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How did we get here?
Big Data and Machine Learning



Early beginnings

450 sc Hippias of Elis
uses the average value
of the length of a king's
reign (the mean) to work
out the date of the first
Olympic Games, some 300
years before his time.

500

Photo: Matthias Kabel

400 sc In the Indian epic the Mahabharata, King Rtuparna estimates the
number of fruit and leaves (2095 fruit and 50000000 leaves) on two great
branches of a vibhitaka tree by counting the number on a single twig, then

multiplying by the number of twigs. The estimate is found to be very close to
the actual number. This is the first recorded example of sampling - “but this
knowledge is kept secret”, says the account.

400

300

431 sc Attackers besieging Plataea in the Peloponnesian
war calculate the height of the wall by counting the
number of bricks. The count was repeated several times
by different soldiers. The most frequent value (the mode)
was taken to be the most likely. Multiplying it by the
height of one brick allowed them to calculate the length
of the ladders needed to scale the walls.

Mathematical foundations

1560 Gerolamo Cardano
calculates probabilities
of different dice throws

for gamblers.

1560

1580
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1600

1570 Astronomer Tycho
Brahe uses the arithmetic
mean to reduce errors in his
estimates of the locations of
stars and planets.

200

ap 7 Census by Quirinus, governor of the
Roman province of Judea, is mentioned in
Luke's Gospel as causing Joseph and Mary to
travel to Bethlehem to be taxed.

(1)

people in 12.36 million

ap 2 Chinese census under the
Han dynasty finds 57.67 million

Roman Gudyma,/iStock Thinkstock

®

10th century The earliest known graph, in a commentary on a
book by Cicero, shows the movements of the planets through the
zodiac. It is apparently intended for use in monastery schools.

1000

800 900

840 Islamic mathematician Al-Kindi uses
fre y analysis - the most common
in a coded

hol

ge will stand

Timeline of statistics

1303 A Chinese diagram entitled “The Old
Method Chart of the Seven Multiplying

Squares” shows the binomial coefficients
up to the eighth power - the numbers that
are fundamental to the mathematics of
probability, and that appeared five hundred
years later in the west as Pascal’s triangle.

1188 Gerald of
Wales completed
the first population
census of Wales.

1346 Giovanni Villani’s Nuova
Cronica gives statistical
information on the population
and trade of Florence.

iStock Thinkstock

1620

households - the first census

from which data survives, and

still considered by scholars to
have been accurate.

1654 Pascal and

Fermat correspond

for the most common letters - to break
secret codes. Al-Kindi also introduces
Arabic numerals to Europe.

1791 First use of the word
“statistics” in English, by Sir
John Sinclair in his Statistical

Account of Scotland.

about dividing stakes
in gambling games

and together create
the mathematical

theory of probability.

1640

100 200 300 400 500 600 700
1761 The Rev. Thomas
Bayes proves Bayes’
theorem - the cornerstone
of conditional probability
and the testing of beliefs
and hypotheses.
H
£ 1713 Jacob Bernoulli’s Ars 1789 Gilbert White and other
1663 John Graunt % conjectandi derives the law of 1749 Gottfried Achenwall clergymen-naturalists keep
uses parish records 2 large numbers - the more often coins the word “statistics” (in records of temperatures, dates
to estimate the § you repeat an experiment, German, Statistik); he means of first snowdrops and cuckoos,
population of E the more accurately you can the information you need to etc; the data is later useful for
London. = predict the result. run a nation state. study of climate change.
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1069 Domesday Book: survey 1150 Trial of the Pyx, an annual test of the purity =
for William the Conqueror of of coins from the Royal Mint, begins. Coins are é i
farms, villages and livestock in drawn at random, in fixed proportions to the number 58
his new kingdom - the start of minted. It continues to this day. §§
official statistics in England. <F

1835 Belgian Adolphe Quetelet's
Treatise on Man introduces social
science statistics and the concept of
the “average man” - his height, body
mass index, and earnings.

1854 John Snow’s “cholera map”
pins down the source of an outbreak
as a water pump in Broad Street,

London, beginning the modern
study of epidemics.

1886 Philanthropist Charles Booth begins
his survey of the London poor, to produce his
“poverty map of London”. Areas were coloured
black, for the poorest, through to yellow for

the upper-middle class and wealthy.

1808 Gauss, with
contributions from Laplace,
derives the normal distribution
- the bell-shaped curve
fundamental to the study of

1840 William Farr sets up the

official system for recording
causes of death in England and
Wales. This allows epidemics to be
tracked and diseases compared -

variation and error.

1644 Michael van Langren
draws the first known graph
of statistical data that
shows the size of possible
errors. It is of different
estimates of the distance
between Toledo and Rome.

1657 Huygens's
0On Reasoning in
Games of Chance is
the first book on
probability theory.
He also invented the
pendulum clock.

1693 Edmund Halley prepares the

first mortality tables statistically

relating death rates to age - the
foundation of life insurance. He also
drew a stylised map of the path of a
solar eclipse over England - one of

the first data visualisation maps.

1728 Voltaire and his mathematician
friend de la Condamine spot that a
Paris bond lottery is offering more in
prize money than the total cost of
the tickets; they corner the market
and win themselves a fortune.

1757 Casanova becomes a
trustee of, and may have
had a hand in devising,

the French national lottery.

1800

the start of medical statistics.

1868 Minard's graphic
diagram of Napoleon’s March
on Moscow shows on one

diagram the distance covered,
the number of men still alive
at each kilometre of the
march, and the temperatures
they encountered on the way.

1898 Von Bortkiewicz's data on deaths
of soldiers in the Prussian army from
horse kicks shows that apparently rare
events follow a predictable pattern,
the Poisson distribution.

1900 Louis Bachelier
shows that fluctuations in
stock market prices behave

in the same way as the
random Brownian motion
of molecules - the start of

financial mathematics.

