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Abstract

Cultural trends and popularity cycles can be observed all around us, yet our theories of social

influence and identity expression do not explain what perpetuates these complex, often unpre-

dictable social dynamics. We propose a theory of social identity expression based on the opposing,

but not mutually exclusive, motives to conform and to be unique among one’s neighbors in a so-

cial network. We then model the social dynamics that arise from these motives. We find that the

dynamics typically enter random walks or stochastic limit cycles rather than converging to a static

equilibrium. The dynamics also exhibit momentum, preserve diversity, and usually produce more

conformity between neighbors, in line with empirical stylized facts. We also prove that without

social network structure or, alternatively, without the uniqueness motive, reasonable adaptive dy-

namics would necessarily converge to equilibrium. Thus, we show that nuanced psychological

assumptions (recognizing preferences for uniqueness along with conformity) and realistic social

network structure are both critical to our account of the emergence of complex, unpredictable

cultural trends.
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Introduction

Popular cultural practices come into and out of fashion. Researchers have observed boom-and-

bust cycles of popularity in music, clothing styles, automobile designs, home furnishings, given

names, and even management practices (Shuker, 2016; Richardson and Kroeber, 1940; Reynolds,

1968; Sproles, 1981; Berger, 2008; Berger and Le Mens, 2009; Lieberson, 2000; Lieberson and

Lynn, 2003; Abrahamson, 1991; Zuckerman, 2012). Popularity cycles appear to be driven by

social influence, e.g., by people adopting the music that their friends listen to or that they perceive

as popular (Salganik et al., 2006; Salganik and Watts, 2008). At the individual level, people are

constantly looking for new ways to express their preferred social identities (Hetherington, 1998;

Rentfrow and Gosling, 2006; Berger, 2008; Chan et al., 2012). The resultant social dynamics do

not typically converge to equilibrium. What are the social forces that lead to such perpetual change

and novelty?

Social pressure to conform is a powerful force when behavioral patterns across a society shift

in unison. Psychologists since Asch have recognized the remarkable strength of the conformity

motive, stemming from a fundamental goal to fit in as part of a social group (Asch, 1955, 1956;

Cialdini and Trost, 1998). People tend to feel uncomfortable about considering, holding, and

expressing beliefs that conflict with the prevailing views around them as well as about behaving

oddly, in ways that might expose oneself as an outsider to the group (Turner et al., 1987; Golman

et al., 2016). Given the conformity motive alone, we might expect to observe convergence to

an equilibrium in which society becomes monolithic, yet instead we actually observe persistent

diversity.

Opposing the motive to conform is a similarly universal human need for uniqueness (Snyder

and Fromkin, 1980; Lynn and Snyder, 2002). While the desire to differentiate oneself clearly

works against the desire to blend in (Imhoff and Erb, 2009), Chan, Berger and van Boven (2012)

demonstrate that people simultaneously pursue assimilation and differentiation goals, aiming to be

identifiable, but not identical (see also Leibenstein, 1950). Preferences for idiosyncratic behavioral

patterns can preserve diversity (Smaldino and Epstein, 2015). Still, the question remains why
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behavioral patterns often do not remain in a stable equilibrium with everyone finding an optimal

balance between distinctiveness and conformity. Why instead do behavioral patterns go through

perpetual change, with particular behaviors cycling into and out of fashion as cultural trends play

out?

One explanation, tracing back to Simmel (1957), is that an upper class tries to distinguish itself

from the common folk while the common folk try to imitate them. In modern models of identity

signaling, membership in one group may be preferable to membership in another, and people

want to strategically distinguish themselves from those in the less favorable group (Berger and

Heath, 2007). The resulting dynamic of imitation and differentiation (or “chase-and-flight”) can

lead to fashion cycles (Pesendorfer, 1995; Bakshi et al., 2013). (Relatedly, games like “matching

pennies” also generate best-response cycles involving imitation and differentiation, which have

been associated with fashion cycles (Karni and Schmeidler, 1990; Zhang et al., 2018), but the

confined strategy space in these games leaves little room for the kind of unpredictable boom-and-

bust cycles we explore here.) Undoubtedly, there are contexts in which elites initiate fashions and

everyone else strives to imitate them, but empirical research shows that in many other contexts,

groups with lower or equal status also strive to differentiate themselves (Berger and Heath, 2008).

A dynamic of mutual differentiation, without imitation, cannot account for popularity cycles.

Other models of popularity cycles rely on people continually discovering new behaviors, which

spread through the population and then get discarded, either through random imitation (Bentley

et al., 2004, 2007), or with a motive for conformity or anti-conformity (Acerbi and Bentley, 2014),

or with the co-evolution of behavior and preferences (Acerbi et al., 2012). These models account

for boom-and-bust cycles of popularity, but do not attempt to explain the source of the new behav-

iors that continually enter the model and keep the dynamics from converging to equilibrium.

This paper explores a new account of the dynamics of cultural trends and popularity cycles. We

show that along with conformity and uniqueness motives, a realistic network of social interaction

may be a critical ingredient for complex social dynamics to emerge. Specifically, we show that

reasonable adaptive dynamics that would necessarily converge to a static equilibrium given ran-
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dom interactions in a well-mixed pool of people instead typically enter random walks or stochastic

limit cycles, and thus never converge, when interactions are restricted to individuals’ local neigh-

borhoods in their social networks.

