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Extreme Statistics (extSTAT) Research Group at KAUST
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2 Postdoc Positions in Statistics at KAUST

I am currently recruiting 2 postdocs in the following areas:
Extreme-Value Theory and Statistics, with experience in at least one of the following
areas: (1) spatio-temporal statistics; (2) SPDE models; (3) computational statistics
(low-rank methods, INLA, ML, etc.); (4) graphical models. Strong interest in
environmental applications is desired.

Spatial Statistics for Point Patterns with Applications in Geomorphology (Landslide
Science), with experience in at least one of the following areas: (1) Spatial statistics; (2)
Bayesian computational methods (INLA, MCMC, etc.); (3) Statistics of extremes; (4)
Applications in geosciences. Strong interest in the development of spatial predictive
models for earthquake-induced landslides is required.
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Agenda

Motivation

Sea surface temperature (SST) data and exploratory analysis

Classical models for spatial extremes, and their limitations

Proposed model and its properties

Bayesian inference and estimation of extreme hotspots

Data application

Final remarks

Hazra, A. and Huser, R. (2020+), Estimating high-resolution Red Sea surface temperature
hotspots, using a low-rank semiparametric spatial model, Annals of Applied Statistics, to appear.
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Motivation



Motivation

50% corals have died in last 30 years and the increasing ocean temperature is a primary cause.

The coral reefs of the Red Sea are less studied than those of the Indian Ocean and the Pacific
Ocean (Berumen et al., 2013).

Our aim is to model, identify and predict extreme SST exceedance regions (i.e., hotspots) within
the Red Sea in future years.
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Sea Surface Temperature (SST)
Data and Exploratory Analysis



SST data
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The project OSTIA (Donlon et al., 2012) generates daily SST estimates (free of diurnal
variability) at a resolution 0.05◦ × 0.05◦ (about 6 Km).

Considering the period 1985–2015, total #grid cells = 16703 and total #weeks = 1612.

We analyze temporally-thinned data keeping one day per week and assuming independence in time.
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Exploratory analysis (mean structure)

We fit a simple linear regression model of the form Yt = β1 + β2t, t = 1, . . . , 31, to the quarterly
and annual means at each grid cell. Hence, the estimated decadal rate of change is 10β̂2 (in ◦C).
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The slope (and intercept) profiles vary spatially as well as seasonally.

Overall, the mean SST varies across space, weeks and years. The effects are not additive.
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Exploratory analysis (dependence structure)
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The spatial covariance structure is nonstationary.

χ(u) = Pr
{
Y1 > F−1

1 (u) | Y2 > F−1
2 (u)

}
and χ = limu→1 χ(u). The spatial extremal dependence

is nonzero over a large region.
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Objectives

We want a model that reflects the following features and facts:

The spatiotemporal mean structure is nonstationary and the effects of space, week and year are
not additive [µ(lon, lat, year ,week) 6= µ1(lon) + µ2(lat) + µ3(year) + µ4(week)].

Since our main interest is in hotspot estimation by the end of 21st century, our model should
comprise a trend component that involves climate model-based projections (RCP 4.5/8.5).

The spatial covariance is nonstationary and spatial extremal dependence is nonzero.

Our model should be semiparametric (allows for high flexibility over large spatio-temporal
domains, and can capture various forms of joint PDFs).

The spatial dimension is large and hence requires specifying a dependence structure that leads to
feasible computation and inference.

Closed-form posterior distributions should be available for as many parameters as possible.
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Classical Models for Spatial
Extremes, and Their Limitations



Classical spatial statistics literature

High-dimensional geostatistics: Vecchia (1988), Wikle and Cressie (1999), Stein (1999), Higdon
(2002), Rue and Held (2005), Furrer et al. (2006), Banerjee et al. (2008), Heaton et al. (2019).

Pros and Cons: Apt for modeling high-dimensional spatial data but usually assume the process to
be Gaussian, which implies asymptotic extremal independence.

Semiparametric geostatistics: Gelfand et al. (2005), Duan et al. (2007), Reich et al. (2013).