1900

Modern era
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1916 During the First World War
car designer Frederick Lanchester
develops statistical laws to predict
the outcomes of aerial battles: if
you double their size land armies
are only twice as strong, but air
forces are four times as powerful.

1924 Walter
Shewhart invents
the control chart
to aid industrial

production and
management

1912

1916

1908 William Sealy Gossett, chief
brewer for Guinness in Dublin,
describes the t-test. It uses a small
number of samples to ensure that
every brew tastes equally good.

1911 Herman Hollerith,
inventor of punch-card
devices used to analyse
data in US censuses,
merges his company to
form what will become
IBM, pioneers of machines
to handle business data
and of early computers.

1920

1924

1935 R. A. Fisher
revolutionises modern
statistics. His Design of
Experiments gives ways of
deciding which results of
scientific experiments are
significant and which are not.

1940-45 Alan Turing at Bletchley Park cracks
the German wartime Enigma code, using
advanced Bayesian statistics and Colossus, the
first programmable electronic computer.

1946 Cox's theorem
derives the axioms of
probability from simple
logical assumptions.

1860

1880

1900 1920

1859 Florence Nightingale uses statistics of
Crimean War casualties to influence public
opinion and the War Office. She shows casualties
month by month on a circular chart she devises,
the “Nightingale rose”, forerunner of the pie
chart. She is the first woman member of the

1894 Karl Pearson introduces the term
“standard deviation”. If errors are normally
distributed, 68% of samples will lie within

one standard deviation of the mean. Later he
develops chi-squared tests for whether two
variables are independent of each other.

02 03 04

00 0.1

Royal Statistical Society and the first overseas

. . .
. .
. .
H 1790 First US census, taken 1805 Adrien-Marie H 1839: The American Statistical
E by men on horseback directed Legendre introduces the 5 Association is formed. Alexander
H by Thomas Jefferson, counts method of least squares : Graham Bell, Andrew Carnegie
H 3.9 million Americans. for fitting a curve to a H and President Martin Van Buren
H given set of observations. H will become members.
:
1786 William
Playfair introduces 1833 The British Association for the
graphs and bar Advancement of Science sets up a
charts to show statistics section. Thomas Malthus,
economic data. who analysed population growth, and

Charles Babbage are members. It later
becomes the Royal Statistical Society.

1928

1932 1936 1940

1935 George Zipf finds that many
phenomena - river lengths, city
populations - obey a power law so
that the largest is twice the size of
the second largest, three times the
size of the third, and so on.

1937 Jerzy Neyman introduces
confidence intervals in statistical

modern scientific sampling.

1944

1948-53 The Kinsey Report 1950s Genichi Taguchi’s statistical §
gathers objective data on human methods to improve the quality of 3 =
sexual behaviour. A large-scale automobile and electronics components %J
survey of 5000 men and, later, revolutionise Japanese industry, which £3
5000 women, it causes outrage. far overtakes western European rivals. iz
esse 9 b E
.
. .
1948 1952 1956 1960 1964 1968
. .

testing. His work leads to

Bundesarchiv,

1944 The German tank problem: the
Allies desperately need to know how many
Panther tanks they will face in France on
D-Day. Statistical analysis of the serial
numbers on gearboxes from captured
tanks indicates how many of each are
being produced. Statisticians predict 270
a month; reports from intelligence sources
predict many fewer. The total turned out to
be 276. Statistics had outperformed spies.

1948 Claude Shannon
introduces information theory
and the “bit” - fundamental
to the digital age.

1849 Charles Babbage
designs his “difference
engine”, embodying
the ideas of data
handling and the modern
computer. Ada Lovelace,
Lord Byron’s niece,
writes the world's first
computer program for it.

member of the American Statistical Association.

1877 Francis Galton, Darwin’s cousin,
describes regression to the mean. In
1888 he introduces the concept of
correlation. At a “Guess the weight of
an 0x” contest in Devon he describes
the “Wisdom of Crowds” - that the

average of many uninformed guesses
is close to the correct value.

1979 Bradley Efron introduces
bootstrapping, a simple way to estimate the
distribution of almost any sample of data.

1972

1976 1980 1984 1988

1992

1700

ROYAL
STATISTICAL
SOCIETY

ASA

AMERICAN STATISTICAL
ASSOCIATION

1800 1900 2000

Statistics is about gathering data and working out what the numbers can
tell us. From the earliest farmer estimating whether he had enough grain
to last the winter to the scientists of the Large Hadron Collider confirming
the probable existence of new particles, people have always been making

inferences from data. Statistical tools like the mean or average summarise
data, and standard deviations measure how much variation there is within a
set of numbers. Frequency distributions - the patterns within the numbers
or the shapes they make when drawn on a graph - can help predict future
events. Knowing how sure or how uncertain your estimates are is a key part

of statistics.

Today vast amounts of digital data are transforming the world and the
way we live in it. Statistical methods and theories are used everywhere, from
health, science and business to managing traffic and studying sustainability
and climate change. No sensible decision is made without analysing the data.
The way we handle that data and draw conclusions from it uses methods

whose origins and progress are charted here.
Julian Champkin
Significance magazine

1950 Richard Doll
and Bradford Hill
establish the link
between cigarette

1958 The Kaplan-Meier
estimator gives doctors a simple
statistical way of judging which

treatments work best. It has

saved millions of lives.

king and lung

Les Cunliffe/iStock/

Thinkstock

cancer. Despite
fierce opposition the
result is conclusively

proved, to huge
public health benefit.

@

1972 David Cox’s
proportional hazard
model and the concept
of partial likelihood.

1982 Edward Tufte
self-publishes The Visual
Display of Quantitative
Information, setting new

1993 The statistical
programming language
“R" is released, now a

standard statistical tool.

