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Emotional experience pervades every aspect of mental 

life. Emotions have profound influences on the content and 

style of thought (Clore & Huntsinger, 2007), affecting not 

only our decisions and actions (Damasio, 1994; Overskeid, 

2000; Lerner & Keltner, 2001), but also our memories and 

perceptions (Phelps, 2004; Phelps, Ling, and Carrasco, 2006; 

Scott et al., 1997). Though researchers agree on the 

importance of emotion, there is little consensus as to their 

neural structure or the processes that give rise to them 

(Barrett, 2006; Izard, 2007; Panksepp, 2007). 

Whereas some have suggested that specific emotions 

such as anger and fear are universal programs evolved to 

deal with recurrent problems faced by our ancestors 

(Cosmides & Tooby, 2004), others believe that emotions are 

socially or psychologically constructed phenomena, 

dependent on learning and high-level cognitive processes 

rather than biologically given (for a review, see Scarantino 

& Griffiths, 2011). The former, a biologically basic emotion 

view, implies a species-specific computational architecture 

that mediates emotional response. As such, the lack of 

identifiable neural signatures of emotion has represented a 

substantial stumbling block for this perspective. Indeed, it 

would be difficult to consider an emotion such as anger to be 

a biologically determined category if different instantiations 

of anger had little in common at the neural level
 
(Scarantino 

& Griffiths, 2011). One of the goals of the present 

experiment was to examine whether patterns of brain 

activity characteristic of specific emotions exist, and 

whether these patterns are to some extent common across 

individuals. 

 

The Search for Neural Correlates of Emotion 
To date, more than two hundred papers have examined 

the neural correlates of emotional experience using fMRI 

and PET alone (Kober, Barrett, Joseph, Bliss-Moreau, 

Lindquist & Wager, 2008). Meta-analyses of those studies 

have concluded that, while some regions are more active 

than others when participants experience certain specific 

emotions, no region is both consistently and specifically 

activated by a single emotion category (Lindquist, Wager, 

Kober, Bliss-Moreau, & Barrett, 2012; Kober et al., 2008; 

Phan, Wager, Taylor & Liberzon, 2002; Wager, Phan, 

Liberzon, & Taylor, 2003; but see also Murphy, Nimmo-

Smith & Lawrence, 2003; Vytal & Hamann, 2010). That is, 

there is little to no evidence of the existence of an anger (or 

sadness, disgust, happiness, etc.) module. The search for 

neural correlates of emotion may have been hampered, 

however, by outdated localization models (Stemmler, 2003), 

as well as the use of statistical methods not well suited to the 

task of identifying spatially-distributed activation signatures 

(Jimura & Poldrack, 2012). While the existence of a 

localized anger ‘module’ is unlikely, there may well exist a 

neural signature of anger, manifested as a distributed pattern 

of activity. 

Rather than search for contiguous neural structures 

associated with specific emotions, we applied multi-voxel 

pattern analysis techniques to identify distributed patterns of 

activity associated with specific emotions (Mitchell, 1997; 

Mitchell, Hutchinson, Niculescu, Pereira, Wang, Just & 

Newman, 2004). Such techniques allow for the possibility 

that neural responses to emotional stimulation occur in many 

brain areas simultaneously. These algorithms frequently 

result in increased predictive power, and recent research 

suggests that they hold promise for classifying emotion 

using neurological and physiological data (Kolodyazhniy, 

Kreibig, Gross, Roth, & Wilhelm, 2011). 

In particular, multi-voxel pattern analysis (MVPA) has 

shown great promise in classifying the emotional content of 

facial, bodily, and vocal expressions. Patterns of activity in 

voice-sensitive cortices can be used to distinguish between 

angry, sad, relieved, joyful, and neutral vocal expressions 

(Ethofer, Van De Ville, Scherer & Vuilleumier, 2009), and 
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these patterns generalize across speakers. Similarly, 

distributed patterns of activity in areas implicated in the 

processing of facial expressions (i.e. anterior and posterior 

superior temporal sulcus (STS) and frontal operculum) can 

be used to distinguish between facial expressions of seven 

emotions (Said, Moore, Engell, Todorov & Haxby, 2010). 

Recent research further shows that some of these patterns 

generalize across stimulus types, suggesting that they are 

identifying emotions per se rather than specific stimulus-

response patterns. Patterns of activity in the medial 

prefrontal cortex (MPFC) as well as STS appear to encode 

the emotional content of a social cue irrespective of whether 

that content comes from vocal, facial or bodily expression 

(Peelen, Atkinson & Vuilleumier, 2010).  

These results suggest that emotion-specific neural 

signatures may exist, but are open to alternative 

explanations. Successful categorization of social cues may 

derive from processing related to mental state attribution 

rather than emotion. A person displaying an angry face is 

likely to think and behave differently than one displaying a 

sad face, and different attributions made by participants 

exposed to such faces, rather than differences in felt 

emotion, may account for the observed patterns of neural 

activation (Peelen, Atkinson & Vuilleumier, 2010). 

Perceiving an emotion and experiencing an emotion are not 

one and the same. Patterns of activation relating to emotion 

perception have been discovered, but these patterns may 

relate to emotional processing, mental state attribution, or 

some combination of the two. 

MVPA has also been used to classify emotional 

processes in contexts in which mental state attribution does 

not represent an alternative explanation (Baucom, Wedell, 

Wang, Blitzer, & Shinkareva, 2012). Baucom and colleagues 

(2012) presented participants with four types of images 

taken from the international affective picture system (IAPS; 

Lang, Bradley, & Cuthbert, 1995): high arousal negative, 

low arousal negative, high arousal positive, low arousal 

positive. Their logistic regression classifier was able to 

identify stimulus type from these four categories on the basis 

of neural activation at well over chance rates, even when 

trained on separate subjects (i.e., in a between-subject 

classification). 

