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“light curve” = time series



How do black holes 
accrete matter?

black hole

accretion  
disk

jet star



• What happens to matter in strong gravity? 

• What is the shape of the accretion flow close to the black hole? 

• How are jets launched and accelerated? 

• What is the shape of the accretion disk? 

• What precise processes give rise to the emission we see?

Many Open Questions
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Fourier Analysis tells us about variability

statistical distribution?

periodogram:

useful normalization



assume many data points

~ Gaussian

𝛘2 with 2 degrees of freedom

Fourier Analysis tells us about variability



white noise

Fourier Analysis tells us about variability



periodic signal

Fourier Analysis tells us about variability



correlated stochastic variability

Fourier Analysis tells us about variability



quasi-periodic oscillations

Fourier Analysis tells us about variability



4 L. M. Heil, P. Uttley and M. Klein-Wolt

a) b)

c)

Figure 2. a: Graphic illustrating where various states appear within the power-colour diagram. The area of overlap between the hardest and softest states is
also indicated. b: Power colour-colour plot for all observations of the transient objects within the sample with labels indicating 20-degree azimuthal or ‘hue’
regions from which the power spectra given in c were found. The plot is colour-coded for each 20◦ bin with the same colours used in c. c: Example power
spectra for each of the 20 degree ranges of hue around the power colour-colour diagram. Colours and indices refer to the 20◦ angular bins used in b. Further
examples are given in the Appendix.

allowing easy state classification for new sources with only a lim-
ited number of observations required.

Figure 1 shows the power colour values for two particular fre-
quency ratios, Power colour ratio 1 (PC1) is defined as variance
in 0.25-2.0 Hz / 0.0039-0.031 Hz and ratio 2 (PC2) is variance

in 0.031-0.25 Hz / 2.0-16.0 Hz. These particular ratios not only
compare all four broad frequency bands used in the initial analy-
sis, making the most of the available data, but are also separated
in frequency. This plot is colour coded according to object, and
the similarity in power-spectral evolution throughout outbursts be-

c© 2002 RAS, MNRAS 000, 1–10
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What can we learn about the 
geometry and physics of the system 
from timing and spectral properties?
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CXY = ℱ⋆
XℱY

CXY,j = aX,j exp(−iθj)aY,j exp(i(θj + ϕj))

CXY,j = aX,jaY,j exp(iϕj)



Uttley et al (2014)

X-ray reverberation around accreting black holes 35
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Fig. 16 The lag-energy spectrum of Ark 564 for low frequencies (left) and high frequencies
(right), using frequency ranges highlighted in the top panel, which shows the lag-frequency
dependence for 1.2–4 keV relative to 0.3–1 keV. The iron K reflection feature is found at
high frequencies, while the low frequencies show a featureless lag, increasing with energy.
This shows that the low-frequency lags are not due to reflection. See Sect. 3.2 for discussion
of the origin of the low-frequency hard lag.

associated with a disc wind or other large-scale absorbing/scattering gas), ar-
guing that the negative, soft lags seen at higher frequencies were an artefact of
the high-frequency oscillations expected from a top-hat like impulse response,
which are caused by a ‘phase-wrapping’-like effect (see also Sect. 4.1). The
physical interpretation of such an impulse response is that the lags can be
understood as scattering/reflection from material covering a large solid-angle
at a range of size scales, from a hundred to a couple of thousand light seconds
from the central source, or by invoking a more distant reflector which must be
aligned close to the line of sight, to account for the short time delays observed.
However, work by Zoghbi et al. (2011) and Emmanoulopoulos et al. (2011)
showed that the broad frequency range of the soft lag in many sources cannot
be explained by the oscillatory effects expected for simple impulse reponses
(see also Sect. 4.1). The unique line-of-sight argument is also inconsistent with
the ubiquity of the soft lag in NLS1 sources (De Marco et al. 2013).

Miller et al. (2010a) developed the large-scale scatterer/reflector model for
the lags further in the case of 1H0707-495, proposing instead that the broad
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Fig. 16 The lag-energy spectrum of Ark 564 for low frequencies (left) and high frequencies
(right), using frequency ranges highlighted in the top panel, which shows the lag-frequency
dependence for 1.2–4 keV relative to 0.3–1 keV. The iron K reflection feature is found at
high frequencies, while the low frequencies show a featureless lag, increasing with energy.
This shows that the low-frequency lags are not due to reflection. See Sect. 3.2 for discussion
of the origin of the low-frequency hard lag.