Pros and Cons: More flexible than Gaussian process, Bayesian computation is easy in
low-dimension but leads to asymptotic extremal independence.
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Spatial extremes literature–Max-stable processes

Max-stable processes: Padoan et al. (2010), Davison and Huser (2015), Castruccio et al.
(2016), Davison et al. (2019), Huser et al. (2019)

Max-stable processes have been widely used for modeling spatial extremes defined as
spatially-indexed block maxima, because of their appealing asymptotic characterization:

max{Y1(s), . . . ,Yn(s)} − bn(s)

an(s)
D−→ Z (s) ∼ Max-stable process,

for suitably chosen sequences of functions an(s) > 0 and bn(s).

Max-stable theory is well understood.

Max-stable processes admit a spectral representation:

Z (s) = sup
i=1,2,...

ξiWi (s),

where {ξi} ∼ PPP(ξ−2dξ) ⊥⊥ {Wi (s)} i.i.d. copies of a process W (s) ≥ 0 with E{W (s)} = 1.

Max-stable processes capture asymptotic extremal dependence, i.e.,
χ = limu→1 Pr

{
Z (s1) > F−1

1 (u) | Z (s2) > F−1
2 (u)

}
> 0.
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Spatial extremes literature–Max-stable processes

However:

Often too rigid in finite samples due to the strong restriction imposed by the max-stability
property.

Spatial block maxima may not correspond to real observations (as maxima at different sites may
occur on different days)...

Max-stable processes are computationally extremely intensive to fit in moderate (or even small)
dimensions, because the joint density (i.e., likelihood for a single replicate) has the form

g(z1, . . . , zD) = exp{−V (z1, . . . , zD)}
∑
π∈PD

|π|∏
i=1

{−Vτi (z1, . . . , zD)},

where D is the number of sites, PD is the set of all partitions of {1, . . . ,D} and V is the exponent
function.
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Spatial extremes literature–r -Pareto processes

r-Pareto processes: Ferreira and de Haan (2014), Thibaud and Opitz (2015), de Fondeville and
Davison (2018)

r -Pareto processes are analogous to max-stable processes, in the sense that they have an appealing
asymptotic characterization for spatial threshold exceedances. On a standard Pareto scale:

Y (s)

u
| r{Y (s)} > u

D−→ Z (s) ∼ r -Pareto process, as u →∞

where r(·) is some homogeneous risk functional.

r -Pareto processes are meant to model the original spatial extreme events that effectively occurred.

r -Pareto processes also capture asymptotic extremal dependence, and also admit a convenient
stochastic representation.

r -Pareto have simpler (censored) likelihood functions of the form

n∏
i=1

[
−VIi{max(ỹi , u)}

Kr (u)

]
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Spatial extremes literature–r -Pareto processes

However:

Still limited to moderate dimensions (D ∼ 50) because of multivariate censoring, unless some less
efficient scoring rule approaches are used (and how to use this approach in a Bayesian context is
unclear)

Practical issue: how to choose the threshold u, especially in a non-stationary context?
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Spatial extremes literature–Semi-parametric models

Semiparametric spatial extremes: Hazra et al. (2018), Bopp et al. (2020).

Idea: developing a semiparametric spatial mixture model that is flexible both in the bulk and the
tails, so that it provides a good fit to the whole dataset (from low to high quantiles)

Mixtures can probabilistically (and “automatically”) cluster observations from the tail and the
bulk, thus bypassing threshold selection.

Depending on the mixture components, the spatial mixture may or may not capture asymptotic
extremal dependence.

Bayesian computations are quite simple if the model is based on (potentially skewed) Gaussian of
Student’s t mixture components.

However, the existing semiparametric spatial extremes literature is still limited to relatively low
spatial dimensions.
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Proposed Model and its Properties



The proposed model

We model the Red Sea SST data as Yt(sn) = µt(sn) + εt(sn), t = 1, . . . ,T = 1612.