The present experiment builds on these previous 

findings. By examining a broad swath of emotional 

experiences (anger, disgust, envy, fear, happiness, lust, 

pride, sadness, and shame), we aimed to establish whether 

specific emotion categories have neural signatures that are 

both identifiable within participants and common across 

participants.  

 

Factors Underlying Emotion Representation 
A second goal of the present experiment was to 

examine neural factors underlying successful classification 

of emotional states. More specifically, we sought to 

decompose neural activation signatures into factors which 

may represent core neural components of emotion 

representation. Each factor was expected to be manifested by 

a spatially-distributed pattern of activation over the set of 

emotions. 

Several candidate dimensions emerge from the 

literature. Researchers have frequently identified valence 

and arousal as two dimensions on which the neural 

activation deriving from emotional stimuli can be 

differentiated (Baucom et al., 2012; Anders et al., 2004; 

Neilen et al., 2009), and these two dimensions represent the 

most commonly identified in dimensional theories of the 

psychology of emotion (Barrett & Russell, 1999; Watson & 

Tellegen, 1985; Russell, 1980). Indeed, in following up on 

their MVPA, Baucom and colleagues (2012) found the 

internal representation of affect underlying their data to be 

based on valence and arousal. 

Valence and arousal may thus represent important 

dimensions upon which the brain differentiates affective 

experiences. However, additional dimensions may also exist 

and emerge only when specific emotion categories that 

differ in ways not fully captured by valence and arousal are 

examined. Among the most prominent among these are 

approach/avoidance, and sociality (i.e. whether other people 

are targets of a given emotion). 

Though approach/avoidance motivations correlate with 

valence (we approach stimuli we like and avoid those we 

dislike), researchers have made the case that they represent a 

separate dimension (Carver & Harmon-Jones, 2009). 

Angered individuals, for example, are generally motivated to 

approach the source of their anger (e.g. to fight), despite the 

stimulus’ negative valence. Approach/avoidance 

motivational states have frequently been linked to 

asymmetries in left/right frontal cortical activation, 

especially using EEG (Murphy et al., 2003), though meta-

analyses of fMRI data have failed to find consistent 

localizations (Wager et al., 2002). 

Another factor suggested by neuroimaging data is 

sociality (Britton, Phan, Taylor, Welsh, Berridge & 

Liberzon, 2006). Emotions play a prominent role in guiding 

social interaction (Keltner & Kring, 1998; Frijda & 

Mesquita, 1994). Many stimuli frequently used to elicit 

emotions are inherently social (e.g. facial expressions), and a 

number of neural regions have been implicated in the 

processing of social cues specifically. Researchers 

frequently distinguish between emotions that are inherently 

social (e.g. envy) and those that are not necessarily social 

(e.g. disgust, Leary, 2001; Adolphs, Baron-Cohen & Tranel, 

2002). Moreover, prior research has found that neural 

networks distinguish between social and non-social 

emotions (Britton et al., 2006). 

By examining a wide range of emotional experiences, 

we sought to discover which of these factors (valence, 

arousal, approach/avoidance, sociality) jointly constitute the 

neural signatures of emotions.   

 

Experiment Overview 
We applied a Gaussian Naïve Bayes pooled variance 

classifier (Just, Cherkassky, Aryal, & Mitchell, 2010) to 

neuroimaging data to classify a broad variety of emotional 

experiences. Participants were method actors experienced 

with entering and exiting emotional states on cue. Prior to 

the neuroimaging session, each wrote scenarios that had 

made them feel or would make them feel emotional states 
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denoted by 18 words grouped into nine emotion categories: 

anger(angry, enraged), disgust(disgusted, revulsed), 

envy(envious, jealous), fear(afraid, frightened), 

happiness(happy, joyous), lust(lustful, horny), pride(proud, 

admirable), sadness(sad, gloomy), and shame(ashamed, 

embarrassed). Participants also wrote a calm scenario that 

was used as a baseline. Before entering the scanner, 

participants engaged in a practice session designed to 

familiarize them with the experimental task. In the scanner, 

participants were presented with each word six times in 

random order. They were given nine seconds to imagine the 

scenario and enter the appropriate emotional state, followed 

by eleven seconds to exit that state, rate their emotional 

intensity, and prepare for the next trial. Once this portion of 

the session was complete, participants viewed 12 disgusting 

images and 12 calm/neutral images in random order. We 

examined the classifier’s ability to identify the specific 

emotion experienced within-individuals, between-

individuals, and between-modalities. 

 

Methods 
 

Participants 
Ten adults (eight right-handed females, two right-

handed males, MAGE = 20.7, SD = 2.1) from the Carnegie 

Mellon Drama Community participated and gave written 

informed consent approved by the Carnegie Mellon 

Institutional Review Board.   Participants were recruited via 

flyers, email and in person solicitation from an 

undergraduate acting class. One additional male participant 

was scanned but excluded from the analysis because he 

received different instructions due to experimenter error. 

 

Task 
Prior to the scan, participants wrote scenarios for each 

of the 18 emotion words, indicated whether the scenario was 

derived from a past experience or an imagined experience, 

and assessed the scenario on seven point scales of valence, 

arousal, certainty, control and attention, as well as the nine 

emotion categories. Each participant was free to choose any 

scenario for a given emotion, and could write as little or as 

much detail as they desired. There was no attempt to impose 

consistency across participants in their choice of scenarios. 

Participants were encouraged to review their scenarios 

immediately prior to the scan. During the scan, participants' 

task was to actively experience emotions on cue using the 

scenarios they had previously constructed. 

 

Scanning Paradigms 
Emotion words were presented in two separate scans 

lasting approximately 19 minutes each with a five-minute 

rest interval in between.  The 18 emotion words were each 

presented six times in random order.  Each word was 

presented for 9s: 1s in isolation followed by 8s on screen 

with a pie chart that filled at a rate of one piece per second 

for eight seconds.  Participants were asked to attain maximal 

emotional experience at the end of this 9s period, when the 

pie was full. A fixation cross was then presented for 7s, 

followed by a 4s interval during which participants rated the 

intensity of their emotional experience on a 4-pt scale using 

two handheld computer mice.  The word calm was presented 

for 40s at the beginning and end of each of the two scans. 