associated with a disc wind or other large-scale absorbing/scattering gas), ar-
guing that the negative, soft lags seen at higher frequencies were an artefact of
the high-frequency oscillations expected from a top-hat like impulse response,
which are caused by a ‘phase-wrapping’-like effect (see also Sect. 4.1). The
physical interpretation of such an impulse response is that the lags can be
understood as scattering/reflection from material covering a large solid-angle
at a range of size scales, from a hundred to a couple of thousand light seconds
from the central source, or by invoking a more distant reflector which must be
aligned close to the line of sight, to account for the short time delays observed.
However, work by Zoghbi et al. (2011) and Emmanoulopoulos et al. (2011)
showed that the broad frequency range of the soft lag in many sources cannot
be explained by the oscillatory effects expected for simple impulse reponses
(see also Sect. 4.1). The unique line-of-sight argument is also inconsistent with
the ubiquity of the soft lag in NLS1 sources (De Marco et al. 2013).

Miller et al. (2010a) developed the large-scale scatterer/reflector model for
the lags further in the case of 1H0707-495, proposing instead that the broad
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Rieger (2019)
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Quasi-Periodic Oscillations



Ingram & Motta (2016)

Figure 1: Left panels : examples of LF QPOs from BH XRBs. From top to bottom, QPOs
are taken from XTE J1859+226, GX 339-4 and again GX 339-4. Right panels: examples
of QPOs from NS XRBs. From top to bottom, QPOs are taken from GX17+2, again
GX17+2 and Cyg X-2. Power spectra in the power⇥frequency versus frequency form, and
have been normalised in fractional rms2. The contribution of the Poisson noise has been
subtracted. Arrows represent 3� upper limits.
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Figure 4: Left panels: examples of HF QPOs from BH XRBs (from GROJ1655-40, adapted
from [161]). The QPO at ⇡500 Hz is detected in a harder energy band than that at ⇡350
Hz. Note that the power spectrum containing the ⇡500 Hz QPO has been shifted upward
for clarity. The red line marks the best fitting empirical model. Right panels: examples of
HF QPOs from NS XRBs (from Sco X-1). The two (strong) kHz QPOs are both detected
in the entire energy range (2-30 keV).

QPOs are close to being in a 3:2 ratio [212, 193, 191]. The same is true for
the two peaks reported for XTE J1550-564, but as stated above, these peaks
are very likely not real simultaneous HF QPOs. This motivated a family of
models suggesting that these HF QPOs result from some kind of resonance
[1]. However, since HF QPOs are very rare and only detected in a specific
state, this frequency ratio could well be a coincidence.

2.4. Neutron star systems

NS XRBs show states similar to those seen in BH systems except the
phenomenology is somewhat more complex, presumably due to the solid
surface and anchored magnetic field [237]. State classification historically
used a colour-colour diagram (CCD) [72] instead of an HID [237], with sources
being classified as either Atoll or Z sources, based on the shape of the pattern
traced by these systems in a CCD. Both Atoll and Z-sources show three main
states that roughly correspond to the hard, intermediate and soft state seen
in BH systems. In Atoll sources, the states are traditionally referred to as
the island, lower banana and upper banana branches, whereas in Z-sources

14

Low-Frequency QPOs

High-Frequency QPOs
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Figure 18: Left: Reconstructed spectra of H 1743-322 for two selected QPO phases (blue
points are a quarter of a QPO cycle after red points) showing that the iron line profile
changes with QPO phase. Right: Centroid energy of the iron line (top) and continuum
normalization (a proxy for X-ray flux; bottom) as a function of QPO phase, measured by
fitting the iron line with a Gaussian function. Adapted from Ingram et al. [96].

transform explored by Su et al. [217]. Ingram and van der Klis [94] argued
that better signal to noise can be achieved by reconstructing the waveforms
from the harmonic amplitudes, the phase di↵erence between harmonics in a
broad (therefore high count rate) reference band and the phase di↵erence for
each harmonic between each energy channel and the broad reference band.
Stevens and Uttley [210] instead used the cross-correlation function between
each energy channel and a broad reference band. The major advantage of
this method is that it preserves the quasi-periodicity of the QPO instead
of reducing it to a sum of harmonics. The major disadvantage is that the
phase di↵erence between harmonics is lost completely. Estimating parameter
uncertainties is a subtle task for all reconstruction methods, since the error
bars of the spectra are correlated across phases. Ingram et al. [96] circum-
vented this problem by fitting the phase-resolved model in Fourier space - i.e.
Fourier transforming the phase-resolved model and fitting it to the Fourier
transform of the QPO. Stevens and Uttley [210] instead used a bootstrapping
scheme.