Popularity cycles in the expression of social identities display a number of empirical regulari-

ties, beyond the simple observation that they do not converge to equilibrium. They often preserve

diversity, with different people expressing different identities. A hallmark pattern of social influ-

ence, that friends or acquaintances tend to behave similarly, holds for identity expression as well

as other kinds of behaviors (Christakis and Fowler, 2013), and commonalities can extend across

large communities. For example, there are regional correlations in the frequencies of given names

across U.S. states (Barucca et al., 2015). Non-controversial behaviors often spread most quickly

through “weak ties” in loosely clustered networks (the strength of the weak tie being its tendency

to serve as a bridge between groups with otherwise limited contact), whereas behaviors that require

social reinforcement from multiple sources, e.g., innovative health behaviors or participation in so-

cial movements, tend to spread more quickly through more tightly clustered social networks, in a

process of “complex contagion” (Centola and Macy, 2007; Centola, 2010). As contagions spread,

popularity cycles exhibit momentum – changes in popularity tend to persist in the same direction

over time (Gureckis and Goldstone, 2009). Moreover, consistent with the motives we assume for

our model, trends of rising popularity may spill over to other similar, but not identical, expressions

of identity, while over-popularity actually decreases further adoption of particular expressions of

identity (Berger et al., 2012). Here we find that the social dynamics that emerge in our model with

social network structure exhibit momentum, preserve within-group diversity, and usually produce

more conformity between network neighbors.1

A natural theoretical approach for investigating social influence on decisions is to use game

theory. The conformity motive in isolation would create a Keynesian beauty contest, in which what

is cool (like what is beautiful) is just what everybody else believes is cool (Keynes, 1936). The

1In contrast, chase-and-flight dynamics between stratified social classes do not preserve diversity within the class
that is trying to imitate the elite. And models that assume completely random drift cannot account for the empirical
pattern that popularity cycles exhibit momentum.
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uniqueness motive in isolation would create a congestion game, in which the objective is simply

to be distinct from as many other people as possible (Rosenthal, 1973). Both games are known

to be potential games, for which convergence to a pure strategy Nash equilibrium is practically

guaranteed (Monderer and Shapley, 1996a,b). When both motives co-exist and the game is played

on a realistic social network, however, the dynamics are more complex.

Cultural trends can be modeled more realistically as the dynamics of a game on a social net-

work because social influence is mediated by a social network. Social influence on expressions of

individual identity is transmitted whenever an individual observes another person whom he would

like to identify with, so the relevant social network is defined by directed connections correspond-

ing to observation. The connected components of the social network may correspond to distinct

social groups, each with its own emergent subculture.

The desire for uniqueness within one’s own social group should not be conflated with a desire

for differentiation across groups (Chan et al., 2012). Our model features in-group conformity and

uniqueness motives; it could be augmented with a desire for differentiation across groups, but for

parsimony we assume that people care only about their fit within their own groups.

Model 1: Social Identity Expression in a Well-Mixed Population

We model the expression of social identity as a game played by a population of N individuals.

Let us say there are m aspects of identity (or identity-relevant traits). Each person i adopts an

expression of identity xi = xi,1, ..., xi,m, where the choice of each expressed trait xi,µ ∈ {a..b}d

can be represented as a tuple of d integers from some interval.2 For example, in the case of

choosing an outfit to wear, two traits could be the color of the shirt and the color of the pants,

and three integers between 0 and 255 might correspond to shades of red, green, and blue that mix

together to form any color in an RGB color system.

A person’s degree of conformity in the population depends on the (Euclidean) distance between

2The dimensionality d of the tuple and the boundaries of the interval a..b can certainly vary for different traits, but
we omit subscripts on these parameters specifying a particular trait to simplify the notation.
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his expressed identity and the average (population mean) expression of identity, ‖xi − x̄‖. A

person’s degree of uniqueness in the population depends on the number of others who express the

exact same identity-relevant trait as him, averaged across all traits. For individual i and trait µ,

denote the number of others who adopt his exact same expression of this trait as ni,µ(X), where X

is the entire population’s profile of expressed identities, and let ni(X) denote the average amount

of shared traits (i.e., ni(X) = 1
m

∑
µ ni,µ(X)). Putting together the conformity and uniqueness

motives, we model person i’s utility given the profile of expressed identities as

ui(X) = −‖xi − x̄‖2 − λni(X) (1)

where λ is a parameter that describes the strength of the uniqueness motive relative to the confor-

mity motive. This utility function describes a person whose goal is to be similar to everybody, yet

the same as nobody (Chan et al., 2012).

Over time people may change their expressions of identity to achieve higher utility. We need

not fully prescribe this process, but assume only that people make changes that increase their own

utility, in accordance with some better-reply dynamics (Monderer and Shapley, 1996b; Friedman

and Mezzetti, 2001).

Definition 1 (Better-reply dynamics). At any given time t, one person i may consider switching

from xi to x′i; he switches if and only if ui(X ′) > ui(X); and for each person i and any best

response x∗i (to X(t)), the expected time until person i considers switching to x∗i is finite.