Following the second emotional word scan, 

participants viewed 12 disgusting and 12 neutral 450x450 

pixel pictures presented in random order. The majority of 

pictures were taken from the IAPS picture set (Lang, 

Bradley, & Cuthbert, 1995; all images are available from the 

authors upon request). None of the pictures had been 

previously viewed by the participants. As in the emotion 

word paradigm, the word calm was presented for 40s at the 

beginning and end of the 10-minute image scan.  The 24 

pictures were each presented once for 9s along with a pie 

chart. A fixation cross was then presented for 7s, followed 

by a 4s interval during which participants rated their level of 

disgust on a 4-pt scale.  Participants were instructed simply 

to view the images. 

 

fMRI Procedures 
Functional images were acquired on a Siemens Verio 

(Erlangen, Germany) 3.0T scanner at the Scientific Imaging 

& Brain Research Center of Carnegie Mellon University 

using a gradient echo EPI pulse sequence with TR = 2000 

ms, TE = 30ms and a 79° flip angle. Siemens 32 channel 

receive only coil and parallel imaging (GRAPPA) with an 

acceleration factor of 2 were used. Thirty-four 3mm thick 

AC-PC aligned oblique-axial slices were imaged.  The 

acquisition matrix was 64x64, with 3mm x 3mm x 3mm 

voxels.  

 

Data Preprocessing 
Initial data processing was performed using SPM2 

(Wellcome Department of Cognitive Neurology, London). 

The data were corrected for slice timing, motion, and linear 

trend, and were normalized into MNI space  

(3.125mm×3.125mm×3 mm voxels). Gray matter voxels 

were assigned to anatomical areas using Anatomical 

Automatic Labeling (AAL) masks. Where noted below, the 

images were partitioned into several bilateral brain areas 

using AAL masks: frontal, parietal, temporal, and occipital. 

In addition, masks corresponding to all AAL-defined 

subcortical areas (excluding cerebellum) and cingulate areas 

(consisting of anterior and posterior cingulate) were used.  

The percent signal change relative to fixation was 

computed at each gray matter voxel for each stimulus 

presentation. The primary input measure for analyses 

consisted of the mean of three brain images acquired within 

a 6s window. The window was offset 8s from the stimulus 

onset (to account for the delay in hemodynamic response 

and to capture the highest level of emotional intensity). For 

the picture scan, the mean of two images acquired within a 

4s window and an offset by 4s was used. The intensities of 

the voxels in this mean image for each word were 

normalized (mean = 0, SD = 1). The data were not spatially 

smoothed. 

 
 



In Press, PLoS ONE AUTHOR PREPRINT Identifying Emotion 
 

4 

 

Machine Learning Overview 
The machine learning techniques used can be separated 

into three stages: 1) algorithmic selection of a small set of 

voxels believed to be useful for classification; 2) training of 

a classifier on a subset of the data; and 3) testing of the 

classifier on an independent subset of the data. The training 

and testing used cross-validation procedures that iterated 

through cycles of all possible partitions of the data into 

training and testing datasets. The training set and test set 

were always independent. 

Rather than examine the performance of multiple 

classifiers and different numbers of parameters, we chose 

our classifier and parameters on the basis of optimizations 

performed in several previous studies (Just et al., 2010, 

Mitchell et al., 2008). We therefore used a Gaussian Naïve 

Bayes (GNB) classifier
1
, and chose voxels as described 

below. Where we did explore parameters (e.g. in the number 

of voxels), the exploration and its results are noted 

explicitly. 

 

Voxel Selection 
Analyses focused on a small subset of all the voxels in 

the brain, i.e. those for which their activation profile over the 

18 emotional words was most stable across the multiple 

presentations of the set of words. Only the activation levels 

of relatively stable voxels were assumed to provide 

information about emotion. A voxel's stability was computed 

as the average pairwise correlation between its 18-word 

activation profiles across the multiple presentations that 

served as input for a given model (the number of 

presentations over which stability was computed was four or 

six, depending on the analysis). Here the 18-word activation 

profile of a voxel for a particular presentation refers to the 

vector of 18 responses of that voxel to the words during that 

presentation. A stable voxel is thus one that responds 

similarly to the 18 word stimulus set each time the set is 

presented. For the between subjects classification, we 

selected the voxels that were most stable across the 18 words 

                                                 
1 The assumptions of the Gaussian Naive Bayes classifier are not 
fully satisfied by fMRI data in general, nor are they fully satisfied 
by the data in this particular study.  Not all of the 240 distributions 
of voxel activations levels for each participant are perfectly 
Gaussian (although 82% of these voxels do satisfy a reasonable 
criterion) and the activations of different voxels are not 
conditionally independent given the classification label.  If one had 
a sufficiently large set of training data, it would be better to at 
least avoid the conditional independence assumption and 
estimate the full covariance structure of the joint distribution over 
voxels.  We note that independent Bayes models frequently yield 
good results even when independence assumptions are not met 
(Hand & Yu, 2001).  In line with this demonstrated robustness, the 
GNB classifier works well on our data, as demonstrated by cross-
validated estimates of the GNB classification rank accuracy. Finally, 
as a check on the possible idiosyncrasies of GNB, the within-
subject classification of emotions (both 18 separate items and 9 
emotions) was repeated using logistic regression, resulting in the 
same mean rank accuracy (0.84) across participants. 

for the nine participants in the training set, excluding the test 

participant. For the picture classification, all 6 presentations 

of the emotional words were used to compute stability.  

In order to equate the total brain volume used for 

classification with that of previous mental state classification 

studies (Just et al., 2010, Damarla & Just, in press), 240 of 

the approximately 35,000 voxels per participant were 

selected for use in classification based on their stability. 

Thus our model fitted parameters for 240 variance estimates 

and 9x240 estimates of mean voxel activation. An 

exploration of the effect of the number of voxels selected (in 

a range from 40 to 500 voxels) resulted in only slight 

variation in mean within-subject rank accuracy (in a range 

from 0.80 to 0.84). To estimate the false discovery rate in 

the selection of the 240 most stable voxels per subject, p-

values for stability scores were computed using a Monte 

Carlo simulation with 100,000 iterations. For all 

participants, these 240 voxels survive conservative 

Bonferroni correction (all corrected p’s < .019). 

 

Classifier Training 
In a second stage, a subset of the data (four of the six 

presentations in the within-participant classification) was 

used to train a classifier to associate fMRI data patterns with 

the set of nine emotion labels. A classifier is a mapping 

function f of the form: f: voxel activation levels→Yi, i = 

1,…,9, where Yi are the 9 emotions, and where the voxel 

activation levels are the 240 mean activation levels of the 

selected voxels. We used a Gaussian Naïve Bayes (GNB)-

pooled variance classifier, i.e. a generative classifier that 

models the joint distribution of class Y and attributes and 

assumes the attributes X1,…,Xn  (n=240) are conditionally 

independent given Y. The classification rule is: 

 

 

 

where P(X|Y = yi) is modeled as a Gaussian distribution 

whose mean and variance are estimated from the training 

data
2
. In GNB-pooled variance, the variance of attribute Xj is 

assumed to be the same for all classes. This single variance 

is estimated by the sample variance of the pooled data for Xj 

taken from all classes (with the class mean subtracted from 

each value). 

 

Classifier Testing 
The classifier was tested on the mean of the two left-

out presentations of each word. This procedure was 

reiterated for all 15 possible combinations of leaving out two 

presentations (following convention, we refer to such 

combinations as “folds” in the text below). Between-

participant classification excluded data of the test participant 

                                                 
2
 We include the prior term, P(Y = yi), for the sake of 

completeness. The present analyses use a flat prior, as the 
experiment contains equal numbers of exemplars for all items. 

  

Y¬
yi

argmaxP(Y = yi) P(X j |Y = yi)
j

Õ
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from the training set. For picture classification, training 

included all presentations of the emotion words.  

The rank accuracy of the classification performance 

was computed as the normalized rank of the correct label in 

the classifier's posterior-probability-ordered list of classes 

(Just, et al., 2010). A rank accuracy was obtained for each 

fold, and these rank accuracies were averaged, producing a 

single value characterizing the prediction accuracy for each 

word. Finally, the mean rank accuracy across words was 

computed. 

 

Factor Analysis 
To factor the neural activity associated with the 18 

different emotion words into different components shared 

across participants and brain regions, we used a two-level 

exploratory factor analysis based on principal axis factoring 

with varimax rotation. At the first level, a separate factor 

analysis was run on each participant’s data, using as input 

the matrix of intercorrelations among the activation profiles 

of the 600 stable voxels in the brain. These 600 voxels were 

selected from 6 bilateral brain areas (frontal lobe, temporal 

lobe, parietal lobe, occipital lobe, cingulate cortex, and 

subcortical areas excluding cerebellum), taking the 100 most 

stable voxels within the corresponding area. The goal of 

each of these first-level (within subject) factor analyses was 

to obtain a set of subject-specific factors describing a 

distributed network involved in the representation of 

emotion. Next, a second-level (between subject) factor 

analysis was run to identify factors that were common across 

participants. The input to the second-level analysis consisted 

of the scores of all first-level factors (ten dominant first-level 

factors were obtained from each participant; for more detail 

on the factor analysis methods, see Just et al., 2010). We 

restricted analysis to the seven largest second-level factors, 

all with eigenvalues greater than one. Additional factors 

produced diminishing returns in characterizing the voxel 

activation profiles. Factor loading matrices from all first-

level and second-level analyses were also used to create a 

mapping between factors and voxels. For the first-level 

analyses, a voxel was uniquely assigned to one of the ten 

first-level factors for which it had the highest (absolute 

value) loading, provided that this loading was above a 

threshold value of 0.4. Similarly, for the second level 

analysis, a first-level factor was uniquely assigned to one of 

the seven second-level factors for which it had the highest 

(absolute value) loading, provided that this loading has was 

greater than 0.4. Considered together, the above mappings 

allowed us to assign a set of voxels to each of the second-

level factors. 

To interpret the factors emerging from this data-driven 

method, four main sources of information were used: 1) 

factor scores, indicating how the 18 emotions were ranked 

by a given factor; 2) locations of voxels underlying each 

factor, and previous fMRI research showing differential 

activation in these locations; 3) correlation of factor scores 

with participant ratings of the emotions along the 

dimensions of valence and arousal; and 4) correlation of 

factor scores and ratings of the emotion words by an 

independent, online sample of 60 participants. 

Results 
 

We first examined the ability of our classifier to 

identify a participant’s emotion on a particular trial on the 

basis of his/her neural activation during the other trials. We 

report the mean rank accuracy of the classification 

performance, that is, the percentile rank of the correct 

emotion category in the classifier’s posterior-probability-

ordered list of emotions, averaged across the 15 ways of 

choosing four of six presentations. If the classification were 

operating at chance level, one would expect a mean 

normalized rank accuracy of 0.50, indicating that the correct 

emotion appeared on average in the fifth position in the 

classifier’s ranked list of all nine emotions. The rank 

accuracies for this within-subject analysis ranged from 0.72 

to 0.90, with an average of 0.84, well above the chance 

classification rate of 0.5 (random permutation testing 

revealed that a mean rank accuracy greater than .51 would 

be significant at the p = .05 level). Mean rank accuracies for 

specific emotions averaged across participants ranged from 

0.77 to 0.89 (all p’s < .05, see Figure 1). There were no 

significant differences between pairs of words from the same 

emotion category (all uncorrected p’s > .05). In sum, a 

participant’s neural activation patterns on one subset of trials 

could be used to reliably identify their emotions on a 

separate subset of held-out trials, indicating that participants 

exhibited consistent patterns of neural activation for all 

emotion categories. 

