Three-dimensional cosmography of the high redshift Universe using intergalactic absorption

Collin Politsch

Carnegie Mellon University

October 23, 2020

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

Collaborators (PhD advisors)

Larry Wasserman (CMU)

Jessi Cisewski-Kehe (UW-Madison)

Rupert Croft (CMU)

Overview of Thesis Work

• Extrasolar planets.

 Modeling phase-folded transit light curves with higher-order changepoint methods

Eclipsing binary stars.

- Nonparametric modeling of phase-folded light curves

• Spectroscopic classification and redshift estimation.

- Efficient spectral template generation with observational spectra

Supernovae.

- Light-curve template generation
- Nonparametric estimation of observable parameters
- Intergalactic medium (via the Lyman- α forest).
 - Nonparametric estimation of quasar continua
 - One-dimensional reconstruction of the intergalactic medium
 - Three-dimensional reconstruction of the intergalactic medium

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

Overview of Thesis Work

• Extrasolar planets.

 Modeling phase-folded transit light curves with higher-order changepoint methods

Eclipsing binary stars.

- Nonparametric modeling of phase-folded light curves

• Spectroscopic classification and redshift estimation.

- Efficient spectral template generation with observational spectra

Supernovae.

- Light-curve template generation
- Nonparametric estimation of observable parameters

• Intergalactic medium (via the Lyman- α forest).

- Nonparametric estimation of quasar continua
- One-dimensional reconstruction of the intergalactic medium
- Three-dimensional reconstruction of the intergalactic medium

Chapters 2-3 of Thesis Politsch et al. (2020a,b) MNRAS

Focus of this talk

	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium
000000	0000	00000000000000

Talk outline

1) The Lyman-lpha forest

- Background
- The Sloan Digital Sky Survey
- Summary of work & results

One-dimensional mapping the intergalactic medium

- Denoising observational spectra
- Estimating the underlying density field
- Uncertainty quantification

Three-dimensional mapping the intergalactic medium

- Spatial model
- Distributed computing
- Optimized absorption field reconstruction
- Uncertainty quantification
- High-significance candidates for galaxy protoclusters and voids

4 / 27

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

The Sloan Digital Sky Survey

5 / 27

The Lyman-α forest		One-dimensional mapping the intergalactic medium 0000				Three-dim	ensional mapping		

The cosmological matter distribution

The **intergalactic medium** is a highly diffuse gaseous medium that pervades the volume of intergalactic space and contains a majority of the baryonic matter in the Universe.

Image credit: R. Cen and J. P. Ostriker

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

Absorption spectroscopy with quasar backlights

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

Absorption spectroscopy with quasar backlights

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

Absorption spectroscopy with quasar backlights

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

Absorption spectroscopy with quasar backlights

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

The Lyman- α forest absorption process

Video credit: Andrew Pontzen

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

The Baryon Oscillation Spectroscopic Survey

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

The Baryon Oscillation Spectroscopic Survey

 \sim 160,000 usable Lyman- α quasar spectra

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

High-level summary of work

Collin Politsch (Carnegie Mellon)

1 Infer the relative density of the IGM along each 1D quasar sightline

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

High-level summary of work

- Infer the relative density of the IGM along each 1D quasar sightline
- Pool the sightlines and reconstruct a full 3D large-scale structure map

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

High-level summary of work

- Infer the relative density of the IGM along each 1D quasar sightline
- Pool the sightlines and reconstruct a full 3D large-scale structure map
- Quantify the total statistical uncertainty in the full 3D map

The Lyman-α forest ○○○○○○○ One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

High-level summary of work

- Infer the relative density of the IGM along each 1D quasar sightline
- Pool the sightlines and reconstruct a full 3D large-scale structure map
- Quantify the total statistical uncertainty in the full 3D map
- Identify statistically significant candidates for galaxy protoclusters and cosmic voids

The Lyman- α forest	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium

Summary of results: Largest volume LSS map of the Universe to date

One-dimensional mapping the intergalactic medium

Summary of results: Largest volume LSS map of the Universe to date

Collin Politsch (Carnegie Mellon)

STAMPS@CMU & NSF AI Planning Institute: Physics for the Future 11 /

1.0

0.5

\$ 3.0 2.5 2.0

Lyman-a flux contrast

-0.3

400 h-1 Mpc

+0.3

Comoving distance (Gpc/h)

Right ascension

Collin Politsch (Carnegie Mellon)

STAMPS@CMU & NSF AI Planning Institute: Physics for the Future 1

000	000000	

Outline

The Lyman- α forest

- Background
- The Sloan Digital Sky Survey
- Summary of work & results

One-dimensional mapping the intergalactic medium

- Denoising observational spectra
- Estimating the underlying density field
- Uncertainty quantification

Three-dimensional mapping the intergalactic medium

- Spatial model
- Distributed computing
- Optimized absorption field reconstruction
- Uncertainty quantification
- High-significance candidates for galaxy protoclusters and voids

One-dimensional mapping the intergalactic medium $\bigcirc \bigcirc \bigcirc \bigcirc$

One-dimensional mapping the intergalactic medium

One-dimensional mapping the intergalactic medium $\circ \bullet \circ \circ$

One-dimensional mapping the intergalactic medium

 $f(\lambda_i) = f_0(\lambda_i) + \epsilon_i$

One-dimensional mapping the intergalactic medium $\circ \bullet \circ \circ$

One-dimensional mapping the intergalactic medium

$$f(\lambda_i) = f_0(\lambda_i) + \epsilon_i$$

= $C(\lambda_i) \cdot F(\lambda_i) + \epsilon_i$

One-dimensional mapping the intergalactic medium $\circ \bullet \circ \circ$

One-dimensional mapping the intergalactic medium

$$\begin{split} f(\lambda_i) &= f_0(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot F(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot \overline{F}(\lambda_i) \cdot (1 + \delta_F(\lambda_i)) + \epsilon_i \end{split}$$

One-dimensional mapping the intergalactic medium $\bigcirc \bigcirc \bigcirc \bigcirc$

One-dimensional mapping the intergalactic medium

$$\begin{split} f(\lambda_i) &= f_0(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot F(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot \overline{F}(\lambda_i) \cdot (1 + \delta_F(\lambda_i)) + \epsilon_i \end{split}$$

Lyman- α flux contrast:

$$\delta_F(z) = rac{F(z) - \overline{F}(z)}{\overline{F}(z)}$$

One-dimensional mapping the intergalactic medium $\circ \bullet \circ \circ$

Three-dimensional mapping the intergalactic medium

One-dimensional mapping the intergalactic medium

$$\begin{split} f(\lambda_i) &= f_0(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot F(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot \overline{F}(\lambda_i) \cdot (1 + \delta_F(\lambda_i)) + \epsilon_i \end{split}$$

Lyman- α flux contrast:

$$\delta_F(z) = \frac{F(z) - \overline{F}(z)}{\overline{F}(z)}$$

Estimator:

$$\widehat{\delta}_F(z) = \frac{\widehat{f}_0(z) - \widehat{m}(z)}{\widehat{m}(z)}$$

where $m(z) = C(z) \cdot \overline{F}(z)$

One-dimensional mapping the intergalactic medium $\bigcirc \bigcirc \bigcirc \bigcirc$

One-dimensional mapping the intergalactic medium

$$\begin{split} f(\lambda_i) &= f_0(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot F(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot \overline{F}(\lambda_i) \cdot (1 + \delta_F(\lambda_i)) + \epsilon_i \end{split}$$

Lyman- α flux contrast:

$$\delta_F(z) = \frac{F(z) - \overline{F}(z)}{\overline{F}(z)}$$

Estimator:

$$\widehat{\delta}_F(z) = rac{\widehat{f}_0(z) - \widehat{m}(z)}{\widehat{m}(z)}$$

where $m(z) = C(z) \cdot \overline{F}(z)$

One-dimensional mapping the intergalactic medium $\bigcirc \bigcirc \bigcirc \bigcirc$

Three-dimensional mapping the intergalactic medium

One-dimensional mapping the intergalactic medium

$$\begin{split} f(\lambda_i) &= f_0(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot F(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot \overline{F}(\lambda_i) \cdot (1 + \delta_F(\lambda_i)) + \epsilon_i \end{split}$$

Lyman- α flux contrast:

$$\delta_F(z) = rac{F(z) - \overline{F}(z)}{\overline{F}(z)}$$

Estimator:

$$\widehat{\delta}_F(z) = rac{\widehat{f}_0(z) - \widehat{m}(z)}{\widehat{m}(z)}$$

where
$$m(z) = C(z) \cdot \overline{F}(z)$$

Trend filtering: Tibshirani (2014)

Collin Politsch (Carnegie Mellon)

STAMPS@CMU & NSF AI Planning Institute: Physics for the Future

13 / 27
One-dimensional mapping the intergalactic medium $\bigcirc \bigcirc \bigcirc \bigcirc$

Three-dimensional mapping the intergalactic medium

One-dimensional mapping the intergalactic medium

$$\begin{split} f(\lambda_i) &= f_0(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot F(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot \overline{F}(\lambda_i) \cdot (1 + \delta_F(\lambda_i)) + \epsilon_i \end{split}$$

Lyman- α flux contrast:

$$\delta_F(z) = \frac{F(z) - \overline{F}(z)}{\overline{F}(z)}$$

Estimator:

$$\widehat{\delta}_F(z) = \frac{f_0(z) - \widehat{m}(z)}{\widehat{m}(z)}$$

where
$$m(z) = C(z) \cdot \overline{F}(z)$$

Trend filtering: Tibshirani (2014), Politsch et al. (2020 a,b)

Collin Politsch (Carnegie Mellon)

STAMPS@CMU & NSF AI Planning Institute: Physics for the Future

13 / 27

One-dimensional mapping the intergalactic medium ○○●○ Three-dimensional mapping the intergalactic medium

Parametric bootstrapping the flux contrast

Uncertainty quantification?

Uncertainty quantification?

Ontstruct the bootstrap sample:

$$f_b^*(\lambda_i) = \widehat{f}_0(\lambda_i) + \epsilon_i^*$$
 where $\epsilon_i^* \sim N(0, \widehat{\sigma}_i^2)$

Uncertainty quantification?

Ontstruct the bootstrap sample:

$$f_b^*(\lambda_i) = \widehat{f}_0(\lambda_i) + \epsilon_i^*$$
 where $\epsilon_i^* \sim N(0, \widehat{\sigma}_i^2)$

② Fit the trend filtering estimate \hat{f}_b^* for the flux signal and the LOESS estimate \hat{m}_b^* for the mean flux level

Uncertainty quantification?

Ontstruct the bootstrap sample:

$$f_b^*(\lambda_i) = \widehat{f}_0(\lambda_i) + \epsilon_i^*$$
 where $\epsilon_i^* \sim N(0, \widehat{\sigma}_i^2)$

- **9** Fit the trend filtering estimate \hat{f}_b^* for the flux signal and the LOESS estimate \hat{m}_b^* for the mean flux level
- Oefine the flux contrast estimate:

$$\widehat{\delta}^*_{F,b}(z_i) = \frac{\widehat{f}^*_b(z_i) - \widehat{m}^*_b(z_i)}{\widehat{m}^*_b(z_i)}$$

Uncertainty quantification?

Ontstruct the bootstrap sample:

$$f_b^*(\lambda_i) = \widehat{f}_0(\lambda_i) + \epsilon_i^*$$
 where $\epsilon_i^* \sim N(0, \widehat{\sigma}_i^2)$

- **②** Fit the trend filtering estimate \hat{f}_b^* for the flux signal and the LOESS estimate \hat{m}_b^* for the mean flux level
- Oefine the flux contrast estimate:

$$\widehat{\delta}^*_{F,b}(z_i) = \frac{\widehat{f}^*_b(z_i) - \widehat{m}^*_b(z_i)}{\widehat{m}^*_b(z_i)}$$

() Contruct the pointwise $1 - \alpha$ percentile band:

$$V_{1-\alpha}(z_i) = \left(\widehat{\delta}^*_{F,\alpha/2}(z_i), \ \widehat{\delta}^*_{F,1-\alpha/2}(z_i)\right)$$

One-dimensional mapping the intergalactic medium $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Three-dimensional mapping the intergalactic medium

One-dimensional absorption field reconstruction

$$\begin{split} f(\lambda_i) &= f_0(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot F(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot \overline{F}(\lambda_i) \cdot (1 + \delta_F(\lambda_i)) + \epsilon_i \end{split}$$

Lyman- α flux contrast:

$$\delta_F(z) = rac{F(z) - \overline{F}(z)}{\overline{F}(z)}$$

Estimator:

$$\widehat{\delta}_F(z) = \frac{\widehat{f}_0(z) - \widehat{m}(z)}{\widehat{m}(z)}$$

Collin Politsch (Carnegie Mellon)

One-dimensional mapping the intergalactic medium $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Three-dimensional mapping the intergalactic medium

One-dimensional absorption field reconstruction

$$\begin{split} f(\lambda_i) &= f_0(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot F(\lambda_i) + \epsilon_i \\ &= C(\lambda_i) \cdot \overline{F}(\lambda_i) \cdot (1 + \delta_F(\lambda_i)) + \epsilon_i \end{split}$$

Lyman- α flux contrast:

$$\delta_F(z) = rac{F(z) - \overline{F}(z)}{\overline{F}(z)}$$

Estimator:

$$\widehat{\delta}_F(z) = rac{\widehat{f}_0(z) - \widehat{m}(z)}{\widehat{m}(z)}$$

Outline

- Background
- The Sloan Digital Sky Survey
- Summary of work & results

- Denoising observational spectra
- Estimating the underlying density field
- Uncertainty quantification

Three-dimensional mapping the intergalactic medium

- Spatial model
- Distributed computing
- Optimized absorption field reconstruction
- Uncertainty quantification
- High-significance candidates for galaxy protoclusters and voids

One-dimensional mapping the intergalactic medium

Lyman- α forest tomography

0000	0000	

One-dimensional mapping the intergalactic medium

Lyman- α forest tomography

Objectives/Essentials:

1 Reconstruct a full 3D map large-scale structure map from the dense collection of 1D maps

The Lyman-α forest 0000000 One-dimensional mapping the intergalactic medium

Lyman- α forest tomography

- 1 Reconstruct a full 3D map large-scale structure map from the dense collection of 1D maps
- Ø Nonparametric/data-driven modeling. Optimize the map to be predictive of structure between sightlines

One-dimensional mapping the intergalactic medium

Lyman- α forest tomography

- 1 Reconstruct a full 3D map large-scale structure map from the dense collection of 1D maps
- Ø Nonparametric/data-driven modeling. Optimize the map to be predictive of structure between sightlines
- 3 Multi-resolution. The Universe has structure of various scales, so too should our model

Lyman- α forest tomography

- 1 Reconstruct a full 3D map large-scale structure map from the dense collection of 1D maps
- Ø Nonparametric/data-driven modeling. Optimize the map to be predictive of structure between sightlines
- **3** Multi-resolution. The Universe has structure of various scales, so too should our model
- @ Uncertainty quantification. Track all statistical uncertainty in the reconstructed map

Lyman- α forest tomography

Objectives/Essentials:

- 1) Reconstruct a full 3D map large-scale structure map from the dense collection of 1D maps
- Ø Nonparametric/data-driven modeling. Optimize the map to be predictive of structure between sightlines
- **3** Multi-resolution. The Universe has structure of various scales, so too should our model
- Our certainty quantification. Track all statistical uncertainty in the reconstructed map
- 6 Computational efficiency and scalability. Sparsity and distributed computing

16 / 27

The Lyman-α forest 00000000 One-dimensional mapping the intergalactic medium

Multi-resolution spatial kernel ridge regression

Cost functional:

$$\min_{\beta \in \mathbb{R}^m} \left(\widehat{\delta}_F - \Phi\beta\right)^{\mathsf{T}} W(\widehat{\delta}_F - \Phi\beta) + \|D\beta\|_2^2$$

The Lyman-α forest 00000000 One-dimensional mapping the intergalactic medium

Multi-resolution spatial kernel ridge regression

Cost functional:

$$\min_{\beta \in \mathbb{R}^m} \left(\widehat{\delta}_F - \Phi \beta \right)^T W (\widehat{\delta}_F - \Phi \beta) + \| D \beta \|_2^2$$

Three-dimensional estimator:

$$\widehat{\delta}^L_F(x) = \sum_{\ell,j} \widehat{\beta}_{\ell,j} \phi_{\ell,j}(x), \quad x \in \mathbb{R}^3$$

One-dimensional mapping the intergalactic medium

Multi-resolution spatial kernel ridge regression

Cost functional:

$$\min_{\beta \in \mathbb{R}^m} \left(\widehat{\delta}_F - \Phi \beta \right)^T W(\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Three-dimensional estimator:

$$\widehat{\delta}_{F}^{L}(x) = \sum_{\ell,j} \widehat{\beta}_{\ell,j} \phi_{\ell,j}(x), \quad x \in \mathbb{R}^{3}$$

The Lyman-α forest 00000000 One-dimensional mapping the intergalactic medium

17 / 27

Multi-resolution spatial kernel ridge regression

Cost functional:

$$\min_{\beta \in \mathbb{R}^m} \left(\widehat{\delta}_F - \Phi \beta \right)^T W(\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Three-dimensional estimator:

$$\widehat{\delta}^L_F(x) = \sum_{\ell,j} \widehat{\beta}_{\ell,j} \phi_{\ell,j}(x), \quad x \in \mathbb{R}^3$$

One-dimensional mapping the intergalactic medium

Multi-resolution generalized ridge penalty

Cost functional:

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^m}{\operatorname{argmin}} (\widehat{\delta}_F - \Phi \beta)^T W(\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2,$$

One-dimensional mapping the intergalactic medium

Multi-resolution generalized ridge penalty

Cost functional:

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^m}{\operatorname{argmin}} \ (\widehat{\delta}_F - \Phi \beta)^T W(\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2,$$

Block diagonal penalty:

$$D = \begin{bmatrix} \sqrt{\gamma_1}(\Delta_1 + \alpha_1 I) & 0 & \cdots & 0 \\ 0 & \sqrt{\gamma_2}(\Delta_2 + \alpha_2 I) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \sqrt{\gamma_d}(\Delta_d + \alpha_d I) \end{bmatrix}.$$

One-dimensional mapping the intergalactic medium

Multi-resolution generalized ridge penalty

Cost functional:

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^m}{\operatorname{argmin}} \ (\widehat{\delta}_F - \Phi \beta)^T W(\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2,$$

Block diagonal penalty:

$$D = \begin{bmatrix} \sqrt{\gamma_1}(\Delta_1 + \alpha_1 I) & 0 & \cdots & 0 \\ 0 & \sqrt{\gamma_2}(\Delta_2 + \alpha_2 I) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \sqrt{\gamma_d}(\Delta_d + \alpha_d I) \end{bmatrix}.$$

First-order fusion:

$$\Delta_{\ell_{ij}} = egin{cases} 6 & i=j, \ -1 & j\in\mathcal{N}_i, \ 0 & ext{otherwise} \end{cases}$$

The Lyman-α forest 00000000 One-dimensional mapping the intergalactic medium

Multi-resolution generalized ridge penalty

Cost functional:

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^m}{\operatorname{argmin}} \ (\widehat{\delta}_F - \Phi \beta)^T W(\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2,$$

Block diagonal penalty:

$$D = \begin{bmatrix} \sqrt{\gamma_1}(\Delta_1 + \alpha_1 I) & 0 & \cdots & 0 \\ 0 & \sqrt{\gamma_2}(\Delta_2 + \alpha_2 I) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \sqrt{\gamma_d}(\Delta_d + \alpha_d I) \end{bmatrix}$$

First-order fusion:

$$\Delta_{\ell_{ij}} = \begin{cases} 6 & i = j, \\ -1 & j \in \mathcal{N}_i, \\ 0 & \text{otherwise} \end{cases}$$

Expanded penalty:

$$\|D\beta\|_2^2 = \gamma_{\ell} \Big(\sum_{\ell=1}^d \alpha_{\ell}^2 \beta_{\ell}^\top \beta_{\ell} + 2\alpha_{\ell} \beta_{\ell}^\top \Delta_{\ell} \beta_{\ell} + \beta_{\ell}^\top \Delta_{\ell}^2 \beta_{\ell} \Big), \quad \alpha_{\ell} > 0, \ \gamma_{\ell} \ge 0$$

Cost functional:

$$\min_{\beta \in \mathbb{R}^p} (\widehat{\delta}_F - \Phi \beta)^T W (\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Distributed as	and the second	
The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium

Cost functional:

$$\min_{\beta \in \mathbb{R}^p} (\widehat{\delta}_F - \Phi \beta)^T W (\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Closed-form solution:

$$\widehat{\beta} = (\Phi^T W \Phi + D^T D)^{-1} \Phi^T W \widehat{\delta}_F$$

The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium

Cost functional:

$$\min_{\beta \in \mathbb{R}^p} (\widehat{\delta}_F - \Phi \beta)^T W (\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Closed-form solution:

$$\widehat{\beta} = (\Phi^T W \Phi + D^T D)^{-1} \Phi^T W \widehat{\delta}_F$$

 $n \approx 72$ million 40 million $\lesssim p \lesssim 50$ million

The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium
Distance of		

Cost functional:

$$\min_{\beta \in \mathbb{R}^p} (\widehat{\delta}_F - \Phi \beta)^T W (\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Closed-form solution:

$$\widehat{\beta} = (\Phi^T W \Phi + D^T D)^{-1} \Phi^T W \widehat{\delta}_F$$

 $n \approx 72$ million

40 million $\lesssim p \lesssim$ 50 million

Distributed approximation:

The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium $0000 \oplus 000000000000000000000000000000$

Cost functional:

$$\min_{\beta \in \mathbb{R}^p} (\widehat{\delta}_F - \Phi \beta)^T W (\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Closed-form solution:

$$\widehat{\beta} = (\Phi^T W \Phi + D^T D)^{-1} \Phi^T W \widehat{\delta}_F$$

 $n \approx 72$ million

40 million $\lesssim p \lesssim$ 50 million

Distributed approximation:

The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium
D' L' L' L' L		

Cost functional:

$$\min_{\beta \in \mathbb{R}^p} (\widehat{\delta}_F - \Phi \beta)^T W (\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Closed-form solution:

$$\widehat{\beta} = (\Phi^T W \Phi + D^T D)^{-1} \Phi^T W \widehat{\delta}_F$$

 $n \approx 72$ million 40 million $\lesssim p \lesssim 50$ million

The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium

Cost functional:

$$\min_{\beta \in \mathbb{R}^p} (\widehat{\delta}_F - \Phi \beta)^T W (\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Closed-form solution:

$$\widehat{\beta} = (\Phi^T W \Phi + D^T D)^{-1} \Phi^T W \widehat{\delta}_F$$

 $n \approx 72$ million 40 million $\lesssim p \lesssim 50$ million

$$\widehat{\beta}_k = (\Phi_k^T W_k \Phi_k + D_k^T D_k)^{-1} \Phi_k^T W_k \widehat{\delta}_{F_k}$$

The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium

Cost functional:

$$\min_{\beta \in \mathbb{R}^p} (\widehat{\delta}_F - \Phi \beta)^T W(\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Closed-form solution:

$$\widehat{\beta} = (\Phi^T W \Phi + D^T D)^{-1} \Phi^T W \widehat{\delta}_F$$

 $n \approx 72$ million 40 million $\lesssim p \lesssim 50$ million

$$\widehat{\beta}_k = (\Phi_k^T W_k \Phi_k + D_k^T D_k)^{-1} \Phi_k^T W_k \widehat{\delta}_{F_k}$$

$$\widehat{\delta}_{F_k}^L(x) = \sum_{\ell j} \widehat{\beta}_{k_{\ell j}} \phi_{k_{\ell j}}(x), \quad x \in \widetilde{A}_k$$

The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium

Cost functional:

$$\min_{\beta \in \mathbb{R}^p} (\widehat{\delta}_F - \Phi \beta)^T W(\widehat{\delta}_F - \Phi \beta) + \|D\beta\|_2^2$$

Closed-form solution:

$$\widehat{\beta} = (\Phi^T W \Phi + D^T D)^{-1} \Phi^T W \widehat{\delta}_F$$

 $n \approx 72$ million 40 million $\lesssim p \lesssim 50$ million

$$\widehat{\beta}_{k} = (\Phi_{k}^{T} W_{k} \Phi_{k} + D_{k}^{T} D_{k})^{-1} \Phi_{k}^{T} W_{k} \widehat{\delta}_{F_{k}}$$
$$\widehat{\delta}_{F_{k}}^{L}(x) = \sum_{\ell,j} \widehat{\beta}_{\ell_{\ell,j}} \phi_{\ell_{\ell,j}}(x), \quad x \in \widetilde{A}_{k}$$
$$\widehat{\delta}_{F}^{L\parallel}(x) = \sum_{k=1}^{r} \mathbb{1}(x \in A_{k}) \cdot \widehat{\delta}_{F_{k}}^{L}(x)$$

The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium ○○○○ ○ ●○○○○○○○
Model validation	1	

• Let $\eta = (d, \alpha, \gamma_1, \dots, \gamma_d)$ be the vector of model hyperparameters

Modol validati	0000 00	
The Lyman- α forest	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

- Let $\eta = (d, \alpha, \gamma_1, \dots, \gamma_d)$ be the vector of model hyperparameters
- Construct an 85%/15% Train/Validation split on the set of background quasars

Model validation			
The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium $000000000000000000000000000000000000$	

- Let $\eta = (d, \alpha, \gamma_1, \dots, \gamma_d)$ be the vector of model hyperparameters
- Construct an 85%/15% Train/Validation split on the set of background quasars
- Estimate the large-scale density field along each validation sightline

Model validation				
		000000000000000000000000000000000000000		
	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium		

- Let $\eta = (d, \alpha, \gamma_1, \dots, \gamma_d)$ be the vector of model hyperparameters
- Construct an 85%/15% Train/Validation split on the set of background quasars
- Estimate the large-scale density field along each validation sightline

Kendall tau ranking distance:

 $L(\eta) = |\mathcal{D}_1| + |\mathcal{D}_2|$

$$\begin{split} \mathcal{D}_1 &= \{(i,j)_{i < j}: \ \rho(\widetilde{\delta}_{F_i}^{L\parallel}) < \rho(\widetilde{\delta}_{F_j}^{L\parallel}) \ \cap \ \rho(\widetilde{\delta}_{F_i}^{L}) > \rho(\widetilde{\delta}_{F_i}^{L}) \} \\ \mathcal{D}_2 &= \{(i,j)_{i < j}: \ \rho(\widetilde{\delta}_{F_i}^{L\parallel}) > \rho(\widetilde{\delta}_{F_i}^{L\parallel}) \ \cap \ \rho(\widetilde{\delta}_{F_i}^{L}) < \rho(\widetilde{\delta}_{F_i}^{L}) \} \end{split}$$
Model validat	ion	
		000000000000000000000000000000000000000
	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

- Let $\eta = (d, \alpha, \gamma_1, \dots, \gamma_d)$ be the vector of model hyperparameters
- Construct an 85%/15% Train/Validation split on the set of background quasars
- Estimate the large-scale density field along each validation sightline

 $L(\eta) = |\mathcal{D}_1| + |\mathcal{D}_2|$

$$\begin{split} \mathcal{D}_1 &= \{(i,j)_{i < j} : \ \rho(\widetilde{\delta}_{F_i}^{L\parallel}) < \rho(\widetilde{\delta}_{F_j}^{L\parallel}) \ \cap \ \rho(\widetilde{\delta}_{F_i}^{L}) > \rho(\widetilde{\delta}_{F_i}^{L}) \} \\ \mathcal{D}_2 &= \{(i,j)_{i < j} : \ \rho(\widetilde{\delta}_{F_i}^{L\parallel}) > \rho(\widetilde{\delta}_{F_i}^{L\parallel}) \ \cap \ \rho(\widetilde{\delta}_{F_i}^{L}) < \rho(\widetilde{\delta}_{F_i}^{L}) \} \end{split}$$

Model validati	ion	
The Lyman- α forest	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

- Let $\eta = (d, \alpha, \gamma_1, \dots, \gamma_d)$ be the vector of model hyperparameters
- Construct an 85%/15% Train/Validation split on the set of background quasars
- Estimate the large-scale density field along each validation sightline

$$L(\eta) = |\mathcal{D}_1| + |\mathcal{D}_2|$$

$$\begin{aligned} \mathcal{D}_1 &= \{(i,j)_{i < j} : \ \rho(\widehat{\delta}_{F_i}^{L\parallel}) < \rho(\widehat{\delta}_{F_j}^{L\parallel}) \cap \ \rho(\widetilde{\delta}_{F_i}^{L}) > \rho(\widetilde{\delta}_{F_i}^{L}) \\ \mathcal{D}_2 &= \{(i,j)_{i < j} : \ \rho(\widehat{\delta}_{E}^{L\parallel}) > \rho(\widehat{\delta}_{E}^{L\parallel}) \cap \ \rho(\widetilde{\delta}_{E}^{L}) < \rho(\widetilde{\delta}_{F_i}^{L}) \} \end{aligned}$$

Model validati	on	
The Lyman-α forest	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

- Let $\eta = (d, \alpha, \gamma_1, \dots, \gamma_d)$ be the vector of model hyperparameters
- Construct an 85%/15% Train/Validation split on the set of background quasars
- Estimate the large-scale density field along each validation sightline

$$\begin{aligned} \mathcal{D}_1 &= \{ (i,j)_{i < j} : \ \rho(\widehat{\delta}_{F_i}^{L\parallel}) < \rho(\widehat{\delta}_{F_j}^{L\parallel}) \ \cap \ \rho(\widetilde{\delta}_{F_i}^L) > \rho(\widetilde{\delta}_{F_j}^L) \} \\ \mathcal{D}_2 &= \{ (i,j)_{i < j} : \ \rho(\widehat{\delta}_{F_i}^{L\parallel}) > \rho(\widetilde{\delta}_{F_i}^L) \ \cap \ \rho(\widetilde{\delta}_{F_i}^L) < \rho(\widetilde{\delta}_{F_i}^L) \} \end{aligned}$$

 $L(\eta) = |\mathcal{D}_1| + |\mathcal{D}_2|$

 $\widehat{\eta} = \operatorname{argmin}_{\eta} L(\eta)$

Model validat	ion	
		000000000000
	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

- Let $\eta = (d, \alpha, \gamma_1, \dots, \gamma_d)$ be the vector of model hyperparameters
- Construct an 85%/15% Train/Validation split on the set of background quasars
- Estimate the large-scale density field along each validation sightline

$$\begin{split} L(\eta) &= |\mathcal{D}_1| + |\mathcal{D}_2| \\ \mathcal{D}_1 &= \{(i,j)_{i < j}: \ \rho(\widehat{\delta}_{F_i}^{L\parallel}) < \rho(\widehat{\delta}_{F_j}^{L\parallel}) \ \cap \ \rho(\widetilde{\delta}_{F_j}^{L}) > \rho(\widetilde{\delta}_{F_j}^{L}) \} \\ \mathcal{D}_2 &= \{(i,j)_{i < j}: \ \rho(\widehat{\delta}_{F_i}^{L\parallel}) > \rho(\widehat{\delta}_{F_i}^{L\parallel}) \ \cap \ \rho(\widetilde{\delta}_{F_j}^{L}) < \rho(\widetilde{\delta}_{F_j}^{L}) \} \end{split}$$

$$\widehat{\eta} = \operatorname{argmin}_{\eta} L(\eta)$$

Model validat	ion	
0000000	0000	00000000000
	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

- Let $\eta = (d, \alpha, \gamma_1, \dots, \gamma_d)$ be the vector of model hyperparameters
- Construct an 85%/15% Train/Validation split on the set of background quasars
- Estimate the large-scale density field along each validation sightline

One-dimensional mapping the intergalactic medium

Cross-sectional sky map of the intergalactic medium,

$$\widehat{\delta}_F^{L\parallel}(x) = \sum_{j=1}^3 \sum_{k=1}^{r_j} \mathbbm{1}(x \in A_{j,k}) \cdot \widehat{\delta}_F^{L,j,k}(x; \widehat{\eta}_j)$$

One-dimensional mapping the intergalactic medium

Cross-sectional sky map of the intergalactic medium

The Lyman-α forest 00000000 One-dimensional mapping the intergalactic medium

Slice of intergalactic medium at various redshifts

	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium
0000000	0000	0000000000000

Uncertainty quantification

Uncertainty o	uantification	
0000000	0000	000000000000000000000000000000000000000
	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

$$f_{q,b}^*(\lambda_{q_i}) \sim N(\widehat{f}_{q,0}(\lambda_{q_i}), \widehat{\sigma}_{q_i}^2), \quad i = 1, \dots, n, \quad q = 1, \dots, 159, 581$$

Uncertainty a	uantification	
The Lyman- α forest	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

$$f_{q,b}^{*}(\lambda_{q_{i}}) \sim N(\widehat{f}_{q,0}(\lambda_{q_{i}}), \widehat{\sigma}_{q_{i}}^{2}), \quad i = 1, \dots, n, \quad q = 1, \dots, 159, 581$$

• For each spectrum, fit the trend filtering estimate $\hat{f}^*_{q,b}$ for the flux signal and the LOESS estimate $\hat{m}^*_{q,b}$ for the mean flux level

Uncertainty d	uantification	
The Lyman-α forest	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

$$f_{q,b}^*(\lambda_{q_i}) \sim N(\widehat{f}_{q,0}(\lambda_{q_i}), \widehat{\sigma}_{q_i}^2), \quad i = 1, \dots, n, \quad q = 1, \dots, 159, 581$$

• For each spectrum, fit the trend filtering estimate $\hat{f}^*_{q,b}$ for the flux signal and the LOESS estimate $\hat{m}^*_{q,b}$ for the mean flux level

Optimize the flux contrast estimates:

$$\widehat{\delta}^*_{F,b}(z_{q_i}) = \frac{\widehat{f}^*_{q,b}(z_{q_i}) - \widehat{m}^*_{q,b}(z_{q_i})}{\widehat{m}^*_{q,b}(z_{q_i})}$$

Uncertainty d	uantification	
The Lyman-α forest	One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium

$$f_{q,b}^*(\lambda_{q_i}) \sim N(\widehat{f}_{q,0}(\lambda_{q_i}), \widehat{\sigma}_{q_i}^2), \quad i = 1, \dots, n, \quad q = 1, \dots, 159, 581$$

• For each spectrum, fit the trend filtering estimate $\hat{f}_{q,b}^*$ for the flux signal and the LOESS estimate $\hat{m}_{a,b}^*$ for the mean flux level

Optime the flux contrast estimates:

$$\widehat{\delta}^*_{F,b}(z_{q_i}) = \frac{\widehat{f}^*_{q,b}(z_{q_i}) - \widehat{m}^*_{q,b}(z_{q_i})}{\widehat{m}^*_{q,b}(z_{q_i})}$$

OOOOOOOO	One-dimensional mapping the intergalactic medium	I hree-dimensional mapping the intergalactic medium
Uncertainty q	uantification	

 \Longrightarrow Produce 50 bootstrap reconstructions of the full 47 $h^{-3}~{\rm Gpc^3}$ absorption field

Uncertainty qua	ntification	
The Lyman-α forest 00000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium

 \Longrightarrow Produce 50 bootstrap reconstructions of the full 47 $h^{-3}~{\rm Gpc^3}$ absorption field

 \implies Produce 50 bootstrap reconstructions of the full 47 h^{-3} Gpc³ absorption field

One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium
	000000000000000000000000000000000000000

Candidates for galaxy protoclusters and voids

The Lyman-α forest 00000000 One-dimensional mapping the intergalactic medium

Candidates for galaxy protoclusters and voids

Statistically significant overdensities:

$$G_n = \{\widehat{\delta}_F^L(x) : \widehat{\delta}_F^L(x) < -n \cdot \widehat{\operatorname{se}}(\widehat{\delta}_F^L(x))\}$$

The Lyman-α forest 00000000 One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

Candidates for galaxy protoclusters and voids

Statistically significant overdensities:

$$G_n = \{\widehat{\delta}_F^L(x) : \widehat{\delta}_F^L(x) < -n \cdot \widehat{\operatorname{se}}(\widehat{\delta}_F^L(x))\}$$

Statistically significant underdensities:

$$V_n = \{\widehat{\delta}_F^L(x) : \widehat{\delta}_F^L(x) > n \cdot \widehat{se}(\widehat{\delta}_F^L(x))\}$$

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

Candidates for galaxy protoclusters and voids

Statistically significant overdensities:

$$G_n = \{\widehat{\delta}_F^L(x) : \widehat{\delta}_F^L(x) < -n \cdot \widehat{\operatorname{se}}(\widehat{\delta}_F^L(x))\}$$

Statistically significant underdensities:

$$V_n = \{\widehat{\delta}_F^L(x) : \widehat{\delta}_F^L(x) > n \cdot \widehat{se}(\widehat{\delta}_F^L(x))\}$$

One-dimensional mapping the intergalactic medium

Candidates for galaxy protoclusters and voids

Statistically significant overdensities:

$$G_n = \{\widehat{\delta}_F^L(x) : \widehat{\delta}_F^L(x) < -n \cdot \widehat{\mathsf{se}}(\widehat{\delta}_F^L(x))\}$$

Statistically significant underdensities:

$$V_n = \{\widehat{\delta}_F^L(x) : \widehat{\delta}_F^L(x) > n \cdot \widehat{\operatorname{se}}(\widehat{\delta}_F^L(x))\}$$

One-dimensional mapping the intergalactic medium

Candidates for galaxy protoclusters and cosmic voids

z = 2.50

С	ensus	of	candidates	(rough	estimates	based	on	partial	catalog)
---	-------	----	------------	--------	-----------	-------	----	---------	---------	---

	Significance level					
	3σ	4σ	5σ	6σ	7σ	8σ
Galaxy Protoclusters	184,250	130,535	82,209	50,029	29,493	18,272
Cosmic Voids	173,882	127,098	82,016	54,507	34,948	22,266

The Lyman-α forest 0000000	One-dimensional mapping the intergalactic medium 0000	Three-dimensional mapping the intergalactic medium
Dissemination o	f data products (in progress)	

All data products will be disseminated at:

```
http://stat.cmu.edu/Lyman-alpha-cosmos-map/ (powered by PSC)
```


All data products will be disseminated at:

http://stat.cmu.edu/Lyman-alpha-cosmos-map/(powered by PSC)

SQL database (~30 TB) — 1 h⁻³ Mpc³ voxel resolution

All data products will be disseminated at:

http://stat.cmu.edu/Lyman-alpha-cosmos-map/(powered by PSC)

- SQL database (~30 TB) 1 h⁻³ Mpc³ voxel resolution
- Downloadable HEALPix sky maps $z = 1.98, 1.99, \ldots, 3.15$

Dissemination of data products (in progress)

All data products will be disseminated at:

http://stat.cmu.edu/Lyman-alpha-cosmos-map/(powered by PSC)

- SQL database (~30 TB) − 1 h⁻³ Mpc³ voxel resolution
- Downloadable HEALPix sky maps $z = 1.98, 1.99, \dots, 3.15$
- Downloadable catalog of candidates for galaxy protoclusters and cosmic voids

