Unravelling the Physics of Black Holes Using Astronomical Time Series

Daniela Huppenkothen

SRON Netherlands Institute for Space Research

Tiana_Athriel C dhuppenkothen

☑ d.huppenkothen@sron.nl

"light curve" = time series

black hole

accretion disk

star

How do black holes accrete matter?

Many Open Questions

- What happens to matter in strong gravity?
- What is the shape of the accretion flow close to the black hole?
- How are jets launched and accelerated?
- What is the shape of the accretion disk?
- What precise processes give rise to the emission we see? •

Cygnus X-1

- - - Credit: NASA/SRON/MPE

Raw Data

Time [seconds]

4

Gierlinski 2008, Maitra et al 2009

Spectral States

high-frequency/low-frequency X-ray brightness

Malzac (2008)

$$x(t) = \frac{1}{N} \sum_{j} a_j \cos(\omega_j t - \phi_j) = \frac{1}{N} \sum_{j} (A_j \cos \omega_j t + B_j \sin \omega_j t).$$

$$a_j = \sum_{k=0}^{N-1} x_k e^{2\pi i j k/N}$$

periodogram:

useful normalization

$$P_j \equiv \frac{2}{N_{ph}} |a_j|^2 \qquad j = 0, \dots, \frac{N}{2},$$

statistical distribution?

$$x(t) = \frac{1}{N} \sum_{j} a_{j} \cos(\omega_{j}t - \phi_{j}) = \frac{1}{N} \sum_{j} (A_{j} \cos \omega_{j}t + B_{j} \sin \omega_{j}t).$$
assume many data points
~ Gaussian

$$P_{j} \equiv \frac{2}{N_{ph}} |a_{j}|^{2} \qquad j = 0, \dots, \frac{N}{2},$$

$$|a_{j}|^{2} = A^{2} + B^{2} \qquad \chi^{2} \text{ with 2 degrees of freedom}$$

$$ext{pos}(\omega_j t - \phi_j) = \frac{1}{N} \sum_j (A_j \cos \omega_j t + B_j \sin \omega_j t).$$

The points

$$P_j \equiv \frac{2}{N_{ph}} |a_j|^2 \qquad j = 0, \dots, \frac{N}{2},$$

$$|a_j|^2 = A^2 + B^2 \qquad \qquad \chi^2 \text{ with 2 degrees of formula}$$

$$-\phi_{j}) = \frac{1}{N} \sum_{j} (A_{j} \cos \omega_{j} t + B_{j} \sin \omega_{j} t).$$

This - Gaussian
$$\frac{2}{N_{ph}} |a_{j}|^{2} \qquad j = 0, \dots, \frac{N}{2},$$

$$|a_{j}|^{2} = A^{2} + B^{2} \qquad \qquad \chi^{2} \text{ with } 2 \text{ degrees of formula}$$

white noise

periodic signal

correlated stochastic variability

quasi-periodic oscillations

What can we learn about the **geometry and physics** of the system from timing and spectral properties?

Gierlinski 2008, Maitra et al 2009

 $C_{XY} = \mathscr{F}_X^{\star} \mathscr{F}_Y$ $C_{XY,j} = a_{X,j} \exp(-i\theta_j)a_{Y,j} \exp(i(\theta_j + \phi_j))$ $C_{XY,j} = a_{X,j}a_{Y,j}\exp(i\phi_j)$ cospectrum phase lag time lag

Uttley et al (2014)

Side note: this is a much bigger black hole

time, wavelength of emission

hot plasma

cold plasma

Quasi-Periodic Oscillations

Low-Frequency QPOs

High-Frequency QPOs

Credit: NASA

V404 Cygni

Huppenkothen et al, 2017

100 100 0

- 0

 18 mHz	136 mHz		 	
+	ł			
	1			
		10		

Chandra observations: 2 - 13 keV	
73 mHz 1 03 Hz	

INTEGRAL IF	M-Y ab	envotione '	2.	951	$l_{\alpha V}$
114.1.12/21/2417 24	2011-22 010	ASEL VALLAIDS	a -	4.2	PPCI A

INTEGRAL IBIS/ISGRI observations. 25 - 200 keV

NuSTAR Observations: 3 - 79 keV

V404 Cygni

short-lived QPO* with a frequency ~10 times lower than expected

Huppenkothen et al, 2017

*quasi-periodic oscillation

V404 Cygni

possibly signature of jet precession or a warped outer accretion disk

Huppenkothen et al, 2017

- ~10 contributors
- 5 completed Google Summer of Code Projects
- astropy-affiliated project
- provides functionality for HENDRICS and DAVE

https://stingray.science

3 lead developers/maintainers (Huppenkothen, Bachetti, Stevens)

Huppenkothen et al (2019)

Modelling Detector Effects in X-ray Telescopes

Variability: GX 339-4

Yamaoka et al (2010); Huppenkothen et al. (2019)

Credit: NuSTAR Observatory Guide

Huppenkothen & Bachetti (submitted)

observed light curve

Frequency [Hz]

Problem 1: Searching for periodic signals against a constant background

Dead Time

Bachetti et al (2015)

 $C_{XY} = \mathcal{F}_{X}^{\star} \mathcal{F}_{Y}$ $C_{XY,j} = a_{X,j} a_{Y,j} \exp(i\phi) \cdot$ cospectrum/ phase lag

Caution! The power spectrum and the

iodogram of a nstant light ve, with dead time

cospectrum of a constant light curve with dead time

Dead Time

Huppenkothen & Bachetti (2018)

$$p(C_j|0,\sigma_x\sigma_y) = \frac{1}{\sigma_x\sigma_y} \exp\left(-\frac{|C_j|}{\sigma_x\sigma_y}\right)$$

The co-spectral powers are well-described by a Laplace distribution

Problem 2: Modelling Stochastic Variability in Periodograms

X-ray Sources Are Variable

Huppenkothen et al (2017)

... and so is dead time

Option 1: Average >40 periodograms together + assume Gaussian statistics

What if I can't add together periodograms?

posterior

Approximate Bayesian Computation Likelihood-Free Inference Simulation-Based Inference

simulator

marginal likelihood

Step 1: draw parameters from prior

Step 2: simulate data sets

Step 3: compare simulated to observed data

Step 4: keep parameters that produce simulations similar to the data

Sadegh + Vrugt, 2014, see also: Brehmer et al (2018a, 2018b), Cranmer et al (2020)

Cranmer et al (2020)

Simulated Data

Huppenkothen & Bachetti (submitted)

simulated observation posterior draws posterior mean

Huppenkothen & Bachetti (submitted)

GRS 1915+105

rms_f 0.32 0.30 0.28 0.26 € 0.24 0.22 0.20 0.18

GRS 1915+105

Huppenkothen & Bachetti (submitted)

Future Work

• Hierarchical (simulation-based) inference!

- Uneven sampling •
- A more comprehensive description of the raw (time, energy) data
- Additional data dimensions (e.g. polarimetry)

THE ATHEN'A MISSION

Conclusions

- Accreting black holes produce complex X-ray emission that carry a wealth of information about the physics of the system
- relationships between temporal and spectral properties
- of the detector to bright sources
- In the future, we need better statistical methods and software integration to tackle many of these challenges

Unravelling the physics of black holes requires understanding the subtle

• Statistical challenges arise in uneven sampling, gaps and the response

Thank you!