The motivation for better-reply dynamics is that people are boundedly rational and adaptive

(Gigerenzer, 2000). They can see what the people around them are doing and can search for

something better (myopically), but they do not instantaneously react to changes in other people’s

behavior or anticipate these changes before they occur (Fiske and Taylor, 2013). Almost all com-

monly assumed adaptive learning dynamics are particular specifications of better-reply dynamics

(Hofbauer and Sigmund, 2003).
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Results: Social Dynamics in a Well-Mixed Population

Theorem 1. Suppose people derive utility from both their conformity and their uniqueness in the

population, as in Equation (1). Then any better-reply dynamics necessarily converge to a pure

strategy Nash equilibrium.

The proof is presented in the SM Appendix. It follows from Lemma 1 in the SM Appendix,

which identifies an exact potential function for this game. Two examples of Nash equilibria, among

many that exist, are shown in Figure 1.

Figure 1: Two Nash equilibria distributions of identity expression for populations of N = 100
individuals. We set λ = 1.5 for this illustration. (A): Expression of a single one-dimensional
trait over the domain {0..15}. (B): Expression of a single two-dimensional trait over the domain
{1..10}2. By symmetry, the distributions can be shifted anywhere within these (or wider) domains,
and many strategy profiles give rise to the same population distributions. Even after accounting for
these symmetries, these Nash equilibria are not unique.

A B

Theorem 1 says that in a well-mixed population, in the long run we will not see popularity

cycles, perpetual change, or novelty. The fact that we do, in reality, observe popularity cycles,

perpetual change, and novelty suggests that we should consider a more realistic model. We now

consider the social dynamics that result from assuming that people care only about the expressed

identities of their immediate neighbors in their social network.
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Model 2: Social Identity Expression in Social Networks

A social network is described by an adjacency matrix A where aij = 1 if person i observes, and

thus cares about, person j’s expressed identity (and equals 0 if not). Let η(i) = {j : aij = 1}

denote the set of people that person i observes, i.e., his neighbors.

Conformity among one’s neighbors depends on distance from one’s neighbors’ average iden-

tity, x̄η(i). Uniqueness among one’s neighbors depends on the average amount of shared traits

among one’s neighbors (or, more precisely, the average across the different aspects of identity of

the number of neighbors who express the same trait as oneself), denoted ñi(X; η(i)). Thus, we

now model person i’s utility given the profile of expressed identities X and his set of neighbors

η(i) as

ui(X) = −‖xi − x̄η(i)‖2 − λ ñi(X; η(i)). (2)

Results: Social Dynamics in Social Networks

Theorem 2. Suppose people derive utility from both their conformity and their uniqueness among

their neighbors in a social network, as in Equation (2) with λ > 1 and m = 1. Then there exists

a social network adjacency matrix Â such that no pure strategy Nash equilibrium exists and, thus,

better-reply dynamics never converge to an absorbing state.

Proof. By construction. We provide an example of a social network with N = 3 people that

illustrates the result. (Any larger social network that contains this network as an out-component

also suffices.) Let person 1 observe (only) person 2, person 2 observe (only) person 3, and person

3 observe (only) person 1.
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Observe that the best response correspondence for each person is as follows:

x∗1 ∈ {x : ‖x− x2‖2 = 1}

x∗2 ∈ {x : ‖x− x3‖2 = 1}

x∗3 ∈ {x : ‖x− x1‖2 = 1}.

Each person wants to be one unit of distance away from the person he is observing. If we associate

the parity of an expressed identity x with two colors (i.e., distinguish only whether the sum of

its integer coordinates is even or odd), then each person wants to have the color different from the

person he is observing. However, it is impossible for all three people to simultaneously choose best

responses because of the mathematical fact that odd-length cycle graphs are not 2-colorable.

Theorem 2 says that with only local interactions in a social network, perpetually changing

identity expression and popularity cycles become possible. Observe that the uniqueness motive is

critical for obtaining this result. If we were to eliminate the uniqueness motive by setting λ = 0,

then any homogeneous profile of expressed identities (with xi identical for all i) would be a pure

strategy Nash equilibrium, regardless of the social network structure. The uniqueness motive along

with the local interactions together allow for more realistic, complex social dynamics.

Still, Theorem 2 only provides an existence result constructed with a highly stylized, simplistic

social network. It does not tell us whether complex social dynamics typically emerge from our

model when people are connected by realistic social networks. Real social networks have commu-

nity structure with high levels of triadic closure (i.e., clustering or transitivity) – people associate

mostly in small, tightly knit groups (Granovetter, 1973; Girvan and Newman, 2002; Newman and

Park, 2003). This community structure does not typically include the kind of isolated cycle in-

voked in the proof of Theorem 2. We now use computational modeling to explore the dynamics of

our model on realistic social networks.
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Realistic Social Networks

We used a variant of the Jin-Girvan-Newman algorithm (Jin et al., 2001) to create a sample of 25

directed social networks with positive levels of clustering and community structure and limited

out-degree. The networks have N = 100 people, each of whom can observe up to a maximum

of zmax neighbors. Connections are formed and broken randomly, with a tendency to begin ob-

serving specific individuals who currently either observe or are observed by others who one is

already observing. (Real social networks exhibit both patterns of directed closure (Brzozowski

and Romero, 2011).) This tendency for clustering depends on a free parameter r. We varied r in

{.01, .05, .1, .5, 1} and zmax in {3..7} to create the 25 networks. (See Materials and Methods for

additional details.) Networks with higher zmax have more connections, and networks with higher

r are more tightly clustered.