Ingram et al. [96] used the phase-resolving method of Ingram and van
der Klis [94] in order to study a Type-C QPO from the BH XRB H 1743-
322. Fig 18 (left) shows reconstructed spectra at two QPO phases (blue
circles are a quarter of a QPO cycle after red triangles). We see that the

49



V404  
Cygni

Huppenkothen et al, 2017



short-lived QPO* with a frequency ~10 
times lower than expected

*quasi-periodic oscillation

18 mHz 18 mHz

V404 Cygni
Huppenkothen et al, 2017



possibly signature of jet precession or a warped 
outer accretion disk

18 mHz 18 mHz

V404 Cygni
Huppenkothen et al, 2017



• 3 lead developers/maintainers (Huppenkothen, Bachetti, Stevens) 

• ~10 contributors 

• 5 completed Google Summer of Code Projects 

• astropy-affiliated project 

• provides functionality for HENDRICS and DAVE

Huppenkothen et al (2019)https://stingray.science



Modelling Detector Effects in 
X-ray Telescopes



Yamaoka et al (2010);  
Huppenkothen et al. (2019)

Variability: GX 339-4

Fast Fourier  

Transform

We understand how to do this, unless 
the sources is very bright



NuSTAR

Credit: NuSTAR Observatory Guide

Adapted from Chaplin et al (2012)
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Huppenkothen & Bachetti (submitted)

Dead Time leads to a censored 
Poisson Process that is hard to model



Problem 1: Searching for 
periodic signals against a 

constant background



Dead Time

Bachetti et al (2015)

The Astrophysical Journal, 800:109 (12pp), 2015 February 20 Bachetti et al.

(a)

(b)

(c)

(d)

Figure 1. Left: the cospectrum and the PDS are compared in the case of pure Poisson noise, without (a) and with (b) dead time. The simulated incident count rate was
225 cts s−1. The cospectrum mean is always zero. In these plots, it has been increased by two for display purposes. The frequency 1/τd is indicated. Right: the usual
relation between the PDS and its standard deviation (σ = P/

√
M , where M is the number of averaged PDSs) holds with and without dead time (c). Also, the variance

of the cospectrum is half the variance of the PDS, in both cases (d).

(see, e.g., van der Klis 1989 and references therein), where
τd is the dead time produced by each event, assuming that it
is constant. However, dead time also alters the sensitivity to
variable signals, acting as a frequency filter. PDS, in particular,
are deformed to a “wavy” shape that depends on the magnitude
of dead time and on count rates (see Figure 1). Power at
frequencies slightly above 1/τd is quenched, as there is a lack of
events whose separation is less than τd , while there is a relatively
higher rate above τd , and therefore the power at frequencies just
below 1/τd is slightly amplified. These “waves” have nodes at
1/τd and multiples thereof, where the power (in Leahy et al. 1983
normalization) is equal to 2, the value that it would have without
dead time, and maxima and minima in between are given by the
relative contribution of the quenching and amplification. For
frequencies ν # 1/τd , the main effect is a general deficiency
of events, and the power has a decreasing level that approaches
≈ 2(1− rinτd )2 (Weisskopf 1985). Assuming that τd is the same
for each event and that only source events contribute to either
non-paralyzable or paralyzable dead time, this distortion can be
modeled precisely (see Vikhlinin et al. 1994; Zhang et al. 1995
for an exhaustive treatment). Also, some statistical properties
of the PDS hold in dead-time-affected data. For example, the
standard deviation associated with the bin i of the PDS is always
equal to Pi/

√
M , where Pi is the power in the bin i and M is the

number of averaged PDSs (see Figure 1).
In NuSTAR , τd is not strictly fixed at the same value for all

events, but varies by a few percent depending on the number of
pixels that are triggered. For this reason, the models available
in literature do not correctly describe the dead time effects for
this satellite: the “wavy” behavior of the PDS shifts slightly,
and to fully account for this effect and produce a white-noise
subtracted PDS, a very precise modeling of the dead time would
be required. Since at high count rates the “waves” can be very
prominent, any real variability feature such a QPO can easily be
“hidden” and difficult to detect.

As an additional complication, the models described above
assume that dead time is produced completely by the recorded
signal. In NuSTAR, additional dead time comes from events
outside the source extraction region, from vetoed events, and
from all events discarded for other reasons during the cleaning
process in the pipeline (the step from unfiltered to cleaned event
files). In the following, we neglect the effect of vetoed events,

since their dead time (∼20 µs) has a characteristic frequency of
1/τd ∼ 50 kHz, much higher than science events, and their total
contribution to dead time is small. We instead present a method
that permits construction of a proxy of a white-noise-subtracted
PDS, regardless of the count rate and the ratio between source
and background (or spurious) events.

