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The wisdom of a crowd can be extracted by simply averaging judgments, but weighting judges based on

their past performance may improve accuracy. The reliability of any proposed weighting scheme depends

on the estimation precision of the features that determine the weights, which in practice cannot be known

perfectly. Therefore, we can never guarantee that any weighted average will be more accurate than the simple

average. However, depending on the statistical properties of the judgments (i.e., their estimated biases,

variances, and correlations) and the sample size (i.e., the number of judgments from each judge), we may

be reasonably confident that a weighted average will outperform the simple average. We develop a general

algorithm to test whether there are sufficiently many observed judgments for practitioners to reject using

the simple average and instead trust a weighted average as a reliably more accurate judgment aggregation

method. Using simulation, we find our test provides better guidance than cross validation. Using real data,

we demonstrate how many judgments may be required to be able to trust commonly used weighted averages.

Our algorithm can be used for power analysis when planning data collection and as a decision tool given

existing data to optimize crowd wisdom.
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1. Introduction

In uncertain contexts, decision makers can improve judgment accuracy by aggregating information

from multiple sources. For example, a manager of a company’s marketing team might ask her or

his team members to predict the percentage change in a product’s sales in the next year. In such

cases, the manager may rely on the wisdom of crowds, the phenomenon that aggregated judgment

1



Huang, Broomell and Golman: Getting More Wisdom from the Crowd
2 00(0), pp. 000–000, c© 0000 INFORMS

across individuals tends to be more accurate than a random individual’s judgment and may even

be more accurate than any single individual’s judgment (Davis-Stober et al. 2014, Surowiecki

2005). By combining all team members’ forecasts, the manager is able to obtain a more accurate

sales prediction. In expert elicitation, similarly, a panel of experts drawing on diverse sources of

expertise (e.g., independent information cues and varied analytic methodologies) generally produces

aggregated judgments that are more accurate than one specific expert’s opinion (Bansal et al. 2017,

Budescu and Chen 2014, Larrick and Soll 2006, Palley and Soll 2019). The premise of collective

wisdom is that individual judgment errors cancel out through judgment aggregation, allowing us

to extract the knowledge shared by the members of the crowd (Hong and Page 2008, Makridakis

and Winkler 1983, Minson et al. 2017).

There are many methods for aggregating judgments from multiple individuals, and determining

the best method in a given context requires analysis of the statistical properties of the judgment

context. In other words, the best way to aggregate individuals’ judgments depends on how much

the decision maker knows about the environmental characteristics (e.g., the uncertainty inherent

to quantities of interest and the redundancy of information) and the individual judges (e.g., their

judgment abilities and the dependencies between their judgments) (Broomell and Budescu 2009).

Particularly, when the decision maker knows little about the judges, a simple average of the judg-

ments is applicable and reasonable (Mannes et al. 2012). Previous work has already demonstrated

that the simple average, as an exemplar improper linear model, has a robust performance and can

be superior to the single predictor or the standard regression model in many situations (Dawes

1979, Einhorn and Hogarth 1975). Davis-Stober et al. (2010) also derived the upper bound on the

mean squared error of the equal-weighting estimator and demonstrated that it has less variance

than the ordinary least squares (OLS) estimate.

Although the simple average is better than a random individual’s judgment, there may be room

for improvement by using a weighted average in order to take full advantage of the wisdom of

crowds. For instance, to balance the benefits of information aggregation and the costs of introducing
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less accurate judgments, the decision maker could take the simple average of judgments only from

the best-performing group of judges (i.e., placing equal weights on these judges and zero weight on

other judges), a method that has been shown to work well in practice (Mannes et al. 2014, Yaniv

1997). More generally, if the judges have established track records (i.e., known and stationary

judgment accuracy), then the decision maker can use targeted weights to average their judgments,

giving better judges higher weights (Budescu and Chen 2014, Olsson and Loveday 2015). For

example, a manager in a marketing team could identify each team member’s predictive ability

according to a collection of team members’ forecasts year by year, and then rely more on team

members with high accuracy. Furthermore, if the decision maker not only knows about judges’

abilities but also the dependencies among judges, he can do better still. Specifically, with known

biases, variances, validities and correlations of the judges, he could use a weighted average with

weights determined by minimizing the expected squared error of the aggregated judgment, what

we will refer to as the theoretically optimal aggregation method. Such a weighting method would

place higher weights on judges who tend to be more accurate as well as less correlated (ideally

even negatively correlated) with the rest of the crowd (Davis-Stober et al. 2014, 2015, Lamberson

and Page 2012).

In practice, however, the judges’ abilities and correlations are unknown, and a weighted average

can only be computed based on their estimates. For instance, selecting the best-performing group

of judges depends on identifying the predictive ability of judges, which may involve estimating

individual’s validity (i.e., the correlation between individual’s judgments and the target value).