We write µt(sn) = µ(t1, t2, sn) where t1 = dt/52e (i.e., year), and t2 = t − 52(t1− 1) (i.e., week).

We assume µ(t1, t2, s) = β1(t2, s)x
(0)
t1,1

+ β2(t2, s)x
(0)
t1,2

.

Here, βp0 (t2, s) =
∑PT =12

p1=1 βp0,p1 (s)x
(1)
t2,p1

and βp0,p1 (sn) =
∑PS=189

p2=1 βp0,p1,p2x
(2)
n,p2 , where

x
(0)
t1,1

= 1/
√

31 (intercept),

x
(0)
t1,2

= rescaled annual mean SST projection based on RCP 4.5/8.5 scenarios,

x
(1)
t2,p1

= splines across months evaluated at t2 (within a year),

x
(2)
n,p2 = splines across space evaluated at sn.

Vectorized form: µ = [X0;1 ⊗ X1 ⊗ X2]β1 + [X0;2 ⊗ X1 ⊗ X2]β2.

We assume that the density of εt is fDPM(ε) =
∑K

k=1 πk fT (ε | Θk = {Φk , τ
2
k , ak}), ak > 2 ∀ k.

fT (ε|Θ = {Φ, τ 2, a}) is the multivariate t density of Ta

(
0N ,

a−2
a

[
HΦH ′ + τ 2IN

])
.
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Raphaël Huser (KAUST) CMU/STAMPS Webinar March 12, 2021 21 / 44



The proposed model

We model the Red Sea SST data as Yt(sn) = µt(sn) + εt(sn), t = 1, . . . ,T = 1612.

We write µt(sn) = µ(t1, t2, sn) where t1 = dt/52e (i.e., year), and t2 = t − 52(t1− 1) (i.e., week).

We assume µ(t1, t2, s) = β1(t2, s)x
(0)
t1,1

+ β2(t2, s)x
(0)
t1,2

.

Here, βp0 (t2, s) =
∑PT =12

p1=1 βp0,p1 (s)x
(1)
t2,p1

and βp0,p1 (sn) =
∑PS=189

p2=1 βp0,p1,p2x
(2)
n,p2 , where

x
(0)
t1,1

= 1/
√

31 (intercept),

x
(0)
t1,2

= rescaled annual mean SST projection based on RCP 4.5/8.5 scenarios,

x
(1)
t2,p1

= splines across months evaluated at t2 (within a year),

x
(2)
n,p2 = splines across space evaluated at sn.

Vectorized form: µ = [X0;1 ⊗ X1 ⊗ X2]β1 + [X0;2 ⊗ X1 ⊗ X2]β2.

We assume that the density of εt is fDPM(ε) =
∑K

k=1 πk fT (ε | Θk = {Φk , τ
2
k , ak}), ak > 2 ∀ k.

fT (ε|Θ = {Φ, τ 2, a}) is the multivariate t density of Ta

(
0N ,

a−2
a

[
HΦH ′ + τ 2IN

])
.
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ε(s): Low-rank dependence structure based on empirical orthogonal
functions (EOFs)

Estimate µt(sn) empirically based on the data (e.g., LS estimates).

Consider ε̂t(sn) = Yt(sn)− µ̂t(sn).

Form the sample spatial covariance matrix Σ̂ of ε̂t , t = 1, . . . ,T .

Perform eigen-decomposition of Σ̂ and let the highest L eigenvalues be λ1, . . . , λL and h1, . . . ,hL

be the corresponding eigenvectors.

Choose H = [h1| · · · |hL] and let ∆ = diag(λ1, . . . , λL).

Σ̂ ≈ H∆H ′ + ψ2IN for some small ψ2.

For the proposed model, Cov(εt) = H(
∑K

k=1 πkΦk)H ′ + (
∑K

k=1 πkτ
2
k )IN .
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EOFs
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Figure: The proportions of the total variance of SST explained by EOFs 1–6 are 49.40%, 17.78%,
6.14%, 2.87%, 2.26%, and 1.82%, respectively.
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Overall model (so-called LTP-DPM)

Different weeks may be grouped in different “clusters” with different spatial characteristics.