3. THE COSPECTRUM AS AN IMPROVED
POWER SPECTRUM

NuSTAR has two completely independent focal plane modules
(each containing four detectors) that are read out by separate
microprocessors. It is therefore possible in principle to obtain
the same information given by a PDS through the CPDS (for
more details see Bendat & Piersol 2011): instead of considering
the PDSs in the two individual focal planes,

Pi(ν) = F∗
i (ν)Fi(ν) (i = A,B), (2)

where Fi indicates the Fourier transform of the light curve
detected by the focal plane i and ν is the frequency. One
multiplies the complex conjugate of one Fourier transform with
the other Fourier transform:

C(ν) = F∗
A(ν)FB(ν). (3)

The CPDS is often used in other contexts to obtain information
on the correlation between the signal in two energy bands. It is
a complex quantity: its real part is also called the cospectrum
and gives a measure of the signal that is in phase between
the two channels; its imaginary part, or quadrature spectrum,
gives instead a measure of the off-phase signal. Therefore, in
principle, it should be possible to eliminate all variability that is
not related between the two light curves, including the effects of
dead time, by only considering the cospectrum (the real part of
the CPDS). In Figure 1, we show the statistical properties of the
cospectrum in the case of pure Poisson noise. In both the dead-
time-affected and in the zero-dead-time cases the cospectrum
mean value is zero (in Figure 1, it has been shifted to two for
graphical reasons). This is a big advantage, as this is independent
of whether the dead time is constant or not (since the distribution
of dead time is also independent between the two detectors), and
therefore it is not necessary to conduct complicated studies of the

3

periodogram of a 
constant light 

curve, with dead 
time

cospectrum of  a 
constant light 

curve with dead 
time

cospectrum phase lag

Caution! The power spectrum and the 
cospectrum do not have the same 
statistical distribution!

CXY = ℱ⋆
XℱY

CXY,j = aX,jaY,j exp(iϕ)



Dead Time
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Fig. 1.— Distribution of Leahy-normalized cospectral densities (left) and power spectral densities (right), respectively, for the simulated
data. In dark grey, we show fine-grained histograms of the simulated powers. In red we plot the theoretical probability distribution the
simulated powers should follow: A Laplace distribution with µ = 0 and � = 2 for the cospectral densities and a �2-distribution with 2
degrees of freedom for the power spectral densities. The simulated powers adhere very closely to the theoretical predictions.

defined in terms of the CDF as SF (x) = 1�CDF (x), en-
codes the tail probability of seeing at least a value x � X.
This tail probability is often considered to be the p-value
of rejecting the null hypothesis that a certain candidate
for a periodic signal could be reasonably produced by the
noise powers. The CDF for the Laplace distribution with
µ = 0 is defined as

FCj (x)) =

8
<

:

1
2 exp

⇣
Cj

�x�y

⌘
if Cj < 0

1� 1
2 exp�

⇣
Cj

�x�y

⌘
if Cj � 0

(16)

Much like the PDF, the tail probability is always smaller
for the Laplace distribution, indicating that for a given
candidate signal, the p-value for rejecting the null hypoth-
esis will be stronger than for �2-distributed variables. To
reinforce this statement, we again simulated two light
curves, each again with a duration of 10 s, but this time
with only 1000 data points for simplicity and speed, and
a time resolution of 0.01 s. For this simulation, we as-
sumed a mean count rate of 1000 counts/s or 10 counts
per bin, and additionally introduced a sinusoidal signal
with a period of 0.1 s and a fractional rms amplitude of
afrac = 0.055. Again, this template was used to produce
two Poisson-distributed light curves with a rate parameter
equal to the number of counts in each bin as defined by
the flat continuum and the periodic signal. In Figure 3,
we show the cospectral densities along with trial-corrected
0.99 detection thresholds for both the Laplace and �2

distribution. If the powers are assumed to follow a �2

distribution, as for the periodogram, the candidate at
10Hz would be discounted at the 99% detection thresh-
old, whereas correctly applying the Laplace distribution
yields a correct rejection of the null hypothesis at the
same detection threshold.

2.2. Averaged Cospectra

The �2 distribution used for periodograms has the
simple property that sums of �2-distributed variables

Fig. 2.— Tail probabilities for the Laplace and �2 distributions,
respectively. The tail probability, or survival function, is defined as
SF (x) = 1�CDF (x). The tail probability measures the probability
of observing a value x � X, and is often used for detecting periods
in power spectra. For the power spectral densities, we plot both
the theoretical prediction for the survival function based on the �2

distribution (black dashed line), as well as the corrected distribution
for power spectra derived in Groth (1975) (red solid line). For
illustrative purposes, we show a single-trial 95% detection threshold
for the Laplace distribution (black solid vertical line) and the �2

distribution (black dashed vertical line).