Determining the theoretically optimal weights requires estimates of all the statistical properties of

the judges and the environment. These weights can generate poor performance if the estimates are

far from the true values. In such cases, the simple average of the individual judgments (i.e., the

equal-weighting method) outperforms the weighted average (Genre et al. 2013, Stock and Watson

2004). The inferior performance of the weighted average based on empirical data is driven by imper-

fect estimates of the unknown statistical properties of the judgments. Estimates are necessarily
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imperfect because of sampling error. Although some sampling error is unavoidable, in many cases

the sampling error caused by insufficient sample size is large enough to produce unstable weights

from the optimization (Kang 1986). Winkler and Clemen (1992) have investigated the sampling

distribution of the best estimated weights in the two-forecaster case and found that even small

errors in estimates of variance and correlation result in highly fluctuating weights, sometimes even

outside the range from zero to one (i.e., some negative weights). Sampling error is a potential risk

for any weighting method, including crowd selection methods that equally weight just a selected

subset of the entire crowd, because small samples may be misleading about who should be selected

as well as about how much each selected individual should be weighted.

How can we tell if a generalized weighted average based on an observed sample of judgments

will be more reliably accurate than the simple average? Due to the estimation error, we can never

rule out with complete certainty the possibility that a weighted average based on estimates of

the statistical properties of the judges is worse than the simple average. However, in some cases,

observed judgments may give us reasonable confidence that the estimation error for the weights

is small enough to generate a weighted average that is more accurate than the simple average.

Recent work by Blanc and Setzer (2016) has offered a decision threshold to determine when to

use the simple average or the naively optimally weighted average, but they considered only two

judges, which simplifies the analysis considerably. We develop a more generally applicable method

which can compare any weighted average to the simple average and can be used with any number

of judges.

Specifically, we propose a hypothesis test algorithm to assist the decision maker with the selection

of the aggregation method to achieve the best possible accuracy given the data available. The

null hypothesis is that the simple average is better than a given weighted average. But there are

many possible true states of the world in which this would hold. Based on observed data, we

search for the most likely true state of the world that supports the null hypothesis and adopt it

as a presumptive scenario. We then compute a p-value for this presumptive scenario, providing a
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quantitative measure of the reliability of the weighted average in light of the uncertainty about the

true environment with the given sample size. Thus, our hypothesis test algorithm provides a useful

check on estimation error before decision makers decide to use any weighting method instead of

the simple average.

Returning to the marketing team example, suppose a manager has collected a sample of prior

judgments from all team members, as well as many suggestions on how to assign weights on those

judgments. She or he can utilize our algorithm to determine whether there is sufficient information

in this sample to trust the given weighted average. When the number of judgments from each team

member is small, it is risky for the manager to trust any weighted average due to large sampling

errors in estimating the true predictive accuracy and correlation of team members. In this case,

the sampling error swamps the potential benefits of weighting, and our algorithm would not reject

the simple average. As the number of judgments from each team member increases, the estimates

of true predictive accuracy and correlation of team members become more representative of the

true state of world such that a weighted average becomes more robust. The manager can obtain

a quantitative measure from our algorithm of how confident she or he should be in weighting the

judgments of different team members based on these estimates. The algorithm can thus be used as

a decision rule, with a pre-specified significance threshold, similar to a traditional hypothesis test.

An alternative approach to decide whether to trust a weighted average is cross validation. In

Section 4, we compare our hypothesis test algorithm to cross validation using simulations in which

we can tell how well any given weighted average will perform. We find that while cross validation

also performs well, it makes more errors than our test when applied to small sample sizes. This

phenomenon becomes more pronounced when the proposed weighted average is more significantly

different from the simple average. We also demonstrate the application of our algorithm to real

data, specifically, an existing dataset from the European Central Bank’s Survey of Professional

Forecasters (SPF) in which domain experts provide hundreds of forecasts on many macro-economic

indicators. This exercise lets us identify the number of observations necessary for different weighted

averages to outperform the simple average on this particular dataset.
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Previous work either considers the reliability of a weighted average as a function of the true

environment, which we can never have perfect knowledge of, or when restrictive assumptions apply,

such as contexts with only two unbiased forecasters. Our hypothesis test guides the decision of

a judgment aggregation method based on statistical inference from observable data instead of

an assumed true environment. The test also accounts for judgment bias, variance and correla-

tion simultaneously, and can be applied with any number of forecasters, and to any method for

estimating weights.

This paper is organized as follows. Section 2 briefly reviews the literature on the decomposition

of the expected squared error and the performance of some popular weighted averages versus simple

averages in judgment aggregation. Section 3 introduces the basic model to compute the expected

squared error of aggregated judgments as a function of the true judgment biases, true judgment

covariance matrix, and the number of judgments (per forecaster) in the sample. Section 4 presents

our hypothesis test algorithm to assist the decision maker in selecting an appropriate aggregation

method for any collection of M judges. We validate and demonstrate the effectiveness of our

algorithm with simulated judgments, and demonstrate its application to the European Central

Bank’s SPF dataset. We conclude in Section 5 with a discussion of our framework’s advantages,

limitations, and future directions. Sample data and code of this paper are also available online

(link to Github).