Next we examined whether a participant’s specific 

emotions could be identified on the basis of other 

participants’ activation patterns. For these tests, the emotions 

experienced by each participant were identified using a 

classifier trained on the activation data from the other nine 

participants.  Despite the challenges presented by individual 

variability in functional organization and methodological 

difficulties in normalizing morphological differences 

(Baucom, et al., 2012), the classifier achieved a mean rank 

accuracy of 0.70, well above chance levels (rank accuracy of 

0.56 significant at the p = .01 level), with individual 

accuracies ranging from 0.51 to 0.81. Mean rank accuracies 

for specific emotions ranged from 0.61 to 0.81 (all p’s < .05, 

see Figure 1). Our classifier predicted the emotions 

experienced using activation patterns of other participants at 

significantly better than chance levels for eight of ten 

participants (see Table 1), suggesting that the neural 

correlates of emotional experience share significant 

commonality across individuals. 

Finally, we investigated whether patterns of activation 

observed in self-induced emotion trials could predict the 

emotional content of a stimulus from an entirely different 

modality. We trained a classifier using participants’ neural 

activation during word-cued self-induced emotions, and 

tested whether it could identify the emotional content of a 

visual image. Successful classification would indicate that 

the activations observed correspond to emotional experience 

in general, rather than to self-induced remembered or 

imagined emotional experiences specifically. This 

classification identified responses to disgust pictures with a
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Figure 1. Within-subject and between-subject classification rank accuracies by 
emotion. Error bars represent standard error. 

 

 

 

 

Table 1 – Classification Accuracy for each Subject 
 

 Subject Within 
Subject 

Between 
Subject 

Disgust Picture 
Classification 

1 0.87 0.77 1.00 

2 0.82 0.60 1.00 

3 0.72 0.51 0.75 

4 0.85 0.65 1.00 

5 0.90 0.79 1.00 

6 0.81 0.80 0.88 

7 0.81 0.80 0.88 

8 0.87 0.81 1.00 

9 0.88 0.72 0.63 

10 0.84 0.67 1.00 

Mean 0.84 0.71 0.91 
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rank accuracy of 0.91, well above chance rates (rank 

accuracy of 0.74 significant at the p = .01 level). With nine 

emotions to choose from, the classifier listed disgust as the 

most likely emotion 60% of the time, and as one of its top 

two guesses 80% of the time. Thus, even though the 

classifier had not encountered neural activation in response 

to pictures, it was able to accurately identify the emotional 

content of pictures. In contrast, the percentile rank of disgust 

classification for neutral pictures was 0.60 (there was no 

“neutral” category in the training set), significantly lower 

than the classification rate for disgust pictures (paired t(9)= 

3.48, p < .01). The results demonstrate a consistency in the 

neural representation to qualitatively different stimuli for at 

least one specific emotion. 

The average normalized ranks of classifier guesses for 

each target emotion are depicted in Figure 2. Each point 

corresponds to the average normalized rank (from zero to 

one) of an emotion, for the target emotion in question. For 

example, in the classifier’s ranked output of possible 

identifications in happiness trials, shown in the uppermost 

line, happiness achieved the highest rank, 0.89, and pride 

achieved the second highest rank, 0.80. The nine target 

emotions in Figure 2 are ordered from top to bottom in terms 

of the rank accuracy of the correct response, from happiness 

to envy. For all emotions, the emotion ranked by the 

classifier as most likely was in fact the correct emotion. 

Distances between emotions in Figure 2 correspond to 

relative differences between them according to the classifier 

on the basis of neural activation. Because the distances are 

relative, they depend on both the absolute difference 

between emotions as well as the set of emotions under study. 

Thus, for example, the relatively close correspondence 

between happiness and pride reflects both a similarity in 

their neural signatures and the fact that these were the only 

two positive emotions under study. In addition to this close 

correspondence of these two positive emotions, we found 

several noteworthy relationships: 1) anger was the negative 

emotion closest to the positive emotions, consistent with 

literature suggesting anger is positive in many respects 

(Lerner & Tiedens, 2006; Harmon-Jones, 2003; Harmon-

Jones, Harmon-Jones, Abramson & Peterson, 2009); 2) lust, 

a visceral state that some do not consider an emotion 

(Ekman, 1992; Izard, 2007), appears to be unlike both 

positive and negative emotions; 3) for negative emotions, the 

distance between an emotion and its nearest neighbor was 

greater for emotions considered “basic” (disgust, fear, 

anger, and sadness), than it was for non-basic emotions 

(shame, envy), suggesting that these emotions may in fact be 

more molar; and 4) several asymmetries exist. For instance, 

in happiness trials, anger achieved an average rank of 0.51, 

but in anger trials, happiness achieved an average ranking of 

just 0.33. This indicates that anger was more often confused 

with happiness when happiness was the target emotion than 

happiness was confused with anger when anger was the 

target emotion. More generally, the neural signatures for 

individual emotions provide an initial basis for relating 

emotions to one another. 

Regions responsible for these classifications were 

distributed throughout the brain (see Figure 3). They include 

a large number of anterior frontal and orbital frontal voxels, 

a prevalence uncommon in neurosemantic classification 

studies of physical objects (Just et al., 2010).  

Notably, successful identification is not dependent on 

occipital activation that might capitalize on visual 

differences between the word prompts (i.e. activation which 

would allow for a classification based on word length, 

between the shortest (sad) and longest (embarrassed) words). 

When voxels in the occipital cortex were excluded from the 

classifier input, mean rank accuracy remained unchanged at 

0.84 for within-subject classification, suggesting that the 

classification did not depend on a particular visual form. 