again follow the same distribution, with a di↵erent number
of degrees of freedom. The same is not true for the
Laplace distribution. For n independent and identically
distributed (i.i.d.) random variables distributed following
a standard Laplace distribution with a mean of µ = 0 and
a width of b = 1, the distribution of the sums of these
random variables can be derived using the fact that a
single Laplace random variable X can be rewritten as the
di↵erence of two exponential random variables,

X = Z � Z 0 ,

and thus for n summed random Laplace random variables,

Huppenkothen & Bachetti (2018)

The co-spectral powers are well-described by a Laplace distribution

5

We then calculated both the cospectrum of the two light
curves and the periodogram of only the first light curve
for comparison. For simplicity, both spectra were com-
puted in Leahy normalization (Leahy et al. 1983), which is
typically used when searching for (quasi-)periodic signals
in time series. In order to normalize the cospectrum cor-
rectly, we used 2/

p
Nph,xNph,y, where Nph,x and Nph,y

are the number of photons of light curves x and y, re-
spectively, as prescribed by Bachetti et al. (2015). In this
normalization the densities are distributed as �2

2 exactly
for the periodogram, and following a Laplace distribution
with µ = 0 and � = 1 for the cospectrum. In Figure
1, we plot the resulting distribution of densities. While
the periodogram is only defined for positive values, the
Laplace distribution is symmetric around zero, and in
general the cospectrum will comprise both positive and
negative densities. It is also immediately visible from Fig-
ure 1 that the probability of obtaining a certain (positive)
noise power is always lower for the Laplace distribution
than for the �2 distribution. In practice, this implies
that using the latter where the former is appropriate,
we may miss significant periodic signals, because we as-
sume them to be weaker than they are in reality. To
demonstrate this, we plot the survival function in Figure
2. The survival function, defined in terms of the CDF
as SF (x) = 1� CDF (x), encodes the tail probability of
seeing at least a value x � X. This tail probability is
often considered to be the p-value of rejecting the null
hypothesis that a certain candidate for a periodic signal
could be reasonably produced by the noise powers. The
CDF for the Laplace distribution with µ = 0 is defined as

FCj (x)) =

8
<

:

1
2 exp

⇣
Cj

�x�y

⌘
if Cj < 0

1� 1
2 exp�

⇣
Cj

�x�y

⌘
if Cj � 0

(16)

Much like the PDF, the tail probability is always smaller
for the Laplace distribution, indicating that for a given
candidate signal, the p-value for rejecting the null hypoth-
esis will be stronger than for �2-distributed variables. To
reinforce this statement, we again simulated two light
curves, each again with a duration of 10 s, but this time
with only 1000 data points for simplicity and speed, and
a time resolution of 0.01 s. For this simulation, we as-
sumed a mean count rate of 1000 counts/s or 10 counts
per bin, and additionally introduced a sinusoidal signal
with a period of 0.1 s and a fractional rms amplitude of
afrac = 0.055. Again, this template was used to produce
two Poisson-distributed light curves with a rate parameter
equal to the number of counts in each bin as defined by
the flat continuum and the periodic signal. In Figure 3,
we show the cospectral densities along with trial-corrected
0.99 detection thresholds for both the Laplace and �2

distribution. If the densities are assumed to follow a �2

distribution, as for the periodogram, the candidate at
10Hz would be discounted at the 99% detection thresh-
old, whereas correctly applying the Laplace distribution
yields a correct rejection of the null hypothesis at the
same detection threshold.
Note that for light curves a↵ected by dead time, the

resulting cospectrum will still follow the Laplace distribu-
tion above, but with a variable variance that changes as a
function of frequency (Bachetti et al. 2015). In practice,

Fig. 2.— Tail probabilities for the Laplace and �2 distributions,
respectively. The tail probability, or survival function, is defined as
SF (x) = 1�CDF (x). The tail probability measures the probability
of observing a value x � X, and is often used for detecting periods
in periodograms. For the power spectral densities, we plot both
the theoretical prediction for the survival function based on the �2

distribution (black dashed line), as well as the corrected distribution
for periodograms derived in Groth (1975) (red solid line). For
illustrative purposes, we show a single-trial 95% detection threshold
for the Laplace distribution (black solid vertical line) and the �2

distribution (black dashed vertical line).

Fig. 3.— Cospectrum of two simulated light curves, each with a
constant continuum flux of 10 counts per bin and a periodic signal at
10Hz. The latter is clearly visible in the cospectrum. We also show
the 99% detection threshold, corrected for a number of trials equal
to the number of spectral bins, assuming Laplace-distributed data
(red solid line) and �2-distributed data (red dashed line). When
the latter distribution is assumed, the periodic signal would not
be considered a significant detection, because the �2 distribution
produces a wider distribution of densities. Applying the correct
Laplace distribution, however, allows for the detection of weaker
signals.

the cospectrum can be straightforwardly corrected for
this e↵ect using the di↵erences in Fourier amplitudes de-
rived from the light curves of two detectors (the Fourier
Amplitude Di↵erence (FAD) technique), and Bachetti &
Huppenkothen (2017) show that the corrected cospectrum
will closely follow the Laplace distribution derived here,
allowing for unbiased significance tests for periodicity
detection.



