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Today’s questions
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• What is the state of the field for SBI in 
data analysis? 

• What is the future of SBI and other AI 
methods for designing and operating 
science experiments?
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All the stars are closer 
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Dark Matter



Path to the Modern Cosmological Paradigm

5

Structure 
Growth

+
Expansion

+
Geometry

Supernovae

Galaxy Distribution

CMB



6

Dark Energy Survey (DES)



7 Reidar Hahn

Dark Energy Camera (DECam)
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DES Data

This is one of 72 CCDs in the DECam focal plane.



9
• Total area: 5000 sq. deg. (~1/8 of the full sky)

DES Footprint
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DES 
(2013-19) 

100M Galaxies 
5k sq. deg. 

1 Terabyte/Night

LSST 
(2025-35) 

1000M Galaxies 
20k sq. deg. 

20 Terabyte/Night

SDSS I-II 
(2000-08) 

100M Galaxies 
10k sq. deg. 

0.2 Terabyte/Night

Evolution of Optical Survey Experiments



Basics of Gravitational Lensing 
Thin lens approximation
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“Energy tells space how to curve, and 
space tells energy how to move.” 

—John Wheeler



Cosmology with Strong Lensing

12 • The time delay between different light paths is proportional to the H0   

• Lensed quasars and 
supernovae


• The time delay between 
different light paths is 
proportional to the H0 

• Double-source plane 
systems


• Ratio of distance ratios 
constraints dark energy

• Cluster and galaxy profiles

• Profile slopes indicate 

amount and type of dark 
matter



Milestones

• 1979: Quasar 
Twin Quasar SBS 
0957+561 

• 1986: arcs 
Cluster Abell 370  

• 1998: Einstein Ring  
Galaxy JVAS 
B1938+666  

• 2014: Supernova  
Cluster MACS 
J1149.6+2223  

• Walsh, Carswell, 
Weyman 1979 

• Lynds & Petrosian 
1986; 
Soucail+1987 

• King+1998 • Kelly+2014



Too many to count: a paradigm shift
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Galaxy Quasar SNe

Today 1000 <50 ~2

DES 2,000 120 5

LSST 120,000 8,000 120

Euclid 170,000 - -

Nord+2016; Collett+2015; Gavazzi+2008; Oguri+Marshall, 2010

Lens type
Su

rv
ey



Evolving Size and Complexity of Experiments & Data
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Data Instruments Models



Modern Simulation-based Inference
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• Cranmer, Brehmer, Louppe, 2020



Simulation-based Inference: Definition and Context
• General characteristics of SBI 


• Prediction of latent (physically meaningful) parameters.

• Amortization and training with simulations

• Expressive densities for comprehensive uncertainty quantification


• Family of SBI-like things

• Anything that provides an aspect of a density  

— e.g., regression models with UQ, MC Dropout, Deep Ensembles.


• History of SBI-like things

• 1990’s: “Indirect Inference” — economics

• 2000’s: “Likelihood-free Inference” — physics and cosmology 

• 2010’s: “Simulation-based Inference” — particle physics


• Advancements that came with or enabled modern SBI

• Neural density estimators

• Differentiability

• Simulation-based calibration (SBC)
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Assessing Models: We need pressure points

18

Model

Simulation-based 
Calibration (SBC) 
e.g., Talts et al, 2018


Forward Modeling 
e.g. posterior SBC

Statistical Guarantees  
e.g., WALDO (Masserano+2023), 
Hierarchical Conformal Regions 
with Validity (Trivedi and Nord, 
2025)

• Common Modern Methods

• Neural Posterior estimation (NPE)

• Neural Likelihood estimation (NLE)

• Neural Ratio Estimation (NRE) 

• What’s next

• Extrapolation — e.g., for 

prediction out of distribution

• Statistical guarantees —e.g., 

locally valid credible regions

• Hierarchical structure

• Comprehensive pressure points

• More expressive densities



SBI and galaxy-galaxy lenses (Poh+2025, JCAP)

• Simultaneously estimate 
posteriors of multiple 
parameters —  radius, 
magnification, profile, source 
ellipticity.


• SBI is more accurate, 
precise, and stable than 
BNNs


• SBI/BNN both orders of 
magnitude faster than 
traditional MCMC methods.


• Need comprehensive 
assessments to ensure model 
fidelity.

19

BNN
SBI



SBI and galaxy spectra (Khullar+2022, MLST)

• Simultaneously estimate 
posteriors  of galaxy age, 
metallicity, dust, star formation


• SBI performs is as accurate as 
MCMC, nearly as precise, but is 
100,000x faster.
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NRE for Population-Level Inference (Jarugula+2024)

• Data: Einstein rings (future: arcs)

• Model: posterior is well-calibrated, but also bi-modal

• Next: two-parameter inference

21



NPE with Domain Adaptation (Swierc+2024)

• Source Domain: noiseless 
images


• Target Domain: Noisy 
images


• Without DA: 

• Latent spaces are 

disjoint

• Model is overconfident 

on target data

• Model is inaccurate


• With DA:

• Latent spaces overlap

• Model is calibrated and 

accurate

22

Latent spaceExamples

CoveragePosteriors
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Hypothesize 

Observe 

Analyze 

Design

• Cost of manual science

• instruments 

• personnel and human time


• Next big experiments?

• Colliders

• Telescopes

• Fusion devices


• DOE Community Direction

• AI Town Hall: Automated 

Cosmic Experiment

• Future Scientific 

Methodologies Workshop

• Self-driving facilities


• AI Community Direction

• MODE Collaboration

• Simulation Intelligence

Scientific CycleAutomating the 

Interpretability
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• Cost of manual science

• instruments 

• personnel

• human time


• Next big experiments?