Though best classification accuracy was typically achieved 

with voxels taken from the entire brain, above chance 

classification rates could be achieved by selecting voxels 

from either the frontal, parietal, temporal, occipital, or 

subcortical regions in isolation (see Table 2), indicating that 

each of these regions encode emotion to a considerable 

degree. Thus, specific emotions can be decoded from 

distinct patterns of activation that are distributed across brain 

regions, but they can also be decoded from patterns of 

activation within a number of different individual brain 

regions. The distributed nature of neural activations 

associated with specific emotions provides further support to 

the results of recent meta-analyses which find that emotion 

inductions invoke a broad network of neural structures
 

(Lindquist, et al., 2012; Phan, Wager, Taylor, & Liberzon, 

2002).  

 
Factors underlying the emotion-related activation 

To determine whether the activation patterns 

underlying the 18 emotions could be reduced to a small 

number of dimensions, we applied factor analysis to the 

activations of the stable voxels. The analysis revealed four 

factors that encode emotion-relevant concepts, as well as a 

fifth factor that encodes the length of the stimulus word. 

These five factors, explaining 40.1% of the variance in 

signal change, indicate which properties of the emotions 

drove neural response (see Table 3).
3
 Each of these factors 

satisfied the K1 rule (i.e. eigenvalues greater than 1; Kaiser, 

1960). They also meet the more conservative thresholds 

indicated by parallel analysis (Horn, 1965), generated 

through simulated data. As with any factor analysis, 

interpretation of factors is somewhat subjective. Below, we 

suggest plausible interpretations for these factors by 

examining converging information from three sources: 1) 

loadings of the 18 emotion words on the factors, 2) neural 

functions that have been consistently attributed to the 

locations of voxels underlying the factors, 3) significant 

correlations between factor scores and ratings of emotion 

along valence and arousal dimensions made by participants 

outside of the scanner, and 4) significant correlations 

between factor scores and ratings of the social nature of 

emotion made by a separate group of participants.

                                                 
3
 Two additional factors were extracted but proved difficult to 

interpret (see Table 3). 
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Figure 2. Average normalized ranks for all emotions derived from within-
subject identification. Each line illustrates, for the target emotion listed on 
the left, the average normalized rank of classifier guesses. Error bars shown 
for the three highest ranked emotions represent standard error. Standard 
errors for all emotions ranged from 0.02 to 0.10, with a mean standard error 
for average positions of 0.06. See text for additional details. 

 

 

 

Table 2 – Classification Accuracies for Selected Brain Regions 
 

Region 
Within 
Subject 

Between 
Subject 

Disgust Picture 
Classification 

All .84 .71 .91 

All (Excluding Occipital) .84 .70 .93 

Frontal .83 .66 .89 

Parietal .78 .67 .81 

Temporal .80 .73 .90 

Occipital .75 .68 .79 

Subcortical .76 .70 .76 
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Figure 3. Group-level image of voxels used for within-subject classification. Images of the 
240 most stable voxels across six presentations of emotion words were superimposed on 
one another, with resulting clusters of 25 or more voxels depicted. Color intensity reflects 
the number of participants for whom the voxel was among the 240 highest in stability. 

 

 

The factor explaining the greatest variance appeared to 

encode valence, the goodness or badness of the emotional 

situation. Positive words had positive valence factor scores, 

negative words had negatives scores, and lustful and horny 

(arguably ambiguous in their valence) fell in between (see 

Table 3). Factor scores correlated nearly perfectly r(18) = 

0.96 (p < .001) with ratings of pleasantness of the emotional 

scenarios made by participants outside of the scanner (see 

Table 4). Neural regions underlying this factor were also 

consistent with a valence interpretation, including medial 

frontal regions implicated in core affect and emotion 

regulation (Lindquist et al., 2012; Blair et al., 2007; 

Beauregard, Levesque & Bourgouin, 2001) as well as orbital 

frontal and midbrain regions frequently associated with 

affective value computation (Bechara, Damasio, Tranel & 

Damasio, 1997; Rangel, Camerer & Montague, 2008; Rule, 

Shimamura & Knight, 2002; see Figure 4 and Table 5). 

A second factor appeared to correlate with arousal or 

preparation for action. Factor scores correlated with 

subjective ratings of arousal (r(18) = 0.49, p = .04; see Table 

4). Anger, fear and lust categories had the highest scores, 

whereas sadness, shame and pride had the lowest. Few 

clusters of voxels were identified as underlying this factor, 

but those that were support an arousal interpretation. These 

include areas of the Basal Ganglia and Precentral Gyrus (see 

Figure 4 and Table 5) implicated in action preparation, and a 

medial frontal region both anatomically and functionally 

connected to periaqueductal gray and the hypothalamus, 

regions thought to regulate physiological response to 

affective inductions (Kober et al., 2008).  

A third factor encoded whether or not the emotion had 

a social element (i.e., another person; Britton et al.2006). 

Physical disgust and revulsion, least likely to involve 

another person, had the highest scores, whereas jealousy, 

envy, horny, and lustful, all requiring a specific other, had 

the lowest scores. To test this interpretation, we asked an 

online sample of 60 participants to come up with scenarios 

for each emotion word, and then asked whether or not their 

scenario involved another individual. Scores of the social 

factor correlated significantly with the presence of another 

person, r(18) = 0.55, p = .02 (see Table 4). Voxels 

underlying the social factor came primarily from anterior 

and posterior areas of the cingulate cortex. These ‘default 

network’ regions have frequently implicated in person 

perception (Mitchell, 2008).  