Problem 2: Modelling 
Stochastic Variability in 

Periodograms



X-ray Sources Are Variable

Huppenkothen et al (2017)

the additional power in the Chandra observations in this
frequency band is not present here.

The broadband noise observations are broadly consistent
with results from V404 Cygni’s previous outburst in 1989
(Oosterbroek et al. 1997), which consisted largely of smooth
broadband noise spectra modeled by three Lorentzian compo-
nents (though one component is at higher frequencies than we
consider here) and showed an additional increase in power
when the source was very bright similar to the excess observed
here, but at a lower frequency of ∼50 mHz.

5. DISCUSSION

Even though the 2015 outburst of V404 Cygni was
spectacular in both its rarity and its brightness, it actually
shows comparatively little complex variability behavior even in
the states where one would traditionally expect strong broad-
band noise and QPOs. Here, we for the first time find strong
evidence for four significant signals in V404 Cygni.

The QPOs in the 2015 outburst occur at 18 mHz in both
Swift/XRT (fractional rms amplitude rfrac = 0.18±0.02) and
Fermi/GBM (rfrac = 0.03±0.01), at 73 mHz in Chandra/
ACIS (rfrac = 0.27±0.03), 136 mHz in Swift/XRT (rfrac =
0.08±0.02), and 1.03 Hz in Chandra/ACIS (rfrac =
0.46±0.02). All signals are at relatively high fractional rms
amplitude and seem to occur transiently in only a short interval
during the outburst.

Among the phenomenology of QPOs in BHXBs, generally
two classes can be distinguished: high-frequency QPOs
(HFQPOs) in the range of 100–500 Hz (e.g., Remillard
et al. 1999a, 1999b; Miller et al. 2001; Strohmayer 2001)
and LFQPOs between 0.05 and 30 Hz (Motch et al. 1983;
Miyamoto & Kitamoto 1991; Takizawa et al. 1997; Motta
et al. 2015b).

The latter category can furthermore be subdivided into types
A, B, and C (Wijnands et al. 1999; Lin et al. 2000; Sobczak
et al. 2000; Homan et al. 2001; Remillard et al. 2002). Type-A
QPOs are very broad at a low amplitude and seen during the
intermediate state around a centroid frequency of 6 Hz. This is

clearly much higher than any of the QPOs reported here.
Similarly, Type-B QPOs also appear at frequencies of ∼6 Hz,
though narrower, thus none of the QPOs observed here fall into
this category. Type-C QPOs, on the other hand, mostly occur in
the intermediate and hard states at frequencies between 0.1 Hz
and 30 Hz, in reasonably good agreement with the QPOs
observed here at 73 mHz, 136 mHz, and 1.03 Hz. Additionally,
given V404 Cygni’s orbital inclination of n-

+67 1
3 (Shahbaz

et al. 1994; Khargharia et al. 2010), it follows the general trend
of Type-C QPOs in high-inclination systems to have higher
fractional rms amplitudes (Heil et al. 2015; Motta et al. 2015b),
though unlike most Type-C QPOs, these QPOs are likely
highly transient.
A large fraction of the extreme variability of V404 Cygni

was partly due to large changes of column density local to the
source, as already seen in 1989 (Oosterbroek et al. 1996; Życki
et al. 1999). However, Rodriguez et al. (2015) have shown that
at least part of such variability was instead intrinsic to the
source (thus related to mere accretion events) and somewhat
similar to that typical GRS 1915+105. This bright and highly
variable system is known to display fast state transitions where
the disk truncation radius varies by several tens of gravitational
radii in matters of seconds (Belloni et al. 1997a). If this is the
case also for V404 Cyg, then the source progressed from a
system resembling an advection-dominated accretion flow to a
very luminous state where it accreted close to the Eddington
limit repeatedly in a matter of hours, subsequently switching
several times between a hard state and a highly luminous state.
In this context, with luminosity changes on timescales of
minutes to hours, it is unsurprising that we observe QPOs for
only short periods of time, before the source moves out of a
spectral regime where they are likely to be seen.
Furthermore, a rapid evolution of either the truncation radius

or the radius of a ring where the anisotropies occur (Ingram &
Motta 2014) would provide a natural explanation for why the
observed QPOs are short-lived and why no standard Type-C
QPOs at higher frequencies between 1 and 15 Hz are observed.
As the disk rapidly fills, the resulting accretion flow might be