1977 John Tukey
introduces the box-plot or
box-and-whisker diagram,
which shows the quartiles,

1988 Margaret Thatcher

becomes the first world

leader to call for action
on climate change.
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2002 Paul DePodesta uses ; U
statistics - “sabermetrics”
- to transform the fortunes 2012 Nate Silver, statistician,
1997 The term of the Oakland Athletics successfully predicts the result in
“Big Data” first baseball team; the film all 50 states in the US Presidential
appears in print. Moneyball tells the story. election. He becomes a media star.
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2002 The amount of 2004 Launch 2008 Hal Varian, chief 2012 The Large Hadron Collider
information stored of Significance economist at Google, confirms existence of a Higgs
digitally surpasses magazine. says that statistics will boson-like particle with

non-digital. be “the sexy profession probability of five standard

and spread of
data in a single image.

standards for graphic
visualisation of data. Y

2
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deviations - around one chance
in 3.5 million that all they are
seeing is coincidence.

of the next ten years”.
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- to transtorm the tortunes

of the Oakland Athletics
baseball team; the film
Moneyball tells the story.

2U1Z2 Nate Silver, statistician,

successfully predicts the result in
all 50 states in the US Presidential
election. He becomes a media star.

2000 2004 2008 2012
El Q b ' ¢

f 2004 Launch
of Significance
magazine.

2008 Hal Varian, chief
economist at Google,
says that statistics will

be “the sexy profession
of the next ten years”,

Origins of “
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. | 2012 The Large Hadron Collider
: confirms existence of a Higgs
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2001

Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data models. This commit-
ment has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current prob-
lems. Algorithmic modeling, both in theory and practice, has developed
rapidly in fields outside statistics. It can be used both on large complex
data sets and as a more accurate and informative alternative to data
modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.



Quotes from Breiman 2001
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Quotes from Breiman 2001

True data generating process .'f ' Classical statistical modeling |

Y-Axis

linear regression
y € nature «—X Y4— Jogistic regression [ X
Cox model
TR 1 "Assume data are
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et A 1 generated by the
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St T following model...

X-Axis

"This enterprise has at its
heart the belief that a
statistician,

oy imagination and by
looking at the data, can
invent a reasonapbly good
parametric class of models for
a complex mechanism
devised by nature.”
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"This enterprise has at its
heart the belief that a
statistician physicist,

oy imagination and by
looking at the data, can
invent a reasonapbly good
parametric class of models for
a complex mechanism
devised by nature.”
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All models are wrong, but some are are useful.

-GEORGE BOX, UW-MADISON
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Quotes from Breiman 2001

True data generating process || Classical statistical modeling ||

Y-Axis

linear regression
y € nature «—X Y4— Jogistic regression [ X
Cox model
RN 1 “"Assume data are
°® o o ¢ o g 4‘
et A 1 generated by the
.0 ..°: * {1 . I
St T following model...
X-AXxis

Machine Learning
(Supervised)

unknown < X

y <

decision trees
neural nets

"Model-Free”
Black box
Non-parametric
Curve fitting

+ cross validation ‘



Quotes from Breiman 2001

7.1 A New Research Community

In the mid-1980s two powerful new algorithms
for fitting data became available: neural nets and
decision trees. A new research community using
these tools sprang up. Their goal was predictive
accuracy. The community consisted of young com-
puter scientists, physicists and engineers plus a few
aging statisticians. They began using the new tools
in working on complex prediction problems where it
was obvious that data models were not apphcable
speech recognition, image recognition, nonlinear
time series prediction, handwriting recognition,
pred1ct1on in ﬁnan01al markets




Quotes from Breiman 2001

Their interests range over many fields that were
once considered happy hunting grounds for statisti-
cians and have turned out thousands of interesting
research papers related to applications and method-
ology. A large majority of the papers analyze real
data. The criterion for any model is what is the pre-
dlctlve accuracy. An idea of the range of research
of this group can be got by looking at the Proceed-
ings of the Neural Information Processing Systems
Conference (their main yearly meeting) or at the
Machine Learning Journal.
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A more nuanced view
eScience & the 4th paradigm



Jim Gray and eScience in 2007/
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eScience -- A Transformed
Scientific Method

..;‘;\x" W\
Jim Gray,
ALY - eScience Group,
L o | T Microsoft Research

http://research.microsoft.com/~Gray

In collaboration with
Alex Szalay

Dept. Physics & Astronomy
Johns Hopkins University
http://www.sdss.jhu.edu/~szalay/

* This presentation is, poignantly, the last one posted to Jim's Web page at Microsoft Research before he went missing at sea on January 28, 2007



Jim Gray and eScience in 2007/

Science Paradigms

 Thousand years ago:

science was empirical
describing natural phenomena

» Last few hundred years:

theoretical branch
using models, generalizations

o |Last few decades:

a computational branch
simulating complex phenomena

* Today:

data exploration (eScience)
unify theory, experiment, and simulation
— Data captured by instruments
Or generated by simulator
— Processed by software
— Information/Knowledge stored in computer

— Scientist analyzes database / files
using data management and statistics

* This presentation is, poignantly, the last one posted to Jim's Web page at Microsoft Research before he went missing at sea on January 28, 2007
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PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY
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Expert feature engineering

Don’t believe the media:

E # mc?
What Einstein really said.
2 2\2 2
E* = (mc”)” + (|plc)
Every physics student knows energy and momentum are conserved

EHiggs — Ebefore — Eafter — E Ez

7
PHiggs — Pbefore — Pafter — E pz
()

Thus, for our hypothesis, we expect a peak in this feature / observable:

My = \/Eifter/c4 — |ﬁafter|2/62




A signal emerges

CMS \s=7TeV,L=5.1fb";\s=8TeV,L=19.7 fb"
>
8 39 e Data
ol m, =126 GeV
230 2y, 22
% [ Z+X
c 25
O
>
LLl 20

L‘ilihﬁii-:___- IRIALR

80 100 200 300 400 600 800
Myy



Developing the statistical approaches tor the LHC

From 2003-2010, | was mainly busy developing a formalism and a software implementation that
allowed us to combine (statistically) evidence from multiple datasets

e Mainly frequentist approach that could cope with complicated models with many nuisance
parameters
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Collaborative Statistical Modeling
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J U ‘ y 2 O ,‘ 2 ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca 1ilyalcs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-35 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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ML Publications in Science

Domain Domain

—— Materials Science 3.5

8000 | —  Materials Science
~ - Chemistry

Physics 304 — Chemistry
Physics '

o
S
S
S
N
@)

N
=
]

4000

Number of Articles
Percentage of Articles
ol

—
-

2000 /

2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
Year Year

Ben Blaiszik, “2021 Al/ML Publication Statistics and Charts”. Zenodo, Sep. 07, 2022. doi: 10.5281/zenodo.7057437.