Hierarchically, given the cluster index gt = k , the process can be written as

Yt(s) = µt(s) + σt [h′(s)Zt + ηt(s)] ,

Zt ∼ NormalL (0,Φk) , ηt(s)
iid∼ Normal

(
0, τ 2

k

)
,

σ2
t ∼ Inverse-Gamma

(ak
2
,
ak
2
− 1
)
.

For computational reasons, we split the mean vector as µ =
∑2

i=1

∑2
j=1 [X0;i ⊗ X1 ⊗ X2;j ]βi ;j ,

where X2;1 = PHX2, and X2;2 = (IN − PH)X2 with PH = HH ′.

We consider the priors:

Φk ∼ Inverse-Wishart (L + 2,∆), so that E(Φk) = ∆ and Cov(εt) ≈ Σ̂.
πk ∼ Stick-Breaking(δ).
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Model properties

Bulk properties are similar to DPM models, i.e., nonstationary mean and covariance structure:

E {Yt(sn) | βi ;j , i , j = 1, 2} = µt(sn) =
2∑

i=1

2∑
j=1

x
(0;i)
t1

(
x (1)
t2
⊗ x (2;j)

n

)
βi ;j ,

Cov {Yt(sn1 ),Yt(sn2 ) | Θk ; k = 1, . . . ,K} =
K∑

k=1

πk
(
hn1Φkh′n2

+ τ 2
k I{n1=n2}

)
.

Regarding tail properties, we get asymptotic extremal dependence with

χ(sn1 , sn2 ) = 2F̄T

(√
(am + 1)

1− rm(sn1 , sn2 )

1 + rm(sn1 , sn2 )
; 0, 1, am + 1

)
> 0, m = arg min

k
{ak} .

Asymptotic extremal independence if ak =∞ for all k.
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Bayesian Inference and
Estimation of Extreme Hotspots



Bayesian computation

We exploit the separable structure of the design matrices for fast updating of P = PT PS = 2268
dimensional regression coefficients.

For the DPM models, we fix K within the MCMC and choose the best K using cross-validation.

Except the df parameters ak , k = 1, . . . ,K , the other parameters have conjugate priors.

We consider the priors ak
IID∼ Discrete-Uniform(2.1, 2.2, . . . , 40.0) and sample straightforwardly.

Computation time (for 60,000 MCMC samples) is ≈ 10 hours which is approximately 2.2 times of
fitting a LGP (≈ 4.5 hours).
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Hotspot estimation

We extend the approach of French and Sain (2013) (developed for Gaussian processes) to the
context of our LTP-DPM model.

We define an exceedance region as E 0
u+ = {sn ∈ D : Yt0 (sn) ≥ u} for threshold u at time t0.

We want to find a “confidence region” D0
u+ so that Pr(E 0

u+ ⊆ D0
u+ ) = 1− α for some predefined

probability α.

For a future time t0, we test H0 : Yt0 (sn) = u versus H1 : Yt0 (sn) < u for each sn ∈ D on the basis
of some test statistic Ỹt0 (sn) and collect all sn ∈ D where we fail to reject H0.

An obvious choice for Ỹt0 (sn) is exploiting Ŷt0 (sn), a predictor of Yt0 (sn).

We need to adjust the critical value of the tests to achieve an overall family-wise error rate of α,
while accounting for spatial dependence.

We rely on posterior predictive sampling.
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Hotspot estimation

Generate B = 104 posterior samples from Yt0 = [Yt0 (s1), . . . ,Yt0 (sN)]′.

By Bayesian CLT, posterior average Ŷt0 (sn) | Yt0 (sn) ∼ Asymptotic-Normal
(
Yt0 (sn), σ̃2

t0
(sn)

)
.

We consider Ỹt0 (sn) =
Ŷt0

(sn)−u
σ̃t0

(sn) ∼ Normal (0, 1) under H0.

