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Overview

1. Oceanography: a sparse-data science
2. ECCO: deterministic inverse problem 

in a statistical/Bayesian framework
3. DA filters versus smoothers 
4. Science applications: time-evolving 

property budgets
5. Beyond optimization: adjoints for 

dynamical attribution
6. Hessian uncertainty quantification & 

observing system design



(colors refer to
depth ranges)

Observational sampling
coverage for ocean
temperature in the 
upper 2000 m
1950 – 2010
(mean ocean depth:
~ 3900 m)

Abraham et al., Rev. Geophys. (2013)

Wunsch (2016)

Oceanography: 
A sparse data 
problem …



Some of the challenges: 
An eclectic observing system
with disparate sensors

TERRA/MODIS 
satellite
brightness 
temperature

http://www.meop.net

Marine 
mammals



Two incomplete
knowledge
reservoirs

• an eclectic, patchy 
global ocean observing system

• numerical models
that require uncertain inputs



Two incomplete
knowledge
reservoirs

• Can we optimally combine these two 
knowledge reservoirs?

• Can we do so in a manner that provides 
useful for climate analysis?
– causal, dynamical attribution
– detecting small, residual signals

• Can we provide measures of uncertainties 
with these?

• Can we use simulation to inform efficient 
observing strategies?



A multi-platform, multi-instrument synthesis effort that
integrates ocean and marine ice observations with 
equations of motion (model)

• Physical Oceanography (PO)

• Cryosphere

• Modelling, Analysis, and 
Prediction (MAP)

• Advancing Collaborative 
Connections for Earth 
System Science (ACCESS)

ECCO: Estimating the Circulation and Climate of the Ocean



Learning from sparse, heterogeneous observations and models
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https://ecco-group.orgCourtesy: I Fenty (JPL/Caltech)

Wunsch & Heimbach,
Physica D (2007)

Heimbach et al.,
Front. Mar. Sci.
(2019)



What is Data Assimilation?

Kaminski et al., The Cryosphere (2015): 
“Ideally, …

– …all observational data streams are interpreted simultaneously,
– …with the process information provided by the model,
– …[which leads to] a consistent picture of the state of the system,
– …that balances all the observational constraints, 
– …taking into account all the respective uncertainty ranges.”

Penny et al., Front. Mar. Sci. (2019): 
“DA allows information provided from observations to be propagated 
in time and space to unobserved areas using the dynamical and
physical constraints imposed by numerical models.”

































Adjoint-based
model 
calibration &
state estimation

ECCO is learning from …

• (the most complete set of available) 
ocean observations 

• … AND known physics/dynamics,

• … by solving a gigantic least-squares 
model-data misfit minimization

• … using the adjoint / Lagrange 
Multiplier Method



The MIT general circulation model (MITgcm)
and AD-enabled adjoint code generation
Approximated form of Navier-Stokes equations
for an incompressible fluid on rotating sphere
(hydrostatic or non-hydrostatic), consisting of:

• momentum equation 
• conservation of mass
• conservation of heat, salt
• nonlinear equation of state for seawater
• subgrid-scale parameterizations
• scalable (domain decomposition)
• general curvilinear grid (incl. cubed-sphere)
• adjoint code generation via automatic 

differentiation (AD) using TAF, OpenAD



Generating & maintaining the adjoint of a state-of-the-art ocean circulation model

hand-written adjoint Automatic Differentiation

Giering & Kaminski (1998); Marotzke et al. (1999); Heimbach et al. (2005); Utke et al. (2007); Griewank & Walther (2008)

Adjoint-based model calibration & state estimation



The virtues of property-
conserving estimation

Filter vs. 
Smoother



Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Numerical Weather Prediction (NWP) – a filtering problem
• Relatively abundant data sampling of the 3-dim. atmosphere
• NWP targets optimal forecasting

è find initial conditions which produce best possible forecast;
è dynamical consistency or property conservation NOT required



Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Numerical Weather Prediction (NWP) – a filtering problem
• Relatively abundant data sampling of the 3-dim. atmosphere
• NWP targets optimal forecasting

è find initial conditions which produce best possible forecast;
è dynamical consistency or property conservation NOT required

Ocean state estimation/reconstruction – a smoothing problem
• Sparse data sampling of the 3-D. ocean
• Understanding past & present state of 

the ocean is a major goal all by itself
è use observations in an optimal way
è dynamic consistency & property

conservation ESSENTIAL for climate



Balancing the 
momentum, 
freshwater,
and heat 
budgets

Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA



Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Tracer budgets in a  global ocean reanalysis produced via filtering approach 

D. Trossman (in perpetual rejection)

Unphysical analysis increments
play leading  role in the 
tracer tendencies 

T tendency terms

Components in the
tendency equation

dT/dt = r.h.s.



Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Global-ocean net heat flux imbalance

Cronin et al., Front. Mar. Sci. (2019)



Gaining insight through 
quantifying time-evolving 
property budgets

Example
Applications



Dynamics & variability of North Atlantic
(Eighteen-degree) Mode Water formation 

Example use of state estimates:
Use of observations-only vs. state estimates for understanding

Speer & Forget (2013)

Maze & Marshall (2011)



Example use of state estimates:
Use of observations-only vs. state estimates for understanding

The global array of Argo profiling floats
http://www.argo.ucsd.edu



Example use of state estimates:
Use of observations-only vs. state estimates for understanding

Diabatic and adiabatic contributions to water mass volume variability 
in the North Atlantic subtropical gyre (26oN – 45oN)

Roemmich & Gilson, 2009 (Argo) ECCO version 4

Evans et al., JPO (2017)



Example use of state estimates:
Use of observations-only vs. state estimates for understanding

Diabatic and adiabatic contributions to water mass volume variability 
in the North Atlantic subtropical gyre (26oN – 45oN)

Total monthly dV/dt, Argo Total monthly dV/dt, ECCO v4

Monthly total & diathermal transformation 
due to air–sea heat fluxes 

NCEP + Reynolds SST

Monthly total & diathermal transformation 
due to air–sea heat fluxes 

ECCO v4

Evans et al., JPO (2017)



Science applications with 
the adjoint model:
sensitivity maps &
dynamical attribution

Beyond 
optimization



Causal / dynamical attribution:
South Atlantic Ocean 
Circulation

South Atlantic Meridional 
Overturning Circulation 
(SAMOC) variability

Beal et al. 
(2011)

Ansorge et al.
(2014)



Causal / dynamical attribution:
South Atlantic Ocean 
Circulation

South Atlantic Meridional 
Overturning Circulation 
(SAMOC) variability

Smith & Heimbach, J. Clim. (2019)

Beal et al. 
(2011)



Causal / dynamical attribution:
South Atlantic Ocean 
Circulation

Sensitivity of mass transport J
with respect to forcings,
initial conditions, carried 
via “backpropagation” 
by the time-evolving 
dual/adjoint 
state

Smith & Heimbach, J. Clim. (2019)



• Use of the availability of the dual ocean state (time-evolving adjoint state) for 
scientific analysis.

• Reconstruction of
AMOC at 33oS
from
forcing
anomalies
via the adjoint;

• The time-evolving 
adjoint = dual state,
has physical meaning

Smith & Heimbach, J. Clim. (2019)Causal / dynamical attribution:
The South Atlantic Ocean Circulation



Causal / dynamical attribution:
The South Atlantic Ocean Circulation

Dynamic attribution of 
interannual  SAMOC variability 
due to wind stress perturbations
via Green’s functions

Smith & Heimbach, J. Clim. (2019)



Hessian-based Uncertainty
Quantification & formal
observing system design

Beyond 
optimization



What is 
Uncertainty 
Quantification 
in the context of 
Data Assimilation?

Different uses:
• Parameter estimation (calibration)

– uncertainties in the parameters

• State estimation / reconstruction / 
synthesis (interpolation)
– uncertainties in reconstructed state or 

derived quantities of interest (QoIs)

• Forecast initialization (extrapolation)
– uncertainties in the forecast



Origins of 
uncertainty in 
the context 
of DA

• Observations: 
– measurement error & irregular sampling 

(in space and time)
• Assimilation scheme:

– DA algorithm (and approximations)
– how observations are ingested in DA

• Model:
– Parametric uncertainties
– Structural uncertainties (discretization, 

model inadequacy)
• All boundary conditions: 

– external forcing, bathymetry, lateral 
boundaries 

• Use of prior knowledge: 
– error covariances, representation error



Why is 
uncertainty 
quantification 
difficult to do?

• Spatio-temporally irregular 
sampling of observations
– How to account for inhomogeneous 

sampling uncertainty,

• Parametric uncertainty
– “The curse of dimensionality” 
– N2 for parameter space dimension N

• Structural uncertainty / model 
inadequacy
– How to capture? Source terms in the model?
– Absorb within parameter estimation?
– Machine learning / neural networks as 

surrogate models?
– Stochasticity 



A way 
forward: 
Bayesian 
inverse 
methods

computational frameworks that account 
jointly for model, observations, forcings, 
prior knowledge, and all their uncertainties:
• MCMC and similar sampling techniques 

hard for high-dim. parameter spaces
• Derivative-based inference: 

o propagates all uncertainties
o provides dynamical underpinning of 

uncertainty propagation
o infers low-order modes









Hessian uncertainty quantification …
… applied to observing system design in the North Atlantic



Predictive data science: 
from observation & simulation to decision

Oden, Moser, Ghattas: SIAM News (2010) “Data assimilation is 
essentially an automation 
of the scientific method”

S. Penny et al., 
Front. Mar. Sci. (2019)

https://crios-ut.github.io