Data + ML isn’t enough!



Why isn’t data + ML enough?



Causation vs. Correlation






1. ASSOCIATION
ACTIVITY:  Seeing, Observing

QUESTIONS: What if I see ...?
(How are the variables related?
How would seeing X change my belief 1n Y?)

EXAMPLES: What does a symptom tell me about a disease?
What does a survey tell us about the
election results?




V|

1

if 2. INTERVENTION

“! "n ACTIVITY: Doing, Intervening
|

(What would Y be if I do X7
How can I make Y happen?)

e o — ., ——— , ey |

_DOING —

7 | QUESTIONS: Whatif 1do ...7 How?
|
|

EXAMPLES:  If I take aspirin, will my headache be cured?
What if we ban cigarettes?




ACTIVITY:

QUESTIONS:

EXAMPLES:

3. COUNTERFACTUALS

Imagining, Retrospection, Understanding

What if I bad done ...2 Why?
(Was 1t X that caused Y? What if X had not
occurred? What 1f I had acted difterently?)

Was 1t the aspirin that stopped my headache?
Would Kennedy be alive 1f Oswald had not
killed him? What 1f I had not smoked for the
last 2 years?




Ferenc Huszar

3 scenarios with the same correlation

3

Zz = randn()
y=z+ 1+ sqgrt(3)*randn()
X=2Z

X = randn() y =1+ 2*randn()
y=x+ 1+ sqrt(3)*randn() X = (y-1)/4 + sqrt(3)*randn()/2

O— (O

6 R pearsonr = 0.47; R: $c.28 pearsonr = 054; p=9.8&39
@ e 6 e o ‘
4
4 : P
2 *
z 2
) > >
0
0 0
-2 _2 -2
- =051 p = 2.50-34 -4 -4
pearsonr = 5 . p = 2.5e- ®
-2 0 2 -2 0 2 -2 0 2
X X X

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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but different response to intervention

(O—(
P(y|do(X)) = p(y|x)

ndn()

-
3
X + 1 + sqrt(3)*randn()
3
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y
| |
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The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,

Develop or reading. Think of
General Theories Interesting
G | theori th :
consistent with most or al Questions
available data and with other Why does that

current theories. pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...



Scientific

Understanding

Breiman's view contrasts with this current view

On scientific understanding with artificial intelligence

Mario

Cervera-Lierta,? ° Pascal Friederich,? > ° Gabriel dos Passos Gomes,* 2 Florian Hase,

Krenn,' %34 * Robert Pollice,? 2 Si Yue Guo,? Matteo Aldeghi,? > % Alba
2,3,4,6

Adrian Jinich,” AkshatKumar Nigam,? 3 Zhenpeng Yao,% %919 and Aldn Aspuru-Guzik? 34 11,1

Imagine an oracle that correctly predicts the outcome of every particle physics experiment, the
products of every chemical reaction, or the function of every protein. Such an oracle would revolu-

tionize science

and technology as we know them. However, as scientists, we would not be satisfied

with the oracle itself. We want more. We want to comprehend how the oracle conceived these

predictions. T

nis feat, denoted as scientific understanding, has frequently been recognized as the

essential aim o:

- science. Now, the ever-growing power of computers and artificial intelligence poses

one ultimate question: How can advanced artificial systems contribute to scientific understanding
or achieve it autonomously?


https://arxiv.org/abs/2204.01467

A fifth paradigm?



Science is replete with high-fidelity simulators

Particle Neuron . , Gravitational Evolution of
Epidemics . .
lensing the Universe

activity
1

colliders
102 10%° 1618 1621 1624 1027

| | | |
107 1072 10" 103 109 10”

I I
107*° 107" 107 1077
Length scale [m]

Arm cavity

Laser {-_-H
Quantum expander (2) Arm cavity
daadd ¥ X
PD @ =

The toretront of scientific knowledge is often encapsulated in simulators

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

Science is replete with high-fidelity simulators

Evolution of
the Universe

Neuron . , Gravitational
. Epidemics .
activity lensing

Particle
colliders

102 10%° 1618 1621 1624 1027

| | | | | |
10-* 107 1072 107% 1072 10V 103 109 10”

Length scale [m]

Arm cavity

Arm cavity

Simulators are causal, generative models of the data generating process
[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

Science is replete with high-fidelity simulators

Particle Neuron

Eoiderms Gravitational Evolution of
colliders activity HPIGCIIIES lensing the Universe

| | |
0= 107* 107*%* 107° 107% 1073

| | | | | | |
109 103 109 10? 102 10 10%*®  10%t 10%* 1077

Length scale [m]

Arm cavity

The expressivenéss of programming languages taci
complex, high-tidelity simulations, and the power o
ability to generate synthetic data from them.

itates the development of

- modern computing provides the

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

Science is replete with high-fidelity simulators

Particle Neuron Foidem; Gravitational Evolution of
colliders activity HPIGCIIIES lensing the Universe

| | | | | | | | | | | | | | |
10-*® 107 107** 107° 107% 107 10" 103 109 10? 102 10*°  10'®  10%Y 10%*  10°%7
Length scale [m]

Unfortunately, these simulators are poorly suited for many downstream tasks,
e.g. statistical inference, experimental design, decision making, ...