For each of these social networks, we repeatedly computed better-reply dynamics, specified

with a simple random search for better replies based on the utility function in Equation (2) with

λ in {0.5, 1.5, 5.0}, to see how often the dynamics converged to equilibrium within 1, 000, 000

time steps. (Different specifications of better-reply dynamics could lead to different patterns of

identity expression, but they all share the property that their rest points are the Nash equilibria

of the game, so our results should be robust across this class of dynamics.) For robustness we

considered three different specifications of the space of possible identities: first, m = 1, d = 1,

and {a..b} = {0..99}; second, m = 1, d = 2, and {a..b} = {0..9}; and third, m = 2, d = 1,

and {a..b} = {0..9}. (Higher dimensional spaces for identity expression would be more realistic,

but are too computationally intensive to explore. We simply made the spaces large enough that

everybody could express unique identities.) We repeated each computation 10 times, for a total

of 2250 trials across the 9 different parameter specifications and 25 networks. (See Materials and

Methods for additional details.) If the dynamics did not converge within 1, 000, 000 time steps, we

classified them as non-convergent (for that trial). (We believe the cutoff at 1, 000, 000 time steps

provides ample time for convergence, because we first computed the dynamics in the full, well-

mixed population, for which Theorem 1 tells us that they must converge, and found that across 90
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trials, the dynamics always converged within 2000 time steps. We discuss additional checks on the

sufficiency of 1, 000, 000 time steps below.)

Computational Results: Frequency of Non-Convergence

The frequency of non-convergent trials varied with the parameters specifying the game and the

network formation process, with the value of λ in particular playing a critical role. When λ = 0.5,

the dynamics usually converged to equilibrium (68.53% of these 750 trials). Figure 2A shows

the frequency of convergent trials for each of the 25 networks, for each of the three specifications

of the space of identities, with λ = 0.5. Darker shading indicates higher frequencies of conver-

gence. The frequency of convergence varies non-monotonically with the maximum out-degree of

the network zmax. For zmax = 3 or 4, the dynamics almost always converge, whereas for zmax = 7,

the dynamics usually do not converge. Yet there is more convergence with zmax = 6 than with

zmax = 5.

When λ = 1.5, the dynamics usually did not converge (only in 18% of these 750 trials).

Figure 2B shows the frequency of convergent trials for each of the 25 networks, for each of the

three specifications of the space of identities, with λ = 1.5. Four of the networks with zmax = 4

usually converged (specifically, those with r > .01). A few of the other networks occasionally

converged. Many never converged at all.

When λ = 5, the dynamics almost never converged. The only exception was the network with

zmax = 4 and r = 1, which converged in all 10 trials with m = 1 and d = 1. However, none of the

other 740 trials with λ = 5 converged.

The results presented here leave room for two arguments raising concern that perhaps the dy-

namics would always eventually converge if they just had more time to continue running. First, it

is surprising to see so many parameter specifications for which the dynamics sometimes converge

and other times do not. We might have expected non-convergent trials whenever there is no pure

Nash equilibrium, but that whenever such an equilibrium exists and convergence is possible, it

would eventually occur. Perhaps it just needs more time. However, even when a pure Nash equi-
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(A) λ = 0.5

(B) λ = 1.5

Figure 2: Frequency of convergent trials for each network. Darker shading indicates higher fre-
quencies of convergence. The trials with λ = 5 are omitted because they almost never converged.

librium does exist, allowing the dynamics to converge in some trials, it is possible for the dynamics

to enter a random walk on an absorbing subspace, from which it is no longer possible to reach the

equilibrium. This could explain the observed frequencies of convergence that are positive but still

less than 100%. Still, a second cause for concern is that larger values of λ give the better-reply

dynamics more possible states to explore when a neighbor adopts one’s own identity. Thus, we

should expect it to take longer to reach an equilibrium with larger values of λ. If the dynamics

usually converge with λ = 0.5, might they be on their way, but not quite there yet, with larger

values of λ?

A few additional pieces of data reassure us that most of the trials we have classified as non-
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Figure 3: Percentage of individuals satisfied over 1,000,000 time steps for each trial with m =
1, d = 1, and varying λ, for networks with r = 1 and varying zmax.

convergent are not artifacts of terminating the computation too quickly. First, for each trial we

examine the fraction of individuals that are satisfied with their current identities every 1000 time

steps during the trial. Convergence to equilibrium occurs if and when everybody is satisfied. So,

the trajectories of the percentage of satisfied individuals also reveal the times to reach equilibrium,

when convergence occurs. Figure 3 shows the percentage of satisfied individuals over time for

each trial with m = 1, d = 1, and varying λ, for networks with r = 1. Figures SM1 and SM2

in the Supplemental Materials show the corresponding results with m = 1, d = 2 and with m =

2, d = 1 respectively. The results for networks with r < 1 look similar and are omitted. Across

the board, when the dynamics do converge to equilibrium, they tend to do so quickly. Although

the distribution of convergence times does have a fat tail, it certainly appears that convergence

becomes less and less likely over time. Additionally, while the percentage of satisfied individuals

appears to bounce around randomly, for many of the parameter values it appears to be bounded

well below 100%.