Figure 5. Left panel: averaged periodogram of the part of Chandra observation 17696 containing the QPOs at 73 mHz and 1.03 Hz (left panel) and the averaged
periodogram of the two Fermi/GBM triggers simultaneous with the Chandra data (right panel). In blue, we show the logarithmically binned periodogram. For both
data sets, we show the MAP model with four (Chandra) or two (Fermi/GBM) Lorentzian components in purple and the combined model in green. In the Chandra
observations, two Lorentzians model QPOs, and two model the broadband noise components. In the Fermi/GBM data set, there is no QPO present, and the two
Lorentzians model broadband noise components only. The constant component modeling the Poisson level is not shown.
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Option 1: Average >40 periodograms together + 
assume Gaussian statistics
6

Fig. 4.— Histogram of cospectral densities (grey) and the theoretical expectation (red) for three di↵erent cases. In the right panel, we
show the distribution of densities for a single cospectrum, with its expected Laplace distribution from Equation 14, in the middle and right
panel cospectral densities for averaging 10 (middle) and 100 (right) individual cospectra together. In the middle panel, the theoretical
expectation of the sampling distribution is given by Equation 18, in the right panel by a Gaussian distribution with � =

p
2/101.

2.2. Averaged Cospectra

The �2 distribution used for periodograms has the
simple property that sums of �2-distributed variables
again follow the same distribution, with a di↵erent number
of degrees of freedom. The same is not true for the
Laplace distribution. For n independent and identically
distributed (i.i.d.) random variables distributed following
a standard Laplace distribution with a mean of µ = 0 and
a width of b = 1, the distribution of the sums of these
random variables can be derived using the fact that a
single Laplace random variable X can be rewritten as the
di↵erence of two exponential random variables,

X = Z � Z 0 ,

and thus for n summed random Laplace random variables,

T =
nX

i=1

Xi =
nX

i=1

Zi �
nX

i=1

Z 0
i = G1 �G2 , (17)

where G1 and G2 are i.i.d. standard gamma random
variables with a distribution g(x) = 1

�(⌫)x
⌫�1e�x and a

shape parameter ⌫ = n. For the full derivation of the
density, we refer the reader to Kotz et al. (2001) and
simply state the end result for the PDF for n averaged
standard Laplace random variables, Xn (see Kotz et al.
2001, Equations 2.3.25 and 2.3.26):

fXn
(x) =

ne�|nx|

(n� 1)!2n

n�1X

j=0

(n� 1 + j)!

(n� 1� j)!j!

|nx|n�1�j

2j
, x 2 R .

(18)
For practical purposes, evaluating this PDF for aver-

aged spectra above n ⇠ 85 is di�cult numerically, because
the factorials and exponents in the sum become very large
and small, respectively. However, as we will show in Sec-
tion 2.2.1 below, we expect that for large n, the Central
Limit Theorem implies that the PDF of averaged cospec-
tral densities tends towards a normal distribution. We
find that in practice, when n & 30, detection thresh-
olds derived from Equation 18 provide only a negligible
di↵erence over that derived from a normal distribution

N(0,
p

2/(n+ 1), depending on the significance threshold
required and the number of trials.
In order to derive tail probabilities useful for hypothesis

testing, we require the CDF rather than the PDF. In order
to correctly account for the absolute values in the PDF,
we split the CDF into two parts: a case where x < 0 and
a case where x � 0. The integral FXn

(x) = P (X  x) =R x
1 fXn

(t)dt then becomes:

FXn
(x)) =

(Pn�1
j=0 D 1

n (2�(�j + n)� �(�j + n, nx)) , x � 0Pn�1
j=0 D 1

n�(�j + n,�nx) , x < 0

(19)
where �(l) = (l�1)! is the gamma function, �(l+1,m) =
l�(l,m)�lme�m is the incomplete upper gamma function,
and the pre-factor constant D is defined as

D =
n(n� 1 + j)!

(n� 1� j)!j!(n� 1)!2n+j
.

As laid out in Section 2.1.1, the tail probability can easily
be calculated via the survival function, SF(x) = 1 �
CDF(x).

2.2.1. Detection Thresholds

In order to show the way the probability distribution
changes as a function of averaged cospectra, we simulate
light curves of 105 data points and a mean count rate of
100 counts/s consisting of pure white noise. We compute n
such light curves and average their cospectral densities in
order to show the distribution of those densities compared
to the expected probability distributions. In Figure 4,
we show the simulated distribution of Leahy-normalized
power spectral densities, along with the distributions that
describe them. For a single, non-averaged spectrum, we
use the Laplace PDF described in Equation 14. When
averaging 10 cospectra, we use Equation 18 and show
that the theoretical predictions agree with the simulated
densities . Finally, for an averaged cospectra consisting of
100 individual light curves, Equation 18 becomes di�cult
to compute numerically, and we use a Gaussian PDF
instead, which describes the distribution of simulated
densities well.
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What if I can’t add together 
periodograms?
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Sadegh + Vrugt, 2014, see also: Brehmer et al (2018a, 2018b), Cranmer et al (2020)
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sets
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produce simulations 
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Figure 6. Simulated light curve and Fourier products for a single QPO at
200Hz. Top panel: simulated light curves both with (orange) and without
(purple) dead time applied. Bottom panel: periodograms corresponding to the
light curves in the top panel. The e�ects of dead time in the periodogram are
apparent at high frequencies, where there is additional power in a very broad,
wavy pattern.

Figure 7. Posterior distribution as derived through amortized SNPE: on the
diagonal, we show one-dimensional marginalized posterior densities, on the
o�-diagonal a heat map of parameter pairs. All distributions are normalized so
that they integrate to one. In red, we mark the true parameters that generated
the data. For all parameters except the quality factor, the posterior clusters
tightly around the true value.

4.2 Single Periodogram: High-Frequency QPO

While at low frequencies, the dead time e�ects are appreciable and
strongly a�ect inferences e.g. of the r.m.s. amplitude, arguably
the strongest e�ects due to the specific time scale that dead time
imposes on the time series are at high frequencies. In particular, the
periodogram is known to be “wavy” with saddle points at =/2gdead Hz.

Figure 8. We show the simulated observation of a QPO at 200Hz (dark purple),
along with 100 random draws from the posterior (light pink), as well as the
posterior median derived from these 100 random draws (orange). The draws
from the posterior clearly trace out the QPO. In addition, the posterior median
makes frequency-dependent changes in the white noise level due to dead time
evident.

Thus, we also generate data that includes a high-frequency QPO at
a0 = 200Hz (the first saddle point) with a quality factor of @ = 15 and
a fractional r.m.s. amplitude of rms 5 = 0.45. We again use the process
from Timmer & Koenig (1995) to generate a light curve of ) = 10s
duration with a mean incident count rate of `2A = 1000, transform it
into a list of events by randomizing the arrival time inside a given light
curve bin, and apply dead time to the resulting event lists. We then sum
the individual light curves generated to represent data from each of
NuSTAR’s individual detector modules, and calculate a periodogram
with a Nyquist frequency of aNyquist = 750Hz. The resulting light
curves and periodograms for both the dead time-a�ected data and the
data without dead time are shown in Figure 6.

The e�ect of dead time becomes much more apparent than in the
periodogram for the low-frequency QPO: at high frequencies, dead
time imposes a strong oscillatory structure onto the periodogram,
which in turn reduces the signal-to-noise ratio of the QPO intrinsic in
the simulated data. We repeat the same inference process as for the
low-frequency QPO, but adjust the prior for the centroid frequency to
reflect our change in expectation about the frequency of the QPO (see
Table 1). We drew 50,000 parameter sets from the prior and generated
an associated dead time-a�ected periodograms to use for training the
MDN. We first again train the model on the periodogram itself, but
here choose a logarithmically binned periodogram to reduce noise
e�ects at high frequencies. We present results in Figure 7 and 8. As
in the low-frequency case, the trained model successfully recovers
the true parameters, though we note that the distributions for the
fractional r.m.s. amplitude and quality factor are wider than for the
low-frequency QPO. Figure 8 shows once again posterior draws along
with a posterior median derived from 100 simulated data sets. Overall,
the SBI model recovers the shape of the QPO well, and also provides
an adequate model for the dead time a�ecting the observations.

Again, we build an embedding net with a convolutional layer, a
maxpooling operation, a fully connected layer, and rectified linear
activation units, but explore di�erent architectures and hyperparame-
ters (e.g. convolutional kernel sizes) within these bounds. As with
the low-frequency QPO, we recover at most comparable performance
to using the logarithmically-binned periodogram directly (see also
Figure 9). In fact, in all architectures, the embedding net favours
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Simulated Data
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• Hierarchical (simulation-based) inference!

Future Work

• A more comprehensive description of the raw (time, energy) data

• Uneven sampling

• Additional data dimensions (e.g. polarimetry)
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• Accreting black holes produce complex X-ray emission that carry a 
wealth of information about the physics of the system

Conclusions

• Unravelling the physics of black holes requires understanding the subtle 
relationships between temporal and spectral properties

• In the future, we need better statistical methods and software 
integration to tackle many of these challenges

• Statistical challenges arise in uneven sampling, gaps and the response 
of the detector to bright sources



Thank you!