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429 ]


https://arxiv.org/abs/1911.01429

"The underlying physical laws necessary
for the mathematical theory of a large part
ot physics and the whole of chemistry are
thus completely known, and the difficulty
is only that the exact application of
these laws leads to equations much too
complicated to be soluble.”

—-PAUL DIRAC
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5. Al/ML + Simulation + Data

Al4Science to empower the fifth
paradigm of scientific discovery

Published July 7, 2022

By Christopher Bishop, Technical Fellow and Director, Microsoft Research Al4Science

Share this page f y m @

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

- TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE




“New directions in science are

launched by new tools much more
often than by new concepts. The
effect of a concept-driven revolution

is to explain old things in new ways.
The effect of a tool-driven revolution

is to discover new things that have to
pe explained.”

- FREEMAN DYSON




REALITY PHYSICS
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In fusion energy

o}éo Research

Accelerating fusion

science through learned
plasma control

February 16, 2022

Successfully controlling the nuclear fusion plasma in a tokamak with deep
reinforcement learning



In molecular dynamics

Noé et al., Science 365, 1001 (2019)

RESEARCH

RESEARCH ARTICLE SUMMARY

MACHINE LEARNING

Boltzmann generators: Sampling
equilibrium states of many-body
systems with deep learning

Frank Noé*1, Simon Olsson”, Jonas Kohler*, Hao Wu

The main approach is thus to start with one
configuration, e.g., the folded protein state, and
make tiny changes to it over time, e.g., by using
Markov-chain Monte Carlo or molecular dy-
namics (MD). However, these simulations get
trapped 1in metastable (long-lived) states: For
example, sampling a single folding or unfold-
ing event with atomistic MD may take a year
on a supercomputer.

6 September 2019

Boltzmann generators overcome sampling
problems between long-lived states.

1 Sample Gaussian distribution

/IDZ(K

vy b9
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oy b4
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2 Generate distribution
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3 Re -weight @

! ! eu(x) '

Boltzmann
distribution




In theoretical nuclear physics & statistical physics
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In theoretical nuclear physics & statistical physics
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Simulation-Based Inference



Statistical Framing

0

parameters of interest

forward modeling
generation

simulation

p(x,z]|0)

ya
latent variables

inverse problem

measurement
parameter estimation

X
observed data
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Statistical Framing

0

parameters of interest

Y
nuisance parameters

forward modeling
generation

simulation

p(x,z|0,vVv)
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inverse problem
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X
observed data
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ATLAS and CMS
2-LHC Run 1
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Effective Field Theory:
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An Example: The Higgs Boson

q -
W, Z
42-Dim observable x
W, Z
.-

Exciting new physics might hide here!
We parameterize it with two coefficients:

B Vw9 ot e e . fWWQQJr 5 i
L= Lou+ 35l 5 (D*0) o DY Wi, —|Z5H % (o10) Wi, W
W #

Ow Oww

J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020], CARL [arxiv:1506.02169]



http://arxiv.org/abs/1506.02169

Modeling particle physics processes
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Modeling particle physics processes

Parton-level Theory
momenta parameters

Zp —

q q
— — g_{_
W. Z
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q q

Evolution



Modeling particle physics processes

Theory
parameters

Parton-level

Shower
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Modeling particle physics processes

| atent variables

Detector Shower Parton-level Theory
Interactions splittings momenta parameters

e E| 2 trON

e Charged Hadron {e.g. Pion)

— — — - Neutral Hadron {e.g. Neutron)
= = = Photon

[ =

[

C

| S S —
I

Evolution
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Modeling particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

A ———————————————————————
Evolution



Modeling particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — 2y — 2 — Z;, —

Sample from p(a)za) p(zalzs) p(2s)2) p(20)

MADGRAPHS _aMCE@ENLDO

X X
X X X X
* % % % b ¥ % % x

IIIIIIIIIIIIIIII

Prediction (simulation)



Modeling particle physics processes

Detector Shower Parton-level Theory
Observables . . e
Interactions splittings momenta parameters
T Rg —— 2y — Z;, —— ()
pal6) = [z [z, [az, plalz p(zal2,) Pzl p(z16)

—
Inference



Modeling particle physics processes

| atent variables

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

2 —— 2y — 2 — )

p(x|f) = /dzd/sz/dzp p(x|zq) p(z4|zs) p(2s|2p) p(2p|0)

It's infeasible to calculate the
integral over this enormous
spacel

Inference
50



Inference with intractable likelihoods

This motivates a class of inference methods for a stochastic simulator where

e evaluating the likelihood is intractable, but

e itis possible to sample synthetic data x ~ p(x | 6)

This setting is often referred to as likelihood-free inference, but | prefer the term
simulation-based inference because usually one approximates the likelihooao
(or likelihood ratio) and then use established inference techniques

e applies to both Bayesian or Frequentist inference



Cranmer, Louppe, Pavez, arXiv:1506.02169

Learning the likelihood ratio PNAS, arkiv1805.12244

PRL, arXiv:1805.00013
PRD, arXiv:1805.00020
O 6] Lassrttiitte.,
approximate
likelihood
arg min L|g| — 7(x|0) —>| |

physics.aps.org/articles/v11/90

NeurlPS, arXiv:1808.00973
g

0;

Simulation Machine Learning Inference

The surrogate for the likelihood ratio used for inference

A 2-stage process:
1. learning surrogate (amortized)

2. Inference on parameters ot simulator (frequentist or Bayesian)

No Bayesian prior used for training, but one can use prior for inference.


https://physics.aps.org/articles/v11/90

[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

S e binary classifier: find function s(x) that minimizes loss:

4jp(az|H1)[_ IOgS(CC)] T 4jp(az|Ho)[_ lOg(l o S(ZIZ’))]

e j.e. approximate the optimal classitier

S(CB) _ p(33|H1)
p(z|Ho) + p(z|H)