A fourth factor appeared to uniquely identify lust, 

separating it from other emotion categories. Lustful and 

horny had the highest scores, and no other emotion category 

had high factor scores (see Table 3). A separate factor 

identifying lust is consistent with classification results that 

suggest that no other emotion category was frequently 

confused with it (see Figure 2). Neural regions associated 

with this factor include the fusiform gyrus and inferior 

frontal areas implicated in face processing (Said, Moore, 

Engell, Todorov, & Haxby, 2010; Kanwisher, McDermott & 

Chun, 1997), as well as areas that overlap substantially with 
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Table 3 – Factor Scores for Emotion Words and Emotion Categories 
 

Factor 1 2 3 4 5 6 7 

Words        
Angry -0.56 -0.04 0.57 0.04 1.19 -0.57 -1.56 

Enraged -0.87 0.04 0.96 0.91 1.43 -0.81 -0.89 

Disgusted -0.47 2.24 -0.08 -1.29 -0.53 0.74 0.40 

Revulsed -0.73 1.83 0.08 -0.79 0.09 -0.59 0.54 

Envious -0.36 -1.36 0.88 -0.57 -0.19 1.19 -0.50 

Jealous -0.08 -1.75 0.91 -0.93 0.25 0.63 -0.73 

Afraid -0.50 0.46 -1.03 1.24 1.00 0.75 -0.20 

Frightened -0.88 -0.01 -1.18 1.75 0.74 2.05 0.68 

Happy 1.55 0.32 -0.84 0.14 0.53 -1.14 -0.44 

Joyous 1.81 0.76 -0.81 -0.18 0.32 0.48 -0.95 

Horny 0.49 -0.64 -0.16 -1.92 2.09 -0.74 1.44 

Lustful 0.53 -1.15 -0.53 0.57 -0.30 -0.36 2.69 

Admirable 1.31 0.34 1.74 0.16 -0.88 0.69 0.64 

Proud 1.97 -0.19 0.02 0.84 -1.08 0.28 -0.84 

Gloomy -1.07 -0.83 -1.62 -1.65 -1.52 0.79 -0.65 

Sad -0.62 -0.36 -1.31 0.32 -1.39 -2.11 -0.62 

Ashamed -0.90 -0.48 0.65 1.11 -0.87 -1.27 0.63 

Embarrassed -0.62 0.82 1.75 0.26 -0.87 -0.01 0.36 

        

Categories        

Anger -0.71 0.00 0.76 0.47 1.31 -0.69 -1.22 

Disgust -0.60 2.03 0.00 -1.04 -0.22 0.08 0.47 

Envy -0.22 -1.56 0.89 -0.75 0.03 0.91 -0.62 

Fear -0.69 0.22 -1.10 1.50 0.87 1.40 0.24 

Happiness 1.68 0.54 -0.83 -0.02 0.42 -0.33 -0.69 

Lust 0.51 -0.90 -0.35 -0.68 0.90 -0.55 2.06 

Pride 1.64 0.08 0.88 0.50 -0.98 0.48 -0.10 

Sadness -0.84 -0.59 -1.46 -0.67 -1.46 -0.66 -0.63 

Shame -0.76 0.17 1.20 0.69 -0.87 -0.64 0.49 

        

Interpretation Valence Social   Arousal 
Word 

Length 
Lust 

% variance 9.13% 8.63% 7.85% 7.74% 7.62% 7.49% 7.26% 
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Figure 4. Voxel groups derived from factor analysis, threshold of 0.5, cluster size of 10. See text for additional details. 

 

 

 

 

 

Table 4 – Factor Correlates 
 
 

 Pre-scan Ratings Online Sample  

Factor Pleasant Arousing Certain Control Attention Valence Person 
Word 

Length 

1 0.96 0.71 0.73 0.89 0.74 0.96 -0.17 -0.26 

2 0.00 0.06 0.27 0.21 0.00 -0.10 0.55 0.35 

3 -0.03 -0.05 0.12 0.01 -0.26 -0.01 -0.18 0.47 

4 -0.08 0.12 -0.34 -0.23 0.16 -0.07 0.27 0.13 

5 0.08 0.49 0.16 0.07 0.45 0.03 -0.26 -0.11 

6 -0.02 -0.03 -0.22 -0.03 -0.06 0.03 0.37 0.55 

7 0.15 0.27 0.05 0.11 -0.02 0.20 -0.13 0.38 

 

Table 4 – Correlations between factor scores and ratings made by participants prior to scanning session, ratings made by 
independent online sample, and length of stimulus words. 
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Table 5 – Neural Clusters Identified by Factor Analysis 
 

Factor Label x y z 
No. of 
Voxels 

Radius 
(mm) 

1 
      

 
Frontal_Sup_Medial_R 6 52 5 187 16 

 
Putamen_R 25 5 -3 105 12 

 
Frontal_Mid_Orb_L -41 49 -6 88 9 

 
Temporal_Pole_Mid_R 41 14 -35 84 9 

 
Hippocampus_L -28 -13 -19 47 9 

 
Cerebellum 20 -47 -23 38 10 

2 
      

 
Cingulum_Ant_R 9 46 18 44 8 

 
Postcentral_L -46 -13 43 43 7 

 
Cingulum_Post_L 0 -50 29 38 8 

 
Precentral_R 49 -7 38 32 6 

 
Cingulum_Ant_L -7 37 -5 24 6 

 
Putamen_R 28 -3 8 23 5 

3 
      

 
Frontal_Sup_Medial_L 0 35 35 54 12 

 
Precuneus_L -1 -56 26 42 7 

 
Occipital_Mid_L -43 -68 24 29 7 

 
Frontal_Sup_L -12 57 29 28 6 

 
Angular_R 45 -64 25 23 6 

 
Temporal_Mid_L -58 -42 -2 16 4 

4 
      

 
Occipital_Sup_L -15 -94 31 15 5 

 
Hippocampus_L -27 -14 -15 10 4 

5 
      

 
Caudate_R 18 3 22 11 4 

 
Precentral_R 20 -27 67 11 4 

 
Cingulum_Ant_L -5 46 2 10 5 

6 
      

 
Occipital_Sup_L -12 -96 5 39 7 

 
Calcarine_R 17 -89 2 22 6 

 
Lingual_R 21 -84 -14 13 4 

7 
      

 
Temporal_Mid_L -49 -65 3 186 12 

 
SupraMarginal_L -59 -30 33 80 13 

 
Parietal_Sup_L -17 -67 47 72 9 

 
Cingulum_Post_L -3 -48 31 45 8 

 
Calcarine_L -12 -100 -2 37 6 

 
Frontal_Inf_Tri_L -45 37 10 36 8 

Threshold of 0.5, minimum cluster size of 10. For each factor, the six largest clusters are shown. 
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those previously reported in the processing of sexual stimuli 

(Mouras, Stoleru, Bittoun, Glutron, Pelegrini-Issac, Paradis 

& Burnod, 2003). 

