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The Case for Machine Learning Emulation

Earth system models 
continue to increase in 

complexity of processes and 
scale

Source: Heavens et al. 2013
Computer performance 

increases are slowing down Source: Wikipedia

Lots of legacy software that is 
hard to manually optimize 

and interface
Verdict: Business as usual in 

Earth System Modeling is 
becoming infeasible

https://www.nature.com/scitable/knowledge/library/studying-and-projecting-climate-change-with-earth-103087065/


The Case for Machine Learning Emulation

Earth Scientist Strengths
• Designing rigorous modeling experiments
• Generating lots of model output
• Analyzing results for physical consistency and 

correctness

Earth Scientist Weaknesses
• Writing clean, accessible, optimized, high-

performance software 
• Writing software for specialized hardware setups

– Distributed parallel computing
– Specialized processors (GPUs, TPUs)

Enter Machine Learning

• Can build model from large amounts of 
specialized data

• Best for optimizing processes that are hard to 
describe formally and/or are expensive to 
perform otherwise

• Many accessible libraries to train and evaluate 
machine learning models on a variety of 
hardware

• Earth science community can take advantage 
of software investments from other fields 

Result: the NCAR AIML group is working on multiple machine learning emulation projects 
spanning the Earth System.

Presentation Goals
• Discuss ML emulation implementations for microphysics, atmospheric chemistry, and cloud 

particle imaging
• Identify ongoing issues with broader deployment of ML emulation and potential solutions



Machine Learning the Warm Rain Process
Collaborators

A. Gettelman, D. J. Gagne, C.-C. Chen, M. W. Christensen, Z. J. Lebo, H. Morrison, and 
G. Gantos
Available online at https://www.essoar.org/doi/abs/10.1002/essoar.10503868.1



Microphysics Emulation: Motivation

Precipitation formation is a critical uncertainty for 
weather and climate models.

Different sizes of drops interact to evolve from small 
cloud drops to large precipitation drops.

Detailed bin codes are too expensive for large scale 
models, so empirical functions are used instead.

Can a machine learning approach provide a more 
accurate emulation of precipitation formation processes 
without a significant increase in computation?

Goal: Put a detailed bin process into a global general 
circulation model and emulate it using ML techniques.

Contact: dgagne@ucar.edu, @DJGagneDos

Bulk (MG2 in CAM6):
Calculate warm rain 
formation processes with a 
semi-empirical particle size 
distribution (PSD) based on 
exponential fit to LES bin 
microphysics runs.

Bin Scheme (Tel Aviv 
University (TAU) in CAM6):
Divide particle sizes into 
bins and calculate evolution 
of each bin separately. 



Microphysics Emulator Procedure
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Contact: dgagne@ucar.edu, @DJGagneDos

Emulator Inputs
qc: Cloud mixing ratio
qr: Rain mixing ratio
Nc: Cloud number concentration
Nr: Rain number concentration
!a: Air density
Fc: Cloud fraction
Fr: Precipitation fraction
λc: Cloud distribution slope parameter
λr: Rain distribution slope parameter
N0r: Rain intercept parameter
σc: Cloud Spectral Width

dqr/dt > 0?
DNN 

Classifier

dNc/dt < 0?
DNN 

Classifier

dNr/dt ≠ 0?
DNN 

Classifier

dqr/dt=0

log10(dqr/dt)=
DNN 

Regressor

log10(-dNc/dt)=
DNN 

Regressor

log10(-dNr/dt)=
DNN 

Regressor

dNc/dt=0
dNr/dt=0

log10 (+dNr/dt)=
DNN 

Regressor

Yes No Yes No
No< 0 > 0

dqc/dt=
-dqr/dt

Pre-Processing
1. log10 transform following inputs:

qc, qr, Nc, Nr, λc, λr , N0r, σc
2. log10 transform non-zero outputs
3. Normalize all inputs and outputs



Regressor Results
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E) Rain Mass Difference F) Cloud Number Difference G) -Rain Number Difference H) +Rain Number Difference



Simulations

• CAM6: Control
• TAU or TAU-bin: Stochastic Collection Kernel
• TAU-ML: Machine learning Emulator for TAU code 

(runs neural net inference in Fortran)