S Signal [T T

% ::; Background
o:; * which is 1-to-1 with the likelihood ratio
O.GE— —;% H 1
b LEV r(r) = p(x|Hy) 1
"0 5' p(z|Ho) s(x)
s(x)




[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

Likelihood Ratio Trick

bl e binary classifier: find function s(x) that minimizes loss:

s, | |
L R Lis| = Ep(z)y)[— 10g 8(2)] 4 Ep () 1) [~ log(1 = s(z))
. :.""'.:: ] o
o N ; —y; log s(xz;) — (1 — y;) log(1 — s(x;))
t ”‘.c‘ "
bof o | | | .
My | o> e j.e. approximate the optimal classitier
£ H
o) — Ll
g o [E S T p(x|Ho) + p(x|H;)
. e which is 1-to-1 with the likelihood ratio
" i x|H 1
o, L} r(x) = plz|f) _ 1
e “ s' p(z|Ho) s(x)




Parametrizing the Likelihood Ratio Trick

Can do the same thing for any two points 8, & 8, in parameter space O.

p(z | 6p) 1
p(z | 61) s(x;0p,601)

T($7 (907 (91) —

Or train to classity data from p(x| @) versus some tixed reference p,.¢(x)

p(zlf) _ 1

pref(x) S(QZ; 9)

r(x;0) =

| call this a parametrized classifier.

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classitiers [arXiv:1506.02169]


http://arxiv.org/abs/1506.02169

Amortized likelihood ratio

Once we've learned the likelihood ratio r(x; @), we can apply it to any data x.
e unlike ABC, we pay biggest computational costs up front
e Great for calibrated frequentist confidence intervals with guaranteed coverage

e Here we repeat inference thousands of times & check asymptotic statistical theory

70 2.0

| | Exact MLEs || | Exact
60 - 'L_ Approx. MLEs [ Approx.
- - ~4=0.5 151

50 -

40 | i

30 m

20 [
0.5F

) qu_ |
0 »—.—._I_ﬁ | | — 0.0 |

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 1 2 3 4 5 6 7 8 9

(a) Exact vs. approximated MLEs. (b) p(—2log A(y = 0.05) | v = 0.05)

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169
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Impact on Studies of The Higgs Boson

(based on a 42-Dim observation X)

O 057 4 0 \ Histogram
= . \\ ——- RaScAL
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J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020], CARL [arxiv:1506.02169]
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Impact on Studies of The Higgs Boson

Massive gains in precision of a flagship measurement at the LHC |

Equivalent increasing data collected by LHC by several factors

parameter {J > X

l % / \ observable

O
latent Z\ wjg%’/ﬁ{\% > T I 1 -
IR 18] 1
"' g— t(flfg z (9) > g approximate Q
ke augmented data likeliﬁood
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-] -

Simulation Machine Learning
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Impact on Studies of The Higgs Boson

Massive gains in precision of a flagship measurement at the LHC |

Equivalent increasing data collected by LHC by several factors

3 - pp — WH — (v bb C{HD Profiled
L =300fb"
parameter > N\ 2 )
| ] 1
latent 2 \ 2 e | ]
A \# |
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Simulation Machine Learning
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2l —— Imp. STXS

[J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn 1908.06980] - 1 _O° 5 CO O 5 1
[J. Brehmer, F. Kling, I. Espejo, K. Cranmer 1907.10621] HW



A common theme, a common language

ABC

Home
resources on approximate
Bayesian computational This website keeps track of developments in approximate Bayesian computation (ABC) (a.k.a.
methods |Ike|lhOOd -free), a class o Computatlonal statlstlcal methods for Baye3|an mferece under

intractable |Ike|IhOdSA The site is meant to be a resource bthokr |olog|Sts dstat|st‘||ns

want to Iéarh more about ABC and related methods. Recent publications are under Publications
2012. A comprehensive list of publications can be found under Literature. If you are unfamiliar
Home with ABC methods see the Introduction. Navigate using the menu to learn more.

ABC in Montreal ABC in Montreal (2014)

ABC in Montreal

Approximate Bayesian computation (ABC) or likelihood-free (LF) methods have developed mostly beyond the
radar of the machine learning community, but are l‘portant tools for a large and dlverseSe gment of the
sc1nt1f1c comumt . This is particularly true for systems and UlaIObIOlO , COm[ utatlonal -
neuroscience, computer vision, healthcare sciences, but also many others. |

Interaction between the ABC and machine learning community has recently started and contributed to
important advances. In general, however, there is still significant room for more intense interaction and
collaboration. Our workshop aims at being a place for this to happen.
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Unifying generative models and exact likelihood-free
inference with conditional bijections

By Kyle Cranmer, Gilles Louppe Kyle Cranmer - Sign out

machine learning | likelihood-free inference

Recent work in density estimation uses a bijection f : X — Z (e.g. an invertible flow or
autoregressive model) and a tractable density p(z) (e.g. [1] [2] [3] [4]).

IEEM 111 ¥ Tweet 11
0 X

6xT

Actions

1> 1 vote | ¥ Hide == Collect

p(x) = p(fp(x))

Authors

Kyle Cranmer, Gilles Louppe

where ¢ are the internal network parameters for the bijection fj;. Learning proceeds via gradient Metadata
ascent V Y. log p(x;) with data x; (i.e. maximum likelihood wrt. the internal parameters ¢).

. § . : ; DOI https:/doi.org/10.5281/zenodo.198541
Since f is invertible, then this model can also be used as a generative model for X . B o/ /

This can be generalized to the conditional density p(x|@) by utilizing a family of bijections Ul hec S ec, Ak

fo : X — Z parametrized by @ (e.g. [5] [6]). D) v |
det ( af¢;0(x) )‘
de

Here @ and x are input to the network (and its inverse) and ¢ are internal network parameters.
Again, learning proceeds via gradient ascent V4 Y. log p(x;|6;) with data x;, 6;.

p(x|0) = p(f4.0(x))

We observe that not only can this model be used as a conditional generative model p(x|@), but it
can also be used to perform asymptotically exact, amortized likelihood-free inference on 4.

