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Some of the challenges:

An eclectic observing system
with disparate sensors
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Two incomplete

knowledge
reservoirs

e an eclectic, patchy
global ocean observing system

e humerical models

that require uncertain inputs



Two incomplete

knowledge
reservoirs

Can we optimally combine these two
knowledge reservoirs?

Can we do so in a manner that provides
useful for climate analysis?

— causal, dynamical attribution
— detecting small, residual signals

Can we provide measures of uncertainties
with these?

Can we use simulation to inform efficient
observing strategies?




ECCO: Estimating the Circulation and Climate of the Ocean

A multi-platform, multi-instrument synthesis effort that

integrates ocean and marine ice observations with

equations of motion (model)
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What is Data Assimilation?

Kaminski et al., The Cryosphere (2015):
“Ideally, ...

.. all observational data streams are interpreted simultaneously,
.. with the process information provided by the model,

..[which leads to] a consistent picture of the state of the system,
..that balances all the observational constraints,

.. taking into account all the respective uncertainty ranges.”

Penny et al., Front. Mar. Sci. (2019):

“DA allows information provided from observations to be propagated
in time and space to unobserved areas using the dynamical and
physical constraints imposed by numerical models,”



ECCO as a statistical /Bayesian inverse problem

Kaipio & Somersalo (2005)
Statistical and Computational Inverse Problems

e Formulate inverse problem as statistical quest for information
e Given observable & unobservable quantities
e Solve inverse problem:

@ unobservable (or unobserved) quantities are of primary interest

@ extract information and assess uncertainty based on all available knowledge of
measurement process, of models, and of prior information of unknowns

e Solution of inverse problem is a posterior PDF of unknowns

In the following, we adopt Isaac et al., J. Comp. Phys. (2015)

Patrick Heimbach ECCO as a statistical/Bayesian inverse problem



ECCO as a statistical /Bayesian inverse problem

Incomplete knowledge reservoirs

Model (ocean GCM)

x(t) = L(x(t—1), Bu(t—1))

Observations

y(t) = Ex(t) + n(t)

x(t) : model state vector at time t
y(t) : observation vector at time t
u(t) : vector of uncertain (control) variables at time t
n(t) : residual noise of model-data misfit at time t
L: nonlinear model operator
' state-to-observable map
B :  parameter-to-state map

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem



ECCO as a statistical /Bayesian inverse problem

Statistical inference over space of uncertain parameters u

Tpost(U | Y): posterior distribution of uncertain parameters u,
given observations y

o combines prior PDF 7,0 (u) with
o likelihood PDF 7T/,'ke(y | U)

Bayes' Theorem

Tpost(U | Y) OC Tprior(U) Tiike (Y | U)

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem




ECCO as a statistical /Bayesian inverse problem

Expensive forward model & high-dimensional space of uncertain
parameters necessitates assumptions:

Q@ Trior(u) is Gaussian

@ prior error covariance may impose smoothness, e.g., via elliptic PDE operator
(inverse Laplacian)

© difference between predicted observables, £ x(t), and actual observations,
y(t) captured by noise vector

n(t) = Ex(t) — y(t)

which obeys Gaussian statistics

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem




ECCO as a statistical /Bayesian inverse problem

Generalize to parameter-to-observable map

F(u,t) = EoL(x(t—1), Bu(t—1))
with generally nonlinear F, such that
Ex(t) — y(t) = Flu, t) — y(t)

leads to ...

Bayes' Theorem with Gaussian noise & prior

1 1
Tpost(] y) ~ exp{—§||f(u> ~¥llgs = lu = terll, |

prior

4

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem




ECCO as a statistical /Bayesian inverse problem

From statistical to deterministic inversion

Mean upap of posterior distribution 7,0s:(U) is parameter vector
maximizing 7pest, called maximum a posteriori (MAP) point

o found by minimizing — log(7 ost)
o solve optimization / deterministic inverse problem

. 1 1
aus = argmin { ~211 () ~ Il = 3l u = i 2, |

u 2 prior

This is the ECCO parameter & state estimation problem

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem




ECCO as a statistical /Bayesian inverse problem

Approximation of the posterior PDF by posterior error covariance [ .