The trajectories of the percentage of satisfied individuals suggest that the trials we have deemed

non-convergent really would never converge, but of course there can be no guarantee. With
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N = 100 individuals choosing among 100 possible identities, it is simply not computationally

feasible to check every possible scenario. However, with N = 8 individuals choosing among 8

possible identities, it is feasible to exhaustively search for equilibria. We created an additional

social network using the same algorithm with zmax = 3 and r = 1, but with N = 8. Once again,

the better-reply dynamics with λ = 5 and m = 1, d = 1, and {a..b} = {0..7} did not converge.

We then exhaustively searched every profile of identities on this space and verified that no pure

Nash equilibrium exists. This guarantees that the dynamics would never converge. This network

does not contain an isolated odd-cycle, which our proof of Theorem 2 relied on, but it provides an-

other example that shows that non-convergence is possible, and moreover can occur with realistic

network structure.

We interpret these results to mean that when the uniqueness motive is sufficiently strong, the

dynamics on realistic social networks usually will not converge. However, if the uniqueness motive

is too weak, individuals feel little pressure to differentiate themselves, and they may settle into an

equilibrium with overlapping identities.

Computational Results: Conformity

We further explore the dynamics by observing the trajectories of identity expression over the initial

10, 000 time steps. Clearly, because of the uniqueness motive, there will always be some diversity

of identity expression. As the uniqueness motive gets stronger, i.e., as λ increases, we expect to

observe less conformity. Sure enough, this is the case. Figure 4 displays the distributions of the

distances from individuals’ identities to the average identity in the population and to the average

identity of their neighbors in the network, ‖xi − x̄‖ and ‖xi − x̄η(i)‖ respectively, measured at

the 10, 000th time step, for m = 1, d = 1, and varying λ, aggregating trials across the different

networks. Figures SM3 and SM4 in the Supplemental Materials show the corresponding results

for m = 1, d = 2 and for m = 2, d = 1 respectively.

We first compare the average distance to the population mean expressed identity across differ-

ent values of λ. The average distance to the population mean increased from 0.59 (SD = 0.57)
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Figure 4: Box plots showing distances from individuals’ identities to the average identity of all
individuals in the population and to the average identity of their neighbors in the network, measured
at the 10, 000th time step, for m = 1, d = 1, and varying λ, aggregating trials across the different
networks.

when λ = 0.5 to 0.99 (SD = 0.83) when λ = 1.5 to 1.45 (SD = 1.13) when λ = 5. Both of

these increases were statistically significant with p < .001 in t-tests (t(440040) = −195.69 for

the comparison between distances when λ = 0.5 and λ = 1.5, and t(460375) = −162.82 for the

comparison between distances when λ = 1.5 and λ = 5). We then compare the average distance

to one’s neighbors across different values of λ. The average distance to one’s neighbors increased

from 0.61 (SD = 0.26) when λ = 0.5 to 0.85 (SD = 0.58) when λ = 1.5 to 1.25 (SD = 0.86)

when λ = 5. Again, both of these increases were statistically significant with p < .001 in t-tests

(t(349573) = −191.64 for the first, and t(436957) = −191.08 for the second).

We also check whether the expressed identities display the signature empirical pattern associ-

ated with social influence: do individuals express identities that are more similar to their network

neighbors’ identities than to the average member of the population as a whole? The differences

between the distances to the population mean identity and to the mean of one’s neighbors’ identi-

ties appear to be small in Figure 4, but they are all statistically significant with p < .001 in paired

t-tests (t(249799) = −22.28 for the comparison when λ = 0.5, t(249799) = 91.14 for the com-
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parison when λ = 1.5, and t(249799) = 93.44 for the comparison when λ = 5). For λ = 1.5 and

λ = 5, individuals do indeed express identities that more closely resemble the people they observe

than others in the population. Yet for λ = 0.5, individuals are actually more similar to unobserved

others than to their network neighbors. There is little diversity across the entire population in these

trials.

Computational Results: Momentum and Contagion

Next we look for momentum in the dynamics. For simplicity, we restrict this analysis to trials with

m = 1 and d = 1. As a measure of momentum over time, we compute σ100(t) = 1
100

∑100
t′=1 ∆x(t)∗

∆x(t + t′), where ∆x(t) is the change in identity expression of the individual who searched for

a better reply at time step t. We take the average momentum for a trial to be the average value of

σ100(t) for 1000 ≤ t < 9900. (We exclude the first 1000 time steps because they tend to be noisy.)

Figure 5 shows the average momentum on each network for varying λ, aggregated over 10 trials.

We observe that average momentum is always positive, and a t-test shows it to be significantly

different from zero (M = .0096, SD = .31), t(6674999) = 80.87, p < .001, indicating that

changes in identity expression tend to persist in the same direction over time.

Figure 5: Average momentum on each network for varying λ, with m = 1 and d = 1, aggregated
over 10 trials. In all cases, the average momentum is positive. Darker shading indicates greater
momentum.

Figure 5 also shows clear differences in the average momentum across the different networks.
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Most prominently, we observe particularly strong momentum on the network with r = 0.1 and

zmax = 6. This finding is robust across multiple trials, not the result of a single outlying trial,

but appears to be specific to this particular network. (We created another network with the same

parameters, r = 0.1 and zmax = 6, to see if this result would replicate. It did not. In the attempted

replication, the average momentum aggregated over 30 trials across the same λ values was .006.)