This is particularly interesting when @ is identified with the parameters of an intractable, non-
differentiable computer simulation or the conditions of some real world data collection process.

Comments

Many thanks to Durk Kingma, Max Welling, lan Goodfellow, and Shakir Mohamed for enlightening
discussions at NIPS2016.

Kile Cranmer - 9 Dec, 2016



Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.
Probabilistic models defined only via the simulations thy ’prodce aecaII"|mp|C|t models. | S | o -

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop’s aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used |n phy5|cs to generate partlcle simulations for high energy processes.
Recently, implicit models have been used to improve the state-of-the-art in |aeand content geerton Part of theérkshopws focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.
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The frontier of simulation-based inference

Kyle Cranmer®"'!, Johann Brehmer®", and Gilles Louppe®

Gilles Louppe

2Center for Cosmology and Particle Physics, New York University, USA; P Center for Data Science, New York University, USA; “Montefiore Institute, University of Liége, Belgium
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https://arxiv.org/abs/1911.01429

ln computational neuroscience

sbi: A toolkit for simulation-based inference

Alvaro Tejero-Cantero® !, Jan Boelts® !, Michael Deistler® *,

Jan-Matthis Lueckmann® !, Conor Durkan® 2, Pedro J. Goncalves' 3,

3

David S. Greenberg! #, and Jakob H. Macke?!' ° ©
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Training deep neural density estimators
to identify mechanistic models of neural
dynamics

Pedro J Gongalves'2™, Jan-Matthis Lueckmann’2™, Michael Deistler’>"*,
Marcel Nonnenmacher'?4, Kaan Ocal*®, Giacomo Bassetto'?,

Chaitanya Chintaluri®’, William F Podlaski®, Sara A Haddad?®, Tim P Vogels®’,
David S Greenberg'*, Jakob H Macke™-2>:7*

'Computational Neuroengineering, Department of Electrical and Computer
Engineering, Technical University of Munich, Munich, Germany; “Max Planck
Research Group Neural Systems Analysis, Center of Advanced European Studies
and Research (caesar), Bonn, Germany; *Machine Learning in Science, Excellence
Cluster Machine Learning, Tiibingen University, Tiibingen, Germany; *“Model-Driven
Machine Learning, Institute of Coastal Research, Helmholtz Centre Geesthacht,
Geesthacht, Germany; *Mathematical Institute, University of Bonn, Bonn, Germany;
®Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United
Kingdom; ’Institute of Science and Technology Austria, Klosterneuburg, Austria;
8Max Planck Institute for Brain Research, Frankfurt, Germany; “Max Planck Institute
for Intelligent Systems, Tiibingen, Germany

Abstract Mechanistic modeling in neuroscience aims to explain observed phenomena in terms
of underlying causes. However, determining which model parameters agree with complex and
stochastic neural data presents a significant challenge. We address this challenge with a machine
learning tool which uses deep neural density estimators—trained using model simulations—to carry
out Bayesian inference and retrieve the full space of parameters compatible with raw data or
selected data features. Our method is scalable in parameters and data features and can rapidly
analyze new data after initial training. We demonstrate the power and flexibility of our approach on
receptive fields, ion channels, and Hodgkin—-Huxley models. We also characterize the space of
circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and
use these results to derive hypotheses for underlying compensation mechanisms. Our approach will
help close the gap between data-driven and theory-driven models of neural dynamics.




ln gravitational wave astronomy

Gravitational wave Black hole Spacetime

Real-time gravitational-wave science with neural posterior estimation

Mirror Maximilian Dax,'** Stephen R. Green,? T Jonathan Gair,??
Jakob H. Macke,!'3 Alessandra Buonanno,>* and Bernhard Scholkopf!

' Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tibingen, Germany
*Maz Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Miihlenberg 1, 14476 Potsdam, Germany

3 Machine Learning in Science, University of Tibingen, 72076 Tibingen, Germany
* Department of Physics, University of Maryland, College Park, MD 20742, USA
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Simulation-based Inference

Papers

Home

Papers

simulation-based-intference.org

Software Jobs Misc About

The list is automatically compiled each day. Should you observe any inaccuracies or concerns, kindly bring them to our attention.
Additionally, if you believe a new paper aligns with the topic, feel free to submit it.
Visualize the annual growth in the number of publications.
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Statistics

« Amortized Bayesian Multilevel Models, D Habermann, M Schmitt, L Kihmichel... - arXiv preprint arXiv ..., 2024 -
arxiv.org

¢ A Kernel-Based Conditional Two-Sample Test Using Nearest Neighbors (with Applications to Calibration,
Regression Curves, and Simulation-Based Inference), A Chatterjee, Z Niu, BB Bhattacharya - arXiv preprint
arXiv:2407.16550, 2024 - arxiv.org

* Addressing Misspecification in Simulation-based Inference through Data-driven Calibration, A Wehenkel, JL
Gamella, O Sener, J Behrmann... - arXiv preprint arXiv .., 2024 - arxiv.org

* Modelling Sampling Distributions of Test Statistics with Autograd, AA Kadhim, HB Prosper - arXiv preprint
arXiv:2405.02488, 2024 - arxiv.org

e Preconditioned Neural Posterior Estimation for Likelihood-free Inference, X Wang, RP Kelly, DJ Warne, C Drovandi -
arXiv preprint arXiv ..., 2024 - arxiv.org

* Avariational neural Bayes framework for inference on intractable posterior distributions, E Maceda, EC Hector, A
Lenzi, BJ Reich - arXiv preprint arXiv:2404.10899, 2024 - arxiv.org