Posterior error covariance given by inverse of the Hessian at upap

ey
[ post = [Hmisfit(uMAP) + rpr,l-or]

where
o Tr-1
Hmisfit(uMAP) ~ F robsF

Gauss-Newton Hessian approximation

with:

F : tangent linear operator of F
FT : adjoint operator of F

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem




The deterministic parameter & state estimation problem

Consider “perfect” nonlinear model £, and observations y with noise n

J(u) = %Z[ex(t) —y(®17 T [Ex(t) — ()]

tfl

e Z [u(t) — uprlor(t)] pnor [u(t) — uprior(t)]

= Jmisfit + Jprior

Extend to Lagrange function 7, introducing Lagrange multipliers p(t):

T(u,p) = J(u) = > p' [x(t) — L(x(t—1))]
=1

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem




The deterministic parameter & state estimation problem

Lagrange multiplier method:
Stationary point of J leads to set of normal equations:

oI =x(t) — L(x(t —1)) =

ey = X(0) = L(x(t ~ 1) =

8J  9J aL(x(t))1" 3
G _Bx(t)_u(t)+[ Ax(t) ] ut+1) =0
0J B s

ox(tr)  Ox(tr)
oJ  8J  [ocL(x(0)]"
ox(0)  0x(0) [ 0x(0) ] A

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem



The deterministic parameter & state estimation problem

“Variational” hints that we need a gradient:
e gradient of J with respect to unknown/uncertan or control variables u
@ Here: Vary initial conditions, x(0) such as to minimize J
BUT: J depends not just on x(0), but on all x(t).
e consider nonlinear model x(t + 1) = L(x(t))
@ linearized operator is state transition matrix or Jacobian L

Ox(t + 1) B
(1) ox(t) = Ldx(t)

Ix(t+1) =

Need chain rule of differentiation:
oy

J = J(x0, X1, X2, -, Xt;)
J (0, L(x0), L(£(x0)), - » £ (x0))




The deterministic parameter & state estimation problem

 Oxy (0J . 0x1 0xo ﬂ
- 8X0 8X1 8X0 8X1 8X2

8X1 8th (8.,,)
SIS .

0X0 Oxt,—1 \ OXt,
0J 0J 0J
= LT = 4 LTLT = LT...LT
8x1 0X> R OXt,

L7: is the adjoint model (and L is the tangent linear model)
By = (g—i): Lagrange multiplier or dual state at time ¢

Patrick Heimbach

ECCO as a statistical/Bayesian inverse problem



The deterministic parameter & state estimation problem

For intermediate step of the adjoint model integration one obtains:

. 8.] . T BJ T =
& OX¢ =k 3Xt+1 tE I—Obs [gXt - )’t]
T T 8.] T r—1 71
— L L 8Xt_|_2 -+ E robs _8Xt_|_]_ — }’t+1]
-+ ET r;bls :(‘:Xt — Yt]

@ The adjoint model L propagates p. (the sensitivity of J with respect to all
earlier states x;) backward in time to xp;

e Each model-data misfit (i.e. innovation vector £x; — y;) is a source of sensitivity;
@ The gradient of J with respect to xg takes into account (and weighs) the size of all

misfit terms, all (inverse) error covariances, and all (linearized) model dynamics.

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem




The deterministic parameter & state estimation problem

Make explicit time-varying “forcing” in model L,
with known part B g, uncertain part I' u;

xty1 = L(xt, Bge, [ ut)

"

Least-squares estimation problem now is:

J(x) = Z { [Ex: — yt]TI';bls [Ex: — yi]

0=t

e [ut — Uprior]T r;rll'or [ut - Uprior] }

—
+ [xo — xb} I';”-lt [xo — xb]

o

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem




The deterministic parameter & state estimation problem

Lagrange function £ now takes on the form:

T=J+ > u®)" [x(t+1) — L(x(t), Ba(t), Fprior u(t)) ]

0<t<ty

And we have additional normal equation for gradient w.r.t. u(t)

. u T
8y [ e ocic
T T
B [T e e

7
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Machine Learning versus 4D-Variational Data Assimilation

Machine Learning

(Variational) Data Assimilation

labels y observations y(t)
features X state (at time t) x(t)
neural network y' = W(x) nonlinear physical x(t+ 1) = L(x(t))

(surrogate model)

loss function J=(y—y')
(?)
regularisation |||

stochastic gradient
backpropagation

training

convolutional layers

differentiable programming for AD

forward model
cost function J = [y — E(L(x))] "R™1 ly — E(L(x))]
observation &
operator
background JP = [xo — xb] B! [xo — xb]
Newton method

-
adjoint model Z=[ (R (Z)ED]
optimization, calibration

localization
differentiable physics for AD

Patrick Heimbach

ECCO as a statistical /Bayesian inverse problem



Adjoint-based
model
calibration &
state estimation

ECCO is learning from ...

¢ (the most complete set of available)
ocean observations

e ... AND known physics/dynamics,

e ... by solving a gigantic least-squares
model-data misfit minimization

e ... using the adjoint / Lagrange
Multiplier Method



The MIT general circulation model (MITgcm)
and AD-enabled adjoint code generation

Approximated form of Navier-Stokes equations
for an incompressible fluid on rotating sphere
(hydrostatic or non-hydrostatic), consisting of:

* momentum equation
* conservation of mass
* conservation of heat, salt
* nonlinear equation of state for seawater
* subgrid-scale parameterizations .
. o ¢ (—”' i i ;
* scalable (domain decomposition) "Dt " p.
* general curvilinear grid (incl. cubed-sphere)

* adjoint code generation via automatic
differentiation (AD) using TAF, OpenAD

P e ——

~100km ~1 000km ~10 000k




Adjoint-based model calibration & state estimation

Generating & maintaining the adjoint of a state-of-the-art ocean circulation model

hand-written adjoint Automatic Differentiation

LECTURE NOTES IN COMPUTATIONAL
SCIENCE AND ENGINEERING

Christian H. Bischof - H. Martin Biicker
Paul Hovland - Uwe Naumann - Jean Utke Editors

Advances in
Automatic

Differentiation

Editorial | Board
1. L.Barth
M.Griebel

@ Springer

Giering & Kaminski (1998); Marotzke et al. (1999); Heimbach et al. (2005); Utke et al. (2007); Griewank & Walther (2008)



Filter vs. | The virtues of property-

Smoother | conserving estimation




Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Numerical Weather Prediction (NWP) - a filtering problem

e Relatively abundant data sampling of the 3-dim. atmosphere

e NWP targets optimal forecasting
=» find initial conditions which produce best possible forecast;
=>» dynamical consistency or property conservation NOT required




Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Numerical Weather Prediction (NWP) - a filtering problem
Relatively abundant data sampling of the 3-dim. atmosphere
NWP targets optimal forecasting
=» find initial conditions which produce best possible forecast;
=>» dynamical consistency or property conservation NOT required

Ocean state estimation/reconstruction — a smoothing problem
Sparse data sampling of the 3-D. ocean state
Understanding past & present state of A
the ocean is a major goal all by itself
=» use observations in an optimal way
=» dynamic consistency & property | |.-===""
conservation ESSENTIAL for climate




Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Balancing the
momentum,
freshwater,
and heat

budgets El
T




Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Tracer budgets in a global ocean reanalysis produced via filtering approach

Tendency [Wm e ]
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Components in the
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Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Global-ocean net heat flux imbalance
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25 OA1x1

CERES+

MERRA i
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- 20CR
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ERA20C

MERRA2

Cronin et al., Front. Mar. Sci. (2019)
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Example Gaining insight through

Applications

quantifying time-evolving
property budgets




Example use of state estimates:
Use of observations-only vs. state estimates for understanding

Dynamics & variability of North Atlantic
(Eighteen-degree) Mode Water formation
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Example use of state estimates:
Use of observations-only vs. state estimates for understanding
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Temperature (°C)

Example use of state estimates:

Use of observations-only vs. state estimates for understanding

Diabatic and adiabatic contributions to water mass volume variability

in the North Atlantic subtropical gyre (26°N — 45°N)

Volume Anomaly in Temperature Classes: RGAC
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Conservative
Temperature ( C)

Conservative

Temperature (aC)
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Example use of state estimates:

Use of observations-only vs. state estimates for understanding

Diabatic and adiabatic contributions to water mass volume variability

in the North Atlantic subtropical gyre (26°N — 45°N)

Total monthly dV/dt, Argo

o

o

Monthly total & diathermal transformation

due to air-sea heat fluxes
NCEP + Reynolds SST
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Evans et al., JPO (2017)

Total monthly dV/dt, ECCO v4
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Science applications with
Beyond the adjoint model:

optimization sensitivity maps &
dynamical attribution




Causal [ dynamical attribution:
South Atlantic Ocean
Circulation

South Atlantic Meridional

Overturning Circulation
(SAMOCQ) variability
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Causal [ dynamical attribution: Smith & Heimbach, J. Clim. (2019)
South Atlantic Ocean

Circulation

South Atlantic Meridional
Overturning Circulation

(SAMOCQ) variability
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Causal / dynamical attribution: Smith & Heimbach, J. Clim. (2019)
South Atlantic Ocean

Circulation

. 0J . 8Xt 0J
= 50= 2 g (axt)

1<t<ts

Sensitivity of mass transport J _ x ((oTN 0% Oxg) (O

, . 8X0 Bxl 8X0 Bxl 8X2
with respect to forcings, o e 5]
initial conditions, carried S 3th:1 (8xtf)
via “backpropagation”
by the time-evolving oJ oJ dJ

. =L — +LL" =+ ... +L"..LT

dual/adjoint ox oo T OXt,

state
L7: is the adjoint model (and L is the tangent linear model)

filip: = (c’%): Lagrange multipliers or gradients



Causal / dynamical attribution:
The South Atlantic Ocean Circulation

Use of the availability of the dual ocean state (time-evolving adjoint state) for
scientific analysis.