We examined the network’s properties (available in the SM) hoping to explain why strong momen-

tum develops on this network, but the network does not appear to have unusual characteristics or

structure.

We use multiple linear regression to assess how momentum depends on our parameters r,

zmax and λ. Table 1 reports the results. We find that average momentum is increasing in λ and

zmax. Intuitively, higher values of λ make individuals willing to make larger shifts in their identity

to remain unique, which generates stronger momentum, and higher values of zmax mean that a

single person’s change in identity affects more of the other people in the network who observe that

change, which also generates stronger momentum.

Table 1: Linear regression of average momentum.

Effect Estimate SE p

λ .0051 .0001 < .001
zmax .0007 .0001 < .001
r −.0001 .0001 .291
Constant −.002 .0005 < .001

Observations 6, 675, 000
R2 .0002
Adjusted R2 .0002
Residual Std. Error .3062 (df = 6, 674, 996)
F Statistic 430.8 (df = 3; 6, 674, 996) p < .001

We were particularly interested in how average momentum depends on r, because this dis-

tinguishes a complex contagion from a simple contagion. In a simple contagion, there would be

greater momentum when there is less clustering (smaller r), whereas in a complex contagion, there

would be greater momentum when there is more clustering (larger r). However, we find no sig-

nificant linear trend here. Qualitatively, it appears that momentum is strongest for an intermediate
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level of clustering (perhaps generating bridges that are both long and wide), but this speculative

finding might just reflect the observation of particularly strong momentum on the single network

with r = 0.1 and zmax = 6.

Model 3: Co-Evolution of Social Identity Expression and Social

Networks

Up to this point, we have considered social identity expression on fixed social networks, but social

networks themselves evolve over time. There is ample empirical evidence that people are more

likely to form (and less likely to dissolve) all kinds of relationships with people who are more

similar to them – a pattern of social network dynamics known as homophily (McPherson et al.,

2001). By first forming the social networks and then considering the dynamics of social identity

expression on these fixed networks, we could capture a form of social influence, but we could not

capture homophily. We now consider integrating the dynamics of social identity expression with

the dynamics of social network formation, to incorporate homophily. We investigate whether our

earlier results are robust in this model of co-evolving identities and social network ties.

The model relies on the same utility function, given in Equation 2. Now, at each time step an

individual can either consider a change in his own identity or a change in the network neighbors

he observes. (We assume each consideration is equally likely.) In the former case, the individual

randomly considers a new expression of identity. In the latter case, the individual considers form-

ing a new connection either to a randomly selected other person or specifically to another person

who already has a link (in either direction) with someone he already has a connection to (i.e., with

a tendency toward triadic closure), and if the focal individual already had as many relationships as

he could handle, he simultaneously considers breaking an existing connection. (In reality, limits

on the number of relationships an individual can handle are likely to be somewhat more flexible,

but this stylized model parsimoniously captures the clustering and bounded out-degree that char-

acterize social networks.) Critically, the individual only accepts changes to his identity or to his
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social network if they increase his utility. (An exception is made for the first network connection

that each individual considers forming, which is always accepted, because the utility function is

not well defined if the individual has no connections at all.) See Materials and Methods for ad-

ditional details about the process. The model effectively brings together Jin et al.’s (2001) social

network formation process with the preferences about social identity expression that we have pro-

posed here, and induces homophily by only allowing changes to one’s social network that increase

utility.

We ran 30 trials each with λ = 0.5, λ = 1.5, and λ = 5. When λ = 0.5, 23% (7/30) of the trials

converged to equilibrium. When λ = 1.5 or λ = 5, none of the trials converged to equilibrium.

These results are consistent with our earlier results for the fixed social networks.

We again compare the conformity among network neighbors to the conformity in the popula-

tion as a whole. Figure 6 shows the average distances to the population mean identity and to one’s

neighbors’ mean identity, measured at the end of the trial, for each λ, aggregating across the 30

trials. We find that expressed identities are significantly more similar to one’s neighbors’ identities

than to the population mean identity in all three cases. The differences here are much starker than

than they were in the comparisons on the fixed social networks because the social networks that

endogenously form here are not necessarily fully connected. When people sort themselves into

non-overlapping social groups, the distance between the groups’ mean identities tends to be larger

than the variance of identities within a group.

We again look for momentum in the dynamics. This time we simply compute the percentage

of successive changes to identities that are in the same direction over the duration of each trial.

Averaging across the trials, well above half (59%, 95% CI [58.2%, 59.9%]) of shifts in identity

are in the same direction as the previous one. When we restrict to changes in identity within the

largest connected component of the network after the first 10, 000 time steps, it jumps to almost

always (99.4% of successive shifts, 95% CI [99.37%, 99.45%]) going in the same direction. Thus,

the finding of significant momentum carries through from our earlier results for the fixed social

networks.
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Figure 6: Average distance to the population mean identity and to one’s neighbors’ mean identity,
measured at the end of the trial, for each λ, aggregating across the 30 trials.