One-dimensional mapping the intergalactic medium	Three-dimensional mapping the intergalactic medium
	000000000000000

References

- C. A. Politsch, J. Cisewski-Kehe, R. A. C. Croft, L. Wasserman, Three-dimensional cosmography of the high redshift Universe using intergalactic absorption, In preparation (2020), Inquiry approved by Nature.
- C. A. Politsch, J. Cisewski-Kehe, R. A. C. Croft, L. Wasserman, Trend filtering I. A modern statistical tool for time-domain astronomy and astronomical spectroscopy, Monthly Notices of the Royal Astronomical Society, Volume 492, Issue 3 (2020), 4005-4018.
- C. A. Politsch, J. Cisewski-Kehe, R. A. C. Croft, L. Wasserman, Trend filtering II. Denoising astronomical signals with varying degrees of smoothness, Monthly Notices of the Royal Astronomical Society, Volume 492, Issue 3 (2020), 4019-4032.
- C. A. Politsch & R. A. C. Croft. Mapping the Large-Scale Universe through Intergalactic Silhouettes, CHANCE, Volume 32, Issue 3 (2019), 14-19.
- K. Dawson et al. The Baryon Oscillation Spectroscopic Survey of SDSS-III. The Astronomical Journal, Volume 145, Issue 1 (2013), 41 pp.
- S. Alam et al. The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III. The Astrophysical Journal Supplement Series, Volume 219, Issue 1 (2015), 27 pp.
- R. J. Tibshirani. Adaptive piecewise polynomial estimation via trend filtering. Annals of Statistics, Volume 42, Number 1 (2014), 285-323.
- R. J. Tibshirani & J. Taylor. The solution path of the generalized lasso. Annals of Statistics, Volume 39, Number 3 (2011), 1335-1371.
- A. Ramdas & R. J. Tibshirani. Fast and Flexible ADMM Algorithms for Trend Filtering. Journal of Computational and Graphical Statistics, Volume 25 (2014), 839-858.
- D. Nychka, S. Bandyopadhyay, D. Hammerling, F. Lindgren, S. Sain. A Multiresolution Gaussian Process Model for the Analysis of Large Spatial Datasets, Journal of Computational and Graphical Statistics, Volume 24, Number 2 (2015), 579-599.
- R. Cen & J. P. Ostriker. Where Are the Baryons? The Astrophysical Journal, Volume 514, Issue 1 (1999), 1-6.
- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. arXiv (2018).

One-dimensional mapping the intergalactic medium

Three-dimensional mapping the intergalactic medium

STAMPS@CMU & NSF AI Planning Institute: Physics for the Future

Overview of trend filtering

$$f(t_i) = f_0(t_i) + \epsilon_i$$
 $i = 1, \dots, n$

$$f_0(t) = \sum_j \beta_j h_j(t)$$

References: Tibshirani & Taylor (2011), Tibshirani (2014), Ramdas & Tibshirani (2015), Politsch et al. (2020a,b)

JSM 2020

ℓ_p -penalized linear models

	High-dimensional	$1D \text{ splines}^*$
	Subset selection	Variable-knot regression spline
p = 0	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(y_i - \sum_j \beta_j x_{ji} \right)^2$	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(f(t_i) - \sum_j \beta_j \eta_j(t_i) \right)^2$
	s.t. $\sum_{j=1}^{a} \mathbb{1}\{\beta_j \neq 0\} = s$	s.t. $\sum_{j \ge k+2} \mathbb{1}\{\beta_j \neq 0\} = s$
p = 1	$\begin{array}{l} \textbf{Lasso}\\ \min_{\{\beta_j\}} \sum_{i=1}^n \left(y_i - \sum_j \beta_j x_{ji}\right)^2\\ \text{s.t.} \sum_{j=1}^d \beta_j \leq \tau \end{array}$	
	Ridge regression	Smoothing spline
p=2	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(y_i - \sum_j \beta_j x_{ji} \right)^2$	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(f(t_i) - \sum_j \beta_j \eta_j(t_i) \right)^2$
	s.t. $\sum_{j=1}^d \beta_j^2 \leq \tau$	s.t. $\sum_{j,k=1}^{n} \beta_j \beta_k \omega_{jk} \le \tau$

Collin A. Politsch (CMU)

JSM 2020

ℓ_p -penalized linear models

	High-dimensional	1D splines [*]
	Subset selection	Variable-knot regression spline
p=0	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(y_i - \sum_j \beta_j x_{ji} \right)^2$	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(f(t_i) - \sum_j \beta_j \eta_j(t_i)\right)^2$
	s.t. $\sum_{j=1}^d \mathbb{1}\{\beta_j \neq 0\} = s$	s.t. $\sum_{j\geq k+2} \mathbb{1}\{\beta_j \neq 0\} = s$
	Lasso	Trend filtering
p = 1	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(y_i - \sum_j \beta_j x_{ji} \right)^2$	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(f(t_i) - \sum_j \beta_j h_j(t_i)\right)^2$
	s.t. $\sum_{j=1}^{a} \beta_j \leq \tau$	s.t. $\sum_{j \ge k+2} \beta_j \le \tau$
	Ridge regression	Smoothing spline
p=2	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(y_i - \sum_j \beta_j x_{ji}\right)^2$	$\min_{\{\beta_j\}} \sum_{i=1}^n \left(f(t_i) - \sum_j \beta_j \eta_j(t_i) \right)^2$
	s.t. $\sum_{j=1}^d \beta_j^2 \le \tau$	$\text{s.t.} \sum_{j,k=1}^n \beta_j \beta_k \omega_{jk} \leq \tau$

Collin A. Politsch (CMU)

JSM 2020