• Colliders

• Telescopes

• Fusion devices


• DOE Community Direction

• AI Town Hall: Automated 

Cosmic Experiment

• Future Scientific 

Methodologies Workshop

Scientific CycleAutomating the 

Simulate  
Theory

Hypothesize  
Physics

Observe  
Sky

Analyze  
Data

Design
Instrument

Interpretability

Imagine designing the next big experiment in 1/10th time. 

Given the imminence of political and climate disruption, can 
we afford to not level up our experiment design techniques?



Auto-Optics Modeling (Cohen + Nord 2025, in prep.)

• Problem: optimize telescope optics — a discrete+continuous space

• Solution: Tree Search + Simulation-based Inference 

• Produces sets of optics configurations with probabilities.

• Competitive with existing algorithms, but also explainable

• Also works for symbolic regression.
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Benjamin 
Cohen

Optimization Loop Resulting Optics Tree



/ 67

DES Observing
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Self-Driving Telescopes

• Problem: competing 
metrics of success for 
different cosmic probes; 
time is a limited resource. 

• Supervised Solution: 
Reinforcement Learning 
(Voetberg, Zhou, Neilsen+ 2022,  
in prep.)  

• Unsupervised Solution 
Graph Neural Networks  
(Cranmer, Melchior, Nord, 2022,  
in prep.)



Unsupervised Resource Allocation with GraphNets
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Cranmer, Melchior, Nord, 2021



Digital Twins: End-to-End Simulations of Experiments
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• SPOKeS:  
Spectroscopic Ken Simulation 
(Nord+2016)


• Start with galaxy data, simulate 
every aspect of survey and 
compute cosmological 
constraints
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Hypothesize 

Observe 

Analyze 

Design

• SBI in data analysis is well-
tested but there remain 
outstanding issues:

• Extrapolation — e.g., for prediction 

out of distribution

• Statistical guarantees —e.g., 

locally valid credible regions

• Hierarchical structures

• Comprehensive pressure points

• More expressive densities

• Benchmarks


• It behooves the community to 
align on our jargon and methods 
for model assessment. 

• Applying SBI to other elements 
of the scientific cycle is on the 
horizon.

Scientific CycleAutomating the 

Interpretability



Extras
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Childhood

• Pre-defined gender stereotypes affect people for a 
long time.



Childhood: Bias emerges early
• Experiment containing four studies : 

• N = 400 children 

• Mostly middle class backgrounds and 
75% White 

• Children are read a story about brilliant 
people (without identifying gender). 
Then, they are asked to select what they 
think is the brilliant protagonists gender.  

• Ask children at each age, 5, 6, 7 

• Results: 
“By age 6, girls were prepared to lump more 
boys into the ‘really, really smart’ category 
and to steer themselves away from games 
intended for the ‘really, really smart.’” 

• This is a good example of internalized bias 

• Additional experiments and studies: 

• Farenga & Joyce 1999; Ambady+2001; 
Lavy & Sand, 2015; Buck+2008; 
Nguyen & Ryan 2008 Bian+2017 (Science)



Education: test-taking and stereotype threat

• Study of ~60 people, about half 
men/women 

• Split into two groups, and each 
given a different test 
• Test 1: discusses potential 

gender disparities in math tests 
like this one. 

• Test 2: does not 
• The threat of playing to one’s 

stereotype impedes performance. 
• Stereotype threat discovered in 

studies of Black students (Katz, 
Roberts, & Robinson, 1965) 

visualization of data from Spencer+1999 (by J. Schmelz)



Education: GRE’s Miller & Stassun, 2014

GRE score is correlated 
with gender and ethnicity.



Education: GRE’s
• There’s a strong correlation between status as a URM and ‘success’ on the GRE. 

• But, there is a very weak correlation between ‘success’ on the GRE and 
‘success’ in science research and academia. 

• Large fractions of prize fellows would be eliminated with strict PGRE percentile 
thresholds in admission. (Levesque, Bezanson, Tremblay, 2015)



Applications: what’s in a name?
• 127 faculty at 

research-intensive 
institutions 

• applications randomly 
assigned gender 

• all differences in 
rating are statistically 
significant 

• similar studies have 
been done for race, 
but can be difficult to 
control for socio-
economic status. Moss-Racusin+2012



Bias in citations Caplar, Tacchella, & Birrer 2016

Random forest algorithm learns 
to predict citations based on 
non-gender properties. 

Sample of 200,000 astro papers demonstrates bias in 
citations.



Work Environments
• Sexual harassment and assault are real and 

prevalent in academic and research 
environments. 

• Geoff Marcy, UC Berkeley 
Serial harassment for > 10 years; was not 
fired, resigned of own volition 

• Christian Ott, Caltech 
Fell in love with student and then fired her, 
discussed the issue with other student. 

• Timothy Slayter, Wyoming/Arizona:  
“She would teach better if she did not wear 
underwear.” 

• Many instances at other universities, other 
fields: 
e.g., U. Chicago, AMNH, Anthropology, 
Biology, Philosophy

Timothy Slayter

Geoff Marcy



Personal Experiences
• I experience racism and the other side of privilege at work or in public  

~ 1/week 
• Examples: 

• “Do you know the story of Sambo?” 
~70-year-old White senior scientist discussing how scientists 
collaborate. 

• “You are safe here. You shouldn’t worry.” 
~50-year-old White senior scientist at work (gaslighting). 

• “You’re not Black enough.” 
~90-year-old White woman at a political event. 

• “I guess you know about the mean streets.” 
~25-year-old junior scientists from outside U.S. at a science meeting. 

• “And you’re mulatto, ya know!” 
~35-year-old White woman at a pub in my city of residence.



We are our institutions

• History sets the context. 
• We make decisions now. 
• We set up the future.