• For each, global 0.9˚x1.25˚ simulation, 9 years, 1st

year high frequency instantaneous output
– Base (2000 Climatology)
– Pre-Industrial (1850) aerosols. (For aerosol cloud 

interactions)
– SST+4K (For Cloud Feedbacks)

type Dense
integer :: input_size
integer :: output_size
real(kind=8), allocatable :: weights(:, :)
real(kind=8), allocatable :: bias(:)
character(len=10) :: activation

end type Dense



Mass Fixer for ML Emulator

Click to add footer

How often does mass fixer kick in and where?
• Low altitudes and tropical high altitudes (cirrus)
• Low altitude (below is 936hPa), mostly in sub-tropical strato-cumulus 

regions, edge of stratus regions. Mostly SH. 
• Also a tropical peak at 800hPa



Precipitation Feedbacks



Cloud Feedbacks

A) Zonal Mean ACI
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D) ACI v. DLWP
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• ACI are similar between control and 
TAU code.

• Slightly lower LWP change, but 
forcing is similar, a bit higher in S. 
Hemisphere.

• Emulator reproduces TAU results. 



Machine Learning Emulation of the GECKO-A Chemistry Model
David John Gagne, Charlie Becker, John Schreck, Keely Lawrence, Siyuan Wang, Alma Hodzic



● Natural and anthropogenic sources emit a large number of 
volatile organic compounds (VOCs)

● VOCs photochemical oxidation the atmosphere leads to hundreds of 
thousands of volatile products that can condense to form organic 
aerosols

● Organic aerosols have significant direct and indirect 
radiation effect.

GECKO-A
● Explicit - We tell GECKO-A how atoms, bonds, and functional 

groups in molecules/radicals behave, then GECKO-A will predict 
what reactions it may undergo.

● Complicated - Oxidation of some compounds involve nearly 
400,000 compounds and over 2,000,000 reactions!

GECKO-A: Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere

A. C. Lewis, Science 2018

GOAL
● Emulate GECKO-A with ML for a variety of chemical compounds as no 3-dimensional models can afford 

to run GECKO-A in the foreseeable future.
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Benchmarking Dataset

Each feature binned by 
volatility (14 bins each)

Total data for each species

● 35 Features 
● 2000 Experiments
● 1440 time steps 

○ Output every 5-minutes
(total of 5-days)

● Total of 2,880,000 samples

Latin hypercube 
sampled and held 
static per experiment

● Available species (generated as separate simulations)

○ ɑ-Pinene
○ n-Dodecane
○ Toluene

● Features

○ Chemical Precursor
○ Gaseous phase mass
○ Aerosol phase mass

○ Environmental Features
■ Temperature
■ Solar Zenith Angle
■ Pre-existing aerosols
■ Ozone
■ NOx
■ Hydroxide
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Initial Benchmarking 
Start simple, see what we can learn.

● Features

○ Aerosol phase mass
○ Chemical Precursor
○ Gaseous phase mass

○ Environmental Features

■ Temperature
■ Solar Zenith Angle
■ Pre-existing aerosols
■ Ozone
■ NOx
■ Hydroxide

X(t)
Y(t+1)

Single layer, 500 neuron 
dense network



Initial Results: 30 Member Ensemble

Precursor Gas 
Phase

Particle 
Phase

R2 0.54 0.940 0.917

MAE 0.00082 0.0024 0.0027

HD 0.0019 0.0018 0.0501

● Generally easy to learn x(t) → y(t+1)

● However, maintaining stability when 
walking a prediction forward is 
challenging!

● Extensive hyperparameter tuning 

○ Light L1 and L2 regularization

○ Trained for many epochs (1500)



Verification (ɑ-pinene, 200 experiments)



Ensembled Metrics - Continuous Ranked Probability Score

● 30 ensemble members of 200 experiments

○ 99.3% Experiments remained stable

○ CRPS only calculated for stable experiments

■ Runaway threshold +/- 1.0 (raw value)



What is HOLODEC?