The critical value Cα is chosen such that

Pr

(
min

sn∈E 0
u+

{
Ỹt0 (sn)

}
< Cα

)
= α.

We identify E b
u+ = {sn ∈ D : Y

(b)
t0

(sn) ≥ u} for each b, calculate Ỹt0 (sn), and minsn∈E b
u+
{Ỹt0 (sn)}.

We repeat this procedure for each b and estimate Cα by Ĉα, the sample α-th quantile of
{minsn∈E b

u+
{Ỹt0 (sn)}; b = 1, . . . ,B}.

Finally, D0
u+ = {sn ∈ D : Ỹt0 (sn) ≥ Ĉα}.
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Ỹt0 (sn)

}
< Cα

)
= α.

We identify E b
u+ = {sn ∈ D : Y

(b)
t0

(sn) ≥ u} for each b, calculate Ỹt0 (sn), and minsn∈E b
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Data Application



Representative concentration pathway (RCP) scenarios

30

32

34

1980 2010 2040 2070 2100
Year

S
S

T
 (

°C
)

Pathway

RCP 4.5
RCP 8.5
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Cross-validation results

Training set = 1985–2010 (26 years) and Test set = 2011–2015 (5 years).

We compare models LGP (K = 1, ak =∞), LTP (K = 1), LGP-DPM (ak =∞) and LTP-DPM
across K and L based on BSS and TWCRPSS.
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LGP-DPM versus LTP-DPM

Figure: Posterior densities of the ten ordered stick-breaking probabilities π(1) > · · · > π(K), based on
fitting the LGP-DPM (red) and LTP-DPM (blue) models with K = 10 mixture components and L = L1

spatial basis functions.
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Estimated decadal rate of change
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Estimated return levels
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Marginal/joint exceedance probabilities

Type-I: Considering equal bleaching threshold across the Red Sea (Jokiel and Brown, 2004), we
estimate

Pr (∪sn∈D0{Yt0 (sn) > u}) and Pr (∩sn∈D0{Yt0 (sn) > u})

for a range of high temperature values u.

Type-II: Considering spatially-varying bleaching threshold (Genevier et al., 2019) as well as the
adaptive nature of coral reefs to moderate climate change (Logan et al., 2014), we estimate

Pr
(
∪sn∈D0{Yt0 (sn) > Q

(n)
t0

(p)}
)

and Pr
(
∩sn∈D0{Yt0 (sn) > Q

(n)
t0

(p)}
)

where Q
(n)
t0

(p) denotes the p-th quantile function of the distribution of Yt0 (sn).
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Three important regions
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Estimated exceedance probabilities (Week 40, Year 2099, RCP 8.5)
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Estimated hotspots (Year 2099, RCP 8.5)
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Estimated exceedance probabilities (Week 40, Year 2099, RCP 4.5)
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Estimated hotspots (Year 2099, RCP 4.5)

Raphaël Huser (KAUST) CMU/STAMPS Webinar March 12, 2021 38 / 44



Final Remarks



Conclusions

We have proposed a low-rank semiparametric Bayesian model for large spatial data where
independent replications are available.

The model has nonstationary mean and covariance structures, and can capture asymptotic
extremal dependence.

Inference can be drawn using an efficient Gibbs sampler, and spatial hotspots can be estimated
efficiently using posterior predictive samples.

Our results suggest that large areas of the Red Sea (that include major coral reefs) are likely to
experience very extreme SSTs simultaneously around the end of the 21st century, which may have
dramatic consequences in terms of coral bleaching and mortality if mitigation measures are not
implemented.

In future research, it would be interesting to generalize our approach to estimate spatio-temporal
dependence, and assess whether spatial hotspots tend to persist over consecutive days, which
plays a key role in coral bleaching and mortality.
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Thank you!

Hazra, A. and Huser, R. (2020+), Estimating high-resolution Red Sea surface temperature hotspots,
using a low-rank semiparametric spatial model, Annals of Applied Statistics, to appear.

Preprint available at https://arxiv.org/abs/1912.05657
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