Finally, one factor encoded word length. Factor scores 

correlated with length of stimulus words (r(18) = 0.55, p = 

.02; see Table 4), with frightened showing the highest score, 

and sad the lowest. Neural regions underlying this factor 

showed clusters only in the occipital cortex
4
.   

 

Discussion 
 

We used a Gaussian Naïve Bayes pooled variance 

classifier to show that specific emotional states can be 

identified on the basis of their neural signatures, and that 

these signatures are reliably activated across episodes and 

across individuals. For the only emotion category tested 

(disgust), the results further indicate reliable activation 

across different types of emotional experience. Factor 

analysis suggests that groups of voxels associated with 

valence, arousal, sociality and lust underlie the successful 

classifications. The results inform our understanding of 

emotional processes and suggest the potential to infer a 

person’s emotional reaction to stimuli on the basis of neural 

activation. 

The results may also shed some light on a contentious 

debate in the psychology of emotion. Acceptance of the 

biologically basic view of emotions has been hampered by 

the failure to identify neural signatures associated with 

specific emotions. The reliability of classifications achieved 

suggests that such signatures do exist and that they share 

commonality across individuals. Classification accuracies 

achieved thus suggest the possibility of a neural architecture 

for emotion, and in so doing provide modest support for a 

biologically basic view. 

However, the results are not inconsistent with 

constructionist theories – cognitive constructions could 

likewise display specific and identifiable patterns. Moreover, 

the factors found to underlie neural activations include 

valence and arousal, which feature prominently in 

constructionist theories (Lindquist & Barrett 2012; Russell, 

2003; Lang, 1995). They emerge here from a data-driven 

analysis and their specification includes a set of associated 

neural regions. Other factors are less frequently included as 

building blocks of emotion, such as a social factor 

suggesting that the neural representation of certain emotions 

includes representation of interpersonal interaction, and a 

lust factor that is distinct from general arousal. Despite its 

prominence in the literature, we did not find a factor 

corresponding to approach and avoidance. These patterns in 

the neural activation underlying emotions may provide 

insight into their psychological organization. 

                                                 
4
 Note that successful classification did not depend on occipital 

cortex. Though these regions are capable of differentiating 
between emotional stimuli, they are not necessary for successful 
classification. 

Also consistent with the constructionist view, each of 

the factors identified encompasses voxels in regions linked 

to wide variety of functions, including primary sensory and 

motor functions, cognitive conflict, person and self-

perception, and top-down processes like emotion regulation. 

Valence, arousal, lust, and social presence are not 

represented in single brain regions. This diversity speaks to 

the fact that emotional experiences, like most other complex 

thoughts, are represented in a broad array of neural circuits.  

In sum, the results point to a middle ground in the basic 

vs. constructionist debate. Decomposable and identifiable 

patterns of activation characteristic of specific emotions 

exist and vary in predictable ways: the neural signature of 

anger is different than that of sadness, which is different than 

that of disgust. These signatures share commonality across 

emotional episodes, across individuals and across different 

modes of emotion induction. But these patterns are not 

solely comprised of dedicated emotional circuitry. Though 

they are distinguishable, they are far from simple, and what 

best differentiates emotions at the neural level may include 

concepts not typically thought of as emotional (Loewenstein, 

2007; Kober et al., 2008; Lindquist & Barrett, 2012).  

Beyond their theoretical implications, the present 

results suggest a method of measuring emotional response 

which can complement existing techniques. In general, 

development of reliable measures of specific emotion has 

proven difficult. Self-report, still the gold standard 

(Robinson & Clore, 2002), is vulnerable to deception and 

demand effects and has severe limitations when one accepts 

the view that some emotions are not experienced 

consciously (Winkielman & Berrridge, 2004; LeDoux, 

1996). Physiological measures such as heart rate and skin 

conductance show some ability to discriminate between 

broad categories of emotion but have limited ability to make 

finer classifications (Larsen, Berntson, Poehlmann, Ito, & 

Cacioppo, 2008; Levenson, 2003). Facial expressions have 

also been used to categorize a subset of emotions (Ekman & 

Friesen, 1971), but emotions can occur in the absence of 

facial expressions and facial expressions can occur in the 

absence of emotion (Russell, 1971). Neural circuits that 

mediate certain emotion-related behaviors (e.g. freezing, 

LeDoux, 2000; Panksepp, 1998) have been identified, but 

researchers have yet to achieve reliable identification of 

emotions on the basis of neural activation (Barrett, 2006). In 

short, existing methods of emotion measurement suffer from 

a variety of limitations (Mauss & Robinson, 2009). 

The present experiment provides the first steps towards 

a novel technique for emotion identification. Specific 

emotions were identified on the basis of neural activation 

reliably, even when classifier training used separate 

subjects
5
. Moreover, a classifier trained on imagined 

emotional experiences reliably identified the emotional 

content of stimuli from an entirely different modality. The 

                                                 
5 Though our experiment used professional actors, pilot 
participants who were not actors exhibited similar classification 
rates (within subject classifications of 0.77 and 0.87). 
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systematicity of the neural activation patterns suggests the 

possibility of producing a generative model that could 

predict an individual’s emotional response to an arbitrary 

stimulus (e.g. a flag, a brand name, or a political candidate). 
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