* Increased perceptual reliability reduces membrane potential variability in cortical neurons, B von Hunerbein, J
Jordan, M Oude Lohuis... - bioRxiv, 2024 - biorxiv.org

e How much information can be extracted from galaxy clustering at the field level?, NM Nguyen, F Schmidt, B Tucci,
M Reinecke... - arXiv preprint arXiv .., 2024 - arxiv.org

» Evolution of Analysis Techniques and Statistical Treatment, A Held - Bulletin of the American Physical Society, 2024
- APS

» Simulation-Based Inference with Quantile Regression, H Jia - arXiv preprint arXiv:2401.02413, 2024 - arxiv.org

* Direct Amortized Likelihood Ratio Estimation, AD Cobb, B Matejek, D Elenius, A Roy... - arXiv preprint arXiv ..., 2023 -
arxiv.org

¢ On simulation-based inference for implicitly defined models, J Park - arXiv preprint arXiv:2311.09446, 2023 - arxiv.org

* Machine Learning for Mechanistic Models of Metapopulation Dynamics, J Li, EL lonides, AA King, M Pascual, N Ning
- arXiv preprint arXiv ..., 2023 - arxiv.org

* Inference on spatiotemporal dynamics for networks of biological populations, J Li, EL lonides, AA King, M Pascual, N
Ning - arXiv preprint arXiv .., 2023 - arxiv.org

 Optimal simulation-based Bayesian decisions, J Alsing, TDP Edwards, B Wandelt - arXiv preprint arXiv:2311.05742,
2023 - arxiv.org

» Simulation based stacking, Y Yao, BRS Blancard, J Domke - arXiv preprint arXiv:2310.17009, 2023 - arxiv.org

Q Search

EEEE——

Number of papers

180

160 —

140 -

120

—

o

o
|

2001

Al
o
o
(aV

o <
o O
o O
(QURE o

Number of Simulation-based Inference Papers by Year

wn
o
=)
Al

2006

2007

2008

2009

2010

2011

N ™M
o O
N N
year

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024



github.com/smsharma/awesome-neural-sbi ‘ i

awesoime

Awesome Neural SBI

O Pull Requests 'welcome

License MIT

A community-sourced list of papers and resources on neural simulation-based inference, covering both

methodological developments and domain applications. Given the nature of the field, the list is bound to be highly
incomplete -- contributions are welcome!

Contents

e Software and Resources
o Code Packages and Benchmarks

o Review Papers
o Discovery and Links
e Papers: Methods
e Papers: Application
o Cosmology, Astrophysics, and Astronomy
o Particle Physics
o Neuroscience
o Health and Medicine

o Other Domains

o Application to Real Data



https://github.com/smsharma/awesome-neural-sbi

Focus areas for STAMPS

Foundational Methodology

Statistics
Data Science
Machine Learning / Al

Astronomy & Particle Physics Climate & Environment

Astronomy Particle Physics Oceanography Meteorology Remote Sensing Environmental Science

Argo floats Wildfires




Advancing Frequentist SBI

Taking a modular approach, revisiting core issues in frequentist inference in SBI context

e Choice of test statistic for composit tests with nuisance parameters

e Efficient estimate of critical values

e Coverage diagnostics, etc.
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SBI for spatial statistics

SBI for spatial statistics

“Is there a more general notion of SBI?" — Yes!

In recent years, there has been an explosion of interest in SBI / neural inference /
amortized inference for purely statistical models especially in spatial statistics:

@ Neural prediction for spatial models (Gerber and Nychka, 2021; Lenzi et al., 2023;
Sainsbury-Dale et al., 2024)

@ Neura
@ Neura
@ Neura

ikelihood for spatial models (Walchessen et al., 2024)
orediction with censored observations (Richards et al., 2023)

orediction with irregularly spaced observations (Sainsbury-Dale et al., 2023)

Figure: Neural prediction for satellite sea surface temperature using locally
stationary Gaussian processes (Sainsbury-Dale et al., 2023)
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Incorporating Domain Knowledge into ML Models



Insight of data generating process informs
inductive bias on architecture

(a) Molecule (b) Mass-Spring System
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Inductive Bias

Compositionality

Relationships
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Causality
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ab if we had Ehe right
causal sbructure!

Under the hypothesis of
dent mechanisms and small

 across different distributions:

er sample complexity to recover

a distribution chang g8

_smaller sample complexity tO recover

from a distribution change

 E.g. for transfer learning, agent learning,

domain adaptation, etc.

Max Welling Isn’t this what Bernhard
Schoelkopf has been saying for a while?

Like - Reply - 6w

@ Yann LeCun ...and Leon Bottou ?

&«

Like - Reply - 6w

Leon Bottou Yoshua's paper says:
If you observe a distribution change
that comes from a causal effect,
then you'll adapt faster if your
generative model matches the
causal model.

Another way of seeing it is : the
right causal graph suggests a
particular factorization of the joint
distribution (a directed bayesian
network). A causal intervention
means that you only change one of
these factors (or a few factors)
while leaving the other ones
unchanged. Therefore if your
generative model is the right causal
model, meaning that it factorizes
the joint in the same way, it will be
easy to adapt it to the change
because only a few parameters
need changing (those associated
with the factors that actually
changed).

Max Welling Dan Roy | am, and |
think most of us, are keenly aware
that Josh has been the big
proponent of this view. And | think
most people agree with him on this
view. Integrating this view with
deep learning for more narrowly
defined tasks seems to me an
interesting intellectual pursuit
though. | think that's what'’s
happening here but | was not at the
talk ==



Conclusion



Human Intelligence

e Traditional scientific approaches

* [argely guided by expert knowledge
and theoretical insights

* hand-crafted




Artificial Intelligence
e data-driven & Big Data
® eschew expert knowledge

e end-to-end learning



My message:

The intersection of statistics, machine learning, and the
pohysical sciences has real synergy, and the combination
can lead to many breakthroughs.




Thank youl!

Questions?
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