• Holographic Detector for Clouds 
(HOLODEC)

• Airborne instrument that 
measures the microstructure of 
natural clouds

• Capable of measuring liquid 
droplets and ice crystals

• Simultaneously measures all 
particles in the volume between 
the arms (13 cm3) in a single 
picture

• Allows retrieval of the size, shape, 
and relative 3D position using 
digital inline holography 

AMS 2021

Beals et al. 2015



Machine Learning Processing of the HOLODEC Cloud Particle Imager
Collaborators

Matt Hayman, Aaron Bansemer, John Schreck, Gabrielle Gantos, Gunther Wallach, 
David John Gagne



Instrument Challenges

• A single hologram may contain 
1000+ particles

• Traditional refocusing is 
performed 1000 times for each 
image which searching for 
particles

• Computationally expensive and 
labor intensive, up to 2 million 
core hours per project

• Processing is primary 
bottleneck in improving probe 
performance

AMS 2021

Hologram in Pacific cumulus, 2015



Discretizing hologram coordinates

• Discretize (x, y) each directions 
into n bins 

• Each grid cell associated with 
a token label

• Each particle is associated 
with one token

• A sequence of particles as a 
series of tokens: 
– (START, 23, 8, 4, STOP) 
– Post-localization, a better 

prediction of (x, y) can be 
made

Slides Courtesy Gabrielle Gantos and John Schreck



Model architecture:
(1) Variational autoencoder + (2) regression

Hologram 
encoder (CNN)

Hologram 
decoder (CNN)

μ
σ

Coordinate decoder
(GRU + Linear)

(xj, yj, zj, dj)

Step 1: Train the VAE

Step 2: Freeze weights 
in VAE, train the 
coordinate predictor

Slides Courtesy Gabrielle Gantos and John Schreck



Results: VAE training and validation

• Hyperparameter search (Optuna): 
– Number of filters in each layer
– Latent dimension
– L2 weight decay
– Learning rate
– Loss weights on MSE, KLD.

• Validation objective = mse + (fixed weight) * kld
• Using physically-constrained with self-attention 

(SA)
• The first 100 trails used randomly sampled 

hyperparameters (within specified ranges)
• After ~650 trails, still finding better models but 

objective improvement flat since 250 trials.
• Optimization used 500 GPU core-hours, 5,000 

CPU core-hours

Slides Courtesy Gabrielle Gantos and John Schreck



Results: Particle decoder validation (3-particle, 100 (x,y) bins)

Validation mean-average-error (MAE):
x: 37.72 µm    y: 29.63 µm    z: 7384.52 µm    d: 4.03 µm

Slides Courtesy Gabrielle Gantos and John Schreck



Results: Particle decoder validation (3-particle, 100 (x,y) bins)

Validation mean-average-error (MAE):
x: 17.75 µm    y: 20.19 µm    z: 3272.19 µm    d: 1.89 µm

Slides Courtesy Gabrielle Gantos and John Schreck



Results: Particle decoder validation (3-particle, 100 (x,y) bins)

Validation mean-average-error (MAE):
x: 69.33 µm    y: 88.84 µm    z: 9344.72 µm    d: 2.78 µm

Slides Courtesy Gabrielle Gantos and John Schreck



Results: Particle decoder validation (3-particle, 100 (x,y) bins)

Validation mean-average-error (MAE):
x: 12.19 µm    y: 46.73 µm    z: 3189.28 µm    d: 10.52 µm

Slides Courtesy Gabrielle Gantos and John Schreck



Alternative Approach: U-Net

• U-Net: image to image 
convolutional neural network with 
skip connections at each resolution

• Goal: translate hologram to pixel-
wise particle location

• Initial results promising but needs 
further optimization

Source: Ronneberger et al. 2015, https://arxiv.org/abs/1505.04597 



Infrastructure Costs of ML Emulation

ML emulation can save significant 
computational costs but requires its own 
infrastructure
• Data generation
• ML to Fortran interfaces
• Organization and standards for storing 

ML model collection
• Specialized hardware
• Physical constraints/fail safes
• Monitoring
• Code and data maintenance/retrainingSource: Wikipedia

ML Emulation is like a nuclear plant. Provides lots 
of power but requires lots of infrastructure to do so.

Is emulation worth the effort?

Slides Courtesy Gabrielle Gantos and John Schreck



Summary

• Machine learning emulation is a potentially viable path forward to incorporating 
complex Earth system process models into ESMs without blowing the computation 
budget

• Promising initial results for
– Microphysics
– Atmospheric Chemistry
– Cloud particle emulation

• Next steps: integrate into more modeling systems and estimate true infrastructure 
costs

Contact Me
Email: dgagne@ucar.edu
Twitter: @DJGagneDos

http://ucar.edu

