Approximation allows for complex, computationally expensive models
Emulation limits the number of parameters we can consider

Fast particle-based approach for computer model calibration

Reduces wall times through massive parallelization + stopping rules
Can expand the number of parameters considered (11)

Would like methods to increase the number of parameters considered
+ increase complexity of the model

Caution: increased complexity may not always result in better models!
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