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Today’s questions

 What is the state of the field for SBI in
data analysis?

* What is the future of SBI and other Al
methods for designing and operating
science experiments?



All the stars are closer
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1st Stars
about 400 million yrs.

Big Bang Expansion

13.77 billion years




Path to the Modern Cosmological Paradigm

Galaxy Distribution
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DES Data

This is one of 72 CCDs in the DECam focal plane.



DES Footprint
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Total area: 5000 sqg. deg. (~1/8 of the full sky)




Evolution of Optical Survey Experiments

SDSS |-l
(2000-08)

100M Galaxies
10K sq. deg.
0.2 Terabyte/Night

DES

(2013-19)

100M Galaxies
bk sq. deg.
1 Terabyte/Night

LSST
(2025-35)

1000M Galaxies
20k sqg. deg.
20 Terabyte/Night
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“Energy tells space how to curve, and| &%
¥ispace tells energy how to move.”
4 —John Wheeler

DISTANT
GALAXY

LENSED IMAGES OF
DISTANT GALAXY

11 BILLION YEARS

OREGROUND
GALAXY

3 BILLION YEARS




Cosmology with Strong Lensing

o Lensed quasars and Large Universe, low H,, large time delay
supernovae R
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Milestones

°* 1979: Quasar °* 1986: arcs °* 1998: Einstein Ring * 2014: Supernova
Twin Quasar SBS Cluster Abell 370 Galaxy JVAS Cluster MACS
0957+561 B1938+666 J1149.6+2223
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® Walsh, Carswell, ® Lynds & Petrosian e King+1998 e Kelly+2014
Weyman 1979 1986;

Soucail+1987
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Too many to count: a paradigm shift

Survey

Lens type

Galaxy Quasar SNe

Today 1000

DES 2,000 120 5

LSST 120,000 8,000 120

Euclid 170,000 - -

Nord+2016; Collett+2015; Gavazzi+2008; Oguri+Marshall, 2010



Evolving Size and Complexity of Experiments & Data

Data Instruments Models
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Modern Simulation-based Inference

Approximate Bayesian Computation Approximate Bayesian Computation
with Monte Carlo sampling
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Simulation-based Inference:

« General characteristics of SBI

* Prediction of latent (physically meaningful) parameters.
- Amortization and training with simulations

- Expressive densities for comprehensive uncertainty quantification

- Family of SBI-like things

« Anything that provides an aspect of a density
— e.g., regression models with UQ, MC Dropout, Deep Ensembles.

- History of SBl-like things

« 1990’s: “Indirect Inference” — economics
« 2000’s: “Likelihood-free Inference” — physics and cosmology
« 2010’s: “Simulation-based Inference” — particle physics

« Advancements that came with or enabled modern SBI

« Neural density estimators
- Differentiability
- Simulation-based calibration (SBC)

Definition and Context



Assessing Models: We need pressure points

« Common Modern Methods

« Neural Posterior estimation (NPE)
« Neural Likelihood estimation (NLE)
« Neural Ratio Estimation (NRE)

« What’s next

18

- Extrapolation — e.g., for
prediction out of distribution

« Statistical guarantees —e.g.,
locally valid credible regions

 Hierarchical structure
- Comprehensive pressure points
« More expressive densities

Forward Modeling

Simulation-based

e.g. posterior SBC

Calibration (SBQC)
e.g., lalts et al, 2018

Statistical Guarantees

e.g., WALDO (Masserano+2023),
Hierarchical Conformal Regions
with Validity (Trivedi and Nord,
2025)



SBl and galaxy-galaxy 1enses on+202s, scap)
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SBl and galaxy spectra nuiari2022, mLsT)
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» Simultaneously estimate
posteriors of galaxy age,
metallicity, dust, star formation

- SBIl performs is as accurate as
MCMC, nearly as precise, but is
100,000x faster.

Gourav
Khullar



NRE for Population-Level Inference @arugula+2024)
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- Data: Einstein rings (future: arcs)
* Model: posterior is well-calibrated, but also bi-modal
« Next: two-parameter inference
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NPE with Domain Adaptation swierc+2024)
Examples Latent space

« Source Domain: noiseless
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- Target Domain: Noisy . . . . -
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Automating the Scientific Cycle

« Cost of manual science

* Instruments

« personnel and human time
- Next big experiments?

- Colliders

—
Design Observe

 Telescopes
« Fusion devices

Interpretability

- DOE Community Direction

- Al Town Hall: Automated \
Cosmic Experiment -

- Future Scientific HypOtheSIZe Analyze
Methodologies Workshop

- Self-driving facilities
« Al Community Direction

« MODE Collaboration
- Simulation Intelligence
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Imagine designing the next big experiment in 1/10th time.

Given the imminence of political and climate disruption, can
we afford to not level up our experiment design techniques?




Auto-Optics Modeling (cohen + Nord 2025, in prep.)

« Problem: optimize telescope optics — a discrete+continuous space

« Solution: Tree Search + Simulation-based Inference

« Produces sets of optics configurations with probabilities.
- Competitive with existing algorithms, but also explainable

 Also works for symbolic regression.

| Benjamin
Cohen

Optimization Loop Resulting Optics Tree

“Parameters”
0 — —




DES Observing

26/ 67



Self-Driving Telescopes

- Problem: competing
metrics of success for
different cosmic probes;
time is a limited resource. ,

-

« Supervised Solution: R - S

Reinforcement Learning — £
(Voetberg, Zhou, Neilsen+ 2022, \

in prep.) S

- Unsupervised Solution

Graph Neural Networks
(Cranmer, Melchior, Nord, 2022,

in prep.)
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Unsupervised Resource Allocation with GraphNets
Cranmer, Melchior, Nord, 2021

Ground Truth

Initial Observation
e e - Traditional sampling
(e.g., red galaxies)

. , ~ Inference
QP GNN

Learned

Sampling 7 _ o — @

VL



 Start with galaxy data, simulate
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Digital Twins: End-to-

SPOKeS:
Spectroscopic Ken Simulation
(Nord+2016)

every aspect of survey and
compute cosmological
constraints

10

Estimate
Cosmology
Parameters

Calculate
Selection
Function

8
Bin
Redshift

—nd Simulations of

Report
Results

\

All

\\ :

e

G N, T U

Q_G‘N—b

Measure
Redshift

Convert

Select
Targets

All

Data Bank

/

AGU /

/ ELGTU

g

A J S
5 Simulate
Spectrum
Generate
Spectrum
Noise
eI e

=Xperiments

Tile
Survey \

e— - I, (| S—

3

Allocate
Fibers

4

Calculate
Throughput




Automating the Scientific Cycle
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SBI in data analysis is well-
tested but there remain
outstanding issues:

- Extrapolation — e.g., for prediction
out of distribution

- Statistical guarantees —e.qg.,
locally valid credible regions

 Hierarchical structures

« Comprehensive pressure points
« More expressive densities

- Benchmarks

It behooves the community to
align on our jargon and methods
for model assessment.

Applying SBI to other elements
of the scientific cycle is on the
horizon.

—

Design Observe

Interpretability

\

Hypothesize

Analyze
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Childhood

Pre-defined gender stereotypes affect people for a
long time.

ARSI




Experiment containing four studies :
N =400 children

* Mostly middle class backgrounds and
75% White

e Children are read a story about brilliant
people (without identifying gender).
Then, they are asked to select what they
think is the brilliant protagonists gender.

 Ask children at each age, 5, 6, 7

Results:

‘By age 6, girls were prepared to lump more
boys into the ‘really, really smart’ category
and to steer themselves away from games
intended for the ‘really, really smart.”

This is a good example of internalized bias
Additional experiments and studies:

 Farenga & Joyce 1999; Ambady+2001;
Lavy & Sand, 2015; Buck+2008;
Nguyen & Ryan 2008

Childhood: Bias emerges early

A C
0.8+ :
T l + I " )
Own- 0.6 1 - - -
Gender
Brilliance
Score 0.4 1
0.2 1
0 .
1 -
B D
0.8 A
T F + i
T
Own- 0.6 1 T/*\f X
Gender i B T
Niceness T 1 1 L
Score 0.4 1 i 1
0.2 A1
0 . , - .
o 6 7 5 6 7
Age (yrs) Age (yrs)

Bian+2017 (Science)



Education: test-taking and stereotype threat

Score (Corrected for Guessing)

Stereotype
threat

B Women
B Men

No stereotype
threat

visualization of data from Spencer+1999 (by J. Schmelz)

Study of ~60 people, about half
men/women

Split into two groups, and each
given a different test

* Jest 1: discusses potential
gender disparities in math tests
like this one.

e Jest 2: does not

The threat of playing to one’s
stereotype impedes performance.

Stereotype threat discovered in
studies of Black students (Katz,
Roberts, & Robinson, 1965)



Fducation: GRE’s Miller & Stassun, 2014

THE GREAT DIVIDE

The data represent the scores typically achieved in the quantitative reasoning test of the graduate record
examinations (GRE) by US students from different ethnic groups applying for graduate school. In the physical
sciences, a minimum score of 700 is required by many PhD programmes.

® Physical sciences
400 - BN GiNEEIING o e eeeeneieeee et e
Life sciences
—75th percentile
I—50th percentile
—-25th percentile
- Minimum score for acceptance

to many graduate programmes G R E SCOI’e |S CO frelated

200 = . ; |

Asan  white  other  Mexi \W|th gender and ethnicity.

American Hispanic Amern

GRE quantitative score




Education: GRE’s

There’s a strong correlation between status as a URM and ‘success’ on the GRE.

But, there is a very weak correlation between ‘success’ on the GRE and
'success’ in science research and academia.

Large fractions of prize fellows would be eliminated with strict PGRE percentile
thresholds in admission. (Levesque, Bezanson, Tremblay, 2015)

70 | | | | | | | Il Il | | |
‘é’ Bl All Fellows g 0.6 HIEEM All Fellows —_—
o 00 HE=@ Male 4 © 1 Male
E) [ Female E 0.5 HE=3 Female _
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3 2 o4l -1l
c 40 12 ]
£ _ | E 03} ne
o 301 1 I _
kS _ © i Il 1
= 20} 8 R 0.2 _
O 0
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O 10 20 30 40 50 60 O 10 20 30 40 50 60
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Applications: what's in a name”?

e 127 faculty at = Male Student
research-intensive
INstitutions

Female Student

5

* applications randomly
assigned gender

.l
* all differences in .- . |
rating are statistically | L
significant y !
* similar studies have ol
been done for race, | .|
but can be difficult to - l \

1

ContrC)l fOr SOC|O- Competence Hireability Mentoring

4.5

—

economic status. Moss-Racusin+2012



Bias in citations  Caplar, Tacchella, & Birrer 2016

1_5; Random forest algorithm learns
to predict citations based on
non-gender properties.

IR O ?
1.0 - - = - . Tt ‘T} ﬁ ﬁ-}-ﬁﬁ- -}H-{'}ﬁﬁ%ﬂiﬁ ;;{5;

measured/predicted number of citations

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Sample of 200,000 astro papers demonstrates bias in
citations.




Work Environments

e Sexual harassment and assault are real and
prevalent in academic and research
environments.

e Geoff Marcy, UC Berkeley
Serial harassment for > 10 years; was not
fired, resigned of own volition

,/‘...'
:
- /‘

e Christian Ott, Caltech eoff Marc
Fell in love with student and then fired her . Y
discussed the issue with other student.

e Timothy Slayter, Wyoming/Arizona:
“She would teach better if she did not wear
underwear.”

e Many instances at other universities, other
fields:
e.g., U. Chicago, AMNH, Anthropology,
Biology, Philosophy




Personal Experiences

» | experience racism and the other side of privilege at \
~ 1/week

e Examples:

* “Do you know the story of Sambo?”
~70-year-old White senior scientist discussing how
collaborate.

the POP-uP'’
LITTLE BLACK

80

withH “DOP-UP” PicTURE

e “You are safe here. You shouldn’t worry.”

~50-year-old White senior scientist at work (gaslighting).

e "You're not Black enough.”
~90-year-old White woman at a political event.

e | guess you know about the mean streets.”

~25-year-old junior scientists from outside U.S. at a science meeting.

 "And you're mulatto, ya know!”

~35-year-old White woman at a pub in my city of residence.




We are our Institutions

* History sets the context.
e \We make decisions now.

 We set up the future.