Discussion

These results tell us that with local interactions on realistic social networks, the interplay of confor-

mity and sufficiently strong uniqueness motives produces social dynamics for identity expression

that are indeed typically non-convergent. People continually change their expressed identities, and

certain forms of expression come into and out of fashion in unpredictable cycles. Popularity cycles

are inherently unpredictable in the model because people typically have multiple better replies (and

even multiple best responses) to choose from in the face of most profiles of their neighbors’ identity

expression. The multiplicity of paths the dynamics could take leaves room for idiosyncrasy.

Our findings help us understand the role of social networks and local interaction in the dy-

namics of cultural trends. Popularity cycles, perpetual change, and novel expressions of social

identity should be expected when people observe their neighbors in realistic, directed social net-

works and care about being unique as well as fitting in. While popularity cycles are often attributed

to chase-and-flight dynamics arising from asymmetric imitation and differentiation, complex so-

cial dynamics of identity expression may also arise from our alternative specification of conformity

and uniqueness preferences and social network structure.

Recognition of conformity and uniqueness as opposing, but not mutually exclusive, motives
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is also part of optimal distinctiveness theory (Brewer, 1991; Leonardelli et al., 2010). However,

optimal distinctiveness theory posits that people form collective identities by choosing to asso-

ciate themselves with social groups, whereas our concept of social identity operates at the level

of the individual. In our view, collective identities emerge at the level of the group based on their

members’ individual identities. From the alternative, similarly valid perspective, we could propose

that individual identities emerge from a psychological process of finding consonance between the

collective identities of the many groups that an individual affiliates with at any point in time. Con-

necting these perspectives requires deeper understanding of how people choose to associate with

or withdraw from social groups, and how this relates to social network structure. While this inte-

gration remains beyond our present grasp, we find it useful to have complementary theories aimed

at different levels of social identity.

We use game theory and computational modeling here to describe social dynamics with mathe-

matical precision. Social phenomena do not always reflect individual preferences (Schelling, 1969,

1971). Mathematical modeling helps us understand the relationship between individual motives

and aggregate social dynamics when interactions generate nontrivial feedbacks. Our work here is

part of a tradition of formal modeling of social identity and fashion (Miller et al., 1993; Strang and

Macy, 2001; Tassier, 2004; Smaldino et al., 2012; Smaldino and Epstein, 2015; Smaldino et al.,

2015; Brown et al., 2019). This approach yields us deep theoretical insight, and we hope it inspires

more research leading to further insights into social dynamics and identity expression.

Materials and Methods

The Social Networks

We borrow Jin, Girvan, and Newman’s Model II algorithm for growing undirected social networks

(Jin et al., 2001) and modify it to generate directed social networks with N = 100 people, each

of whom can observe up to a maximum of zmax neighbors. The network is initialized with all 100

people and no connections. The following three steps are then repeated 100 times:
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1. Choose 3 pairs of individuals uniformly at random. For each pair i and j, if i observes

less than zmax people and does not already observe j, then i begins to observe j; else, if j

observes less than zmax people and does not already observe i, then j begins to observe i.

2. Randomly select a fraction r of the triads i, j, and k such that i observes k and k observes

j or that i and j both observe k. If i observes less than zmax people and does not already

observe j, then i begins to observe j.

3. Randomly select and break 0.5% of connections (rounded up).

All 25 social networks, measures of their structural properties, and the Python source code used to

create them are made available in the SM Appendix.

The Better-Reply Dynamics

Our computational model adopts a specification of the better-reply dynamics in which at each time

step, one randomly selected individual searches for (and upon discovery, adopts) a better reply to

the current population profile. Initial strategies are randomly (uniformly) distributed. We check

for convergence every 1000 time steps by checking whether any individual can find a better reply.

The Python source code and complete output data are available in the SM Appendix.

Co-evolving Social Networks and Identities

We again assume there are N = 100 people. We consider the space of identities with m = 1,

d = 1, and {a..b} = {0..9}. We set the maximum number of neighbors that an individual can

handle (i.e., maximum out-degree) to be zmax = 5. In this model, in contrast to the earlier model,

each time step corresponds to a single individual considering a single change (either to his identity

or his network), rather than searching for (i.e., repeatedly considering) such a change. We allow

the dynamics to run for up to 2, 000, 000 time steps before cutting them off and classifying them

as non-convergent, and we check for convergence every 1000 time steps.
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Initially people have no network connections and strategies are randomly distributed. At each

time step, there is an equal 50% chance of considering a change in identity or a change in the

network. In the former case, a randomly selected individual considers switching to a randomly

selected new identity and does so only if the switch increases his utility. In the latter case, the

probability of considering a new connection from person i to person j is proportional to 1 +

2000(τin + τout), where τin is the number of triads in which i and j both observe some other

individual k, and τout is the number of triads in which i observes some other individual k, who then

observes j. If person i already has zmax connections to other people, then the potential connection

to j is considered jointly with breaking one of i’s existing connections. Person i goes through with

the change only if it would increase his utility or if he previously had no connections (in which case

his utility was not yet well defined). The Python source code and output data are made available

in the SM appendix.
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Supplemental Materials

Formal Definitions

We can express person i’s neighbors’ average identity as

x̄η(i) =
1

|η(i)|
∑
j∈η(i)

xj.

We can express the number of i’s neighbors who adopt the same expression of identity trait µ as

person i as

ñi,µ(X; η(i)) =
∑
j∈η(i)

δ(xi,µ, xj,µ),

where δ is the Kronecker delta function. Then

ñi(X; η(i)) =
1

m

∑
µ

ñi,µ(X; η(i))

is the average number of neighbors sharing one’s traits (across all the aspects of identity). In a

well-mixed population, we set η(i) = {j : j 6= i} to recover ni,µ(X) and ni(X) for all i.

Supplementary Results and Proofs

Lemma 1. In a well-mixed population with utility functions given in Equation (1), the game has

an exact potential function:

Φ(X) = −
N∑
i=1

N − 1

N
‖xi − x̄‖2 +

1

2
λni(X).

Proof. Consider a change in the profile of identities X → X ′ resulting from person i alone chang-

ing his identity xi → x′i, i.e., such that x′j = xj for all j 6= i. We need only show that the change

in the potential function equals the change in i’s utility: Φ(X ′)− Φ(X) = ui(X
′)− ui(X).
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We express the change in the potential function as a sum of the changes in each term:

Φ(X ′)− Φ(X) =

N∑
j=1

N − 1

N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
+

N∑
j=1

1

2
λ (nj(X)− nj(X ′)) .

We consider each of the two summations separately.

We expand the first sum:

N∑
j=1

N − 1

N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
=

N − 1

N

(
‖xi − x̄‖2 − ‖x′i − x̄′‖2

)
+∑

j 6=i

N − 1

N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
. (3)

We find it useful to express the average identity as x̄ = N−1
N
x̄−i + 1

N
xi. Plugging in to the first

term in Equation (3), we have:

‖xi − x̄‖2 − ‖x′i − x̄′‖2 =

(
N − 1

N

)2 (
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
.

Plugging in to the second term in Equation (3), expanding and canceling off common terms, we

have for any j 6= i:

‖xj − x̄‖2 − ‖x′j − x̄′‖2 =

1

N2

(
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
+

2

N
(xj − x̄−i) · (xi − x′i).

Observe that the last term here drops out when we sum over all j 6= i because
∑

j 6=i(xj− x̄−i) = 0.

The first term does not depend on j, so summing over all j 6= i just multiplies this term by a factor
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of (N − 1). Putting it all together, we find that Equation (3) simplifies to:

N∑
j=1

N − 1

N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
=

(
(N − 1)3

N3
+

(N − 1)2

N3

)(
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
=

(
N − 1

N

)2 (
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
= ‖xi − x̄‖2 − ‖x′i − x̄′‖2. (4)

Now, returning to the second part of the change in the potential function, we can use the formal

definition of nj(X) to write:

N∑
j=1

1

2
λ (nj(X)− nj(X ′)) =

1

2
λ

1

m

∑
µ

N∑
j=1

∑
k 6=j

(
δ(xj,µ, xk,µ)− δ(x′j,µ, x′k,µ)

)
.

The terms cancel whenever j 6= i and k 6= i, so we are left with:

N∑
j=1

1

2
λ (nj(X)− nj(X ′)) =

1

2
λ

1

m

∑
µ

(∑
j 6=i

(
δ(xj,µ, xi,µ)− δ(x′j,µ, x′i,µ)

)
+
∑
k 6=i

(
δ(xi,µ, xk,µ)− δ(x′i,µ, x′k,µ)

))

= λ
1

m

∑
µ

∑
j 6=i

(
δ(xj,µ, xi,µ)− δ(x′j,µ, x′i,µ)

)
= λ

1

m

∑
µ

(ni,µ(X)− ni,µ(X ′)) = λ (ni(X)− ni(X ′)) . (5)

Putting Equations (4) and (5) together, we have now shown that Φ(X ′) − Φ(X) = ui(X
′) −

ui(X).

Proof of Theorem 1

Theorem 1 now follows from Lemma 1 by Monderer and Shapley’s argument (1996b).
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Supplemental Figures

Figure SM1: Percentage of individuals satisfied over 1,000,000 time steps for each trial with m =
1, d = 2, and varying λ, for networks with r = 1 and varying zmax.

Figure SM2: Percentage of individuals satisfied over 1,000,000 time steps for each trial with m =
2, d = 1, and varying λ, for networks with r = 1 and varying zmax.
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Figure SM3: Box plots showing distances from individuals’ identities to the average identity of
all individuals in the population and to the average identity of their neighbors in the network,
measured at the 10, 000th time step, for m = 1, d = 2, and varying λ, aggregating trials across the
different networks. The differences between the average distance to the population mean identity
and the average distance to the mean of one’s neighbors’ identities are all significant with p < .001
in paired t-tests: t(249799) = −50.21 when λ = 0.5; t(249799) = 82.67 when λ = 1.5; and
t(249799) = 123.33 when λ = 5.

Figure SM4: Box plots showing distances from individuals’ identities to the average identity of
all individuals in the population and to the average identity of their neighbors in the network,
measured at the 10, 000th time step, for m = 2, d = 1, and varying λ, aggregating trials across the
different networks. The differences between the average distance to the population mean identity
and the average distance to the mean of one’s neighbors’ identities are all significant with p < .001
in paired t-tests: t(2472) = −10.22 when λ = 0.5; t(249799) = 86.50 when λ = 1.5; and
t(2497) = 12.10 when λ = 5.
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