Reconstruction of P ........... M
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anomalies
via the adjoint;

The time-evolving

adjoint = dual state, di/dr
has physical meaning t = t-0 Days

Smith & Heimbach, J. Clim. (2019)
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Causal / dynamical attribution:
The South Atlantic Ocean Circulation

Dynamic attribution of
interannual SAMOC variability
due to wind stress perturbations
via Green’s functions

Smith & Heimbach, J. Clim. (2019)
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Hessian-based Uncertainty
Quantification & formal
observing system design

Beyond

optimization




Different uses:

: e Parameter estimation (calibration)
What is — uncertainties in the parameters

U ncerFa.th e State estimation / reconstruction/
Quantification synthesis (interpolation)
in the context of — uncertainties in reconstructed state or

C e . derived quantities of interest (Qols)
Data Assimilation?

e Forecast initialization (extrapolation)
— uncertainties in the forecast




e Observations:

— measurement error & irregular sampling
(in space and time)

e Assimilation scheme:
— DA algorithm (and approximations)

Origins of — how observations are ingested in DA
uncertainty in

e Model:
— Parametric uncertainties

the C()ntext — Structural uncertainties (discretization,
model inadequacy)
of DA

All boundary conditions:

— external forcing, bathymetry, lateral
boundaries

e Use of prior knowledge:
— error covariances, representation error




e Spatio-temporally irregular
sampling of observations

— How to account for inhomogeneous
sampling uncertainty,

Why S e Parametric uncertainty
: — “The curse of dimensionality”
uncertail nty — N2 for parameter space dimension N
qu antification e Structural uncertainty / model
s inadequacy
difficult to do? — How to capture? Source terms in the model?

— Absorb within parameter estimation?

— Machine learning / neural networks as
surrogate models?

— Stochasticity




A way
forward:

Bayesian
Inverse
methods

computational frameworks that account
jointly for model, observations, forcings,
prior knowledge, and all their uncertainties:

e MCMC and similar sampling techniques
hard for high-dim. parameter spaces

e Derivative-based inference:
o propagates all uncertainties

o provides dynamical underpinning of
uncertainty propagation

o infers low-order modes




ECCO as a statistical /Bayesian inverse problem

Approximation of the posterior PDF by posterior error covariance [ .

Posterior error covariance given by inverse of the Hessian at upap

ey
[ post = [Hmisfit(uMAP) + rpr,l-or]

where
o Tr-1
Hmisfit(uMAP) ~ F robsF

Gauss-Newton Hessian approximation

with:

F : tangent linear operator of F
FT : adjoint operator of F

Patrick Heimbach ECCO as a statistical /Bayesian inverse problem




ECCO as a statistical /Bayesian inverse problem

How to obtain/extract information from I, J(u)

e form prior-preconditioned Hessian

~

Hmisfit — I_prior Hmisfit;

o formulate generalized eigenvalue problem

| -
" | ,,r' =

Hpistie W = WA U1
where ( D - Ug
| |
. . L =5
7% . eigenvector matrix U o
A = diag()\;) : eigenvalue matrix
V = I';{,ir W : prior-preconditioned eigenvector matrix

Patrick Heimbach ECCO as a statistical/Bayesian inverse problem



ECCO as a statistical /Bayesian inverse problem

How to obtain/extract information from I .

e retain only r largest eigenvalues, yields low-rank approximation:

I:Imisfit ~ Vr /\,— VrT
- —1
Fmise + 1]~ 1 = V,D, V] =R,

with low-rank resolution operator R, and

D, = diag(A,/(\, + 1))

Low-rank eigen-decomposition of ' ,.s;

T+
B rL/2 1/2
I_POSt — P"'Of Z /\ _|_ 1 ( prior ) (rprior Wi)

Patrick Heimbach ECCO as a statistical/Bayesian inverse problem




Hessian uncertainty quantification ...
... applied to observing system design in the North Atlantic

jAMES Journal of Advances in

Modeling Earth Systems @

RESEARCH ARTICLE
10.1029/2020MS002386

Key Points:

« We apply Hessian uncertainty
quantification (UQ) to the global
ocean state estimate ECCO, and
explore its use for observing system
design

» Hessian UQ elucidates oceanic
teleconnections that communicate
observational constraints over basin-
scale distances

« Going beyond previous adjoint
ocean modeling techniques, Hessian
UQ rigorously assesses redundancy
and optimality of observing systems

Leveraging Uncertainty Quantification to Design Ocean
Climate Observing Systems
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Abstract Ocean observations are expensive and difficult to collect. Designing effective ocean
observing systems therefore warrants deliberate, quantitative strategies. We leverage adjoint modeling
and Hessian uncertainty quantification (UQ) within the ECCO (Estimating the Circulation and Climate
of the Ocean) framework to explore a new design strategy for ocean climate observing systems. Within
this context, an observing system is optimal if it minimizes uncertainty in a set of investigator-defined
quantities of interest (Qols), such as oceanic transports or other key climate indices. We show that




Predictive data science:

from observation & simulation to decision
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