2. Previous Literature on Judgment Aggregation

We apply the definition of crowd wisdom proposed by Davis-Stober et al. (2014) to assess the

quality of aggregated judgments. When a collection of M individuals predict a target value of

interest, crowd wisdom is defined as a linear aggregate of the members’ judgments having less

expected Squared Error (SE) than the judgment from one randomly selected individual member.

The expected SE, as the measure of judgment accuracy, can be decomposed into four components:

E[SE] = (µTXw−µy)2 +wTΣXXw− 2wTσXy +σ2
y (1)

https://github.com/huangshu1026/WOC_TEST.git
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where µX is a M × 1 vector indicating the judgment mean for all M individuals and ΣXX is the

M ×M covariance matrix of judgments. The target value is also considered as a random variable

with mean and variance denoted by µy and σ2
y respectively. Correlation between the target value

and individuals’ judgments, represented by a M ×1 vector σXy, depicts the validity of individuals’

judgments. The weight vector w represents different aggregation rules and it has a constraint,

1
Tw = 1 where 1 is a M × 1 vector of ones. To pursue a lower expected squared error, weights

are not restricted by non-negativity, meaning negative weights are feasible if higher accuracy of

aggregated judgments can be achieved.

The simple average is a special case for linearly combining judgments where equal weights are

assigned to a collection of M individuals. There is no information about the judges’ precision

and dependence required to generate equal weights, as judges are treated as exchangeable in a

simple average. Davis-stober et al. (2014) have demonstrated that the simple average can produce

a robust wisdom-of-the-crowds effect by comparing the expected SE between the simple average

and a random selected individual’s judgment.

Previous literature has focused on the expected SE of a weighted average with theoretically opti-

mal weights computed from given values of judges’ biases, variances, and correlations. The optimal

aggregation weights for minimizing the expected SE of aggregated judgments can be obtained by

solving the following system of linear equalities:ΣXX + (µX −µy1)(µX −µy1)T 1

1
T 0

 ·
w

λ

=

σXy
1

 (2)

where λ is a real-valued unknown variable, i.e., a Lagrange multiplier (Davis-Stober et al. 2015).

If the sub-matrix ΣXX + (µX − µy1)(µX − µy1)T is positive-definite, the equation has a unique

solution. The optimal weights solved above apply for a general case: (1) individuals’ judgments

may be both biased and correlated, and (2) the target value is a random variable as well.

In practice, all the population parameters in Eq. (2), including the true judgment bias, variance,

correlation and predictive validity, can never be perfectly known, meaning that the theoretically
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optimal weights can only be computed from estimates derived from finite samples. The sampling

error inherent in these estimates can result in unstable weights that are no longer truly opti-

mal. The amount of sampling error thus becomes an important factor in the reliability of the

theoretically optimal weighting method. To reduce the sampling error and improve the accuracy

of aggregated judgment, various alternative weighting methods are proposed. We classify them

into three categories: regularization of covariance matrix, constrained regularized regression, and

sub-crowds..

2.1. Regularization of Covariance Matrix

The first category is to estimate a smaller number of population parameters by simplifying the

formula in Eq. (2). As an analytic solution for the role of sampling error in reducing the reliability

of weighted averages is not possible, prior work relies on two simplifying assumptions. First, the

judgment errors (i.e., differences between judgments and the target value) and the target value

are assumed to be independent, making the covariance matrix of judgment errors equivalent to

the covariance matrix of judgments while treating the target value as a fixed number. Second,

individuals’ judgments are assumed to be unbiased (i.e., to have a zero-mean error). In practical

applications, after observing each individual’s mean judgment error, we are able to debias the

individuals’ judgments by shifting each by the equal and opposite amount of its mean error. With

these simplifying assumptions, the optimal weights depend only on the variances and correlations of

individuals’ judgment errors (Clemen and Winkler 1986, Kang 1986). For the two-forecaster case,

the weight assigned on the first forecaster would be w1 = (1− ρσ1/σ2)/(1 + (σ1/σ2)2 − 2ρσ1/σ2)

and the weight on the second forecaster is 1−w1, where σ1 and σ2 are the standard deviation of

two forecasters, respectively, and ρ denotes the correlation (Winkler and Clemen 1992). Extending

to multiple forecasters, the formula of optimal weights becomes:

wT =
1
TΣ−1

XX

1TΣ−1
XX1

(3)

where ΣXX is the true covariance matrix of individuals’ judgment errors (Lamberson and Page

2012).
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Given this simplified representation of the optimal weights, Winkler and Clemen (1992) have

explicitly identified the sampling distribution of the estimated weights used to aggregate judgments

for the two-forecaster case. They use numerical results to show that the estimated weights can

be highly variable, particularly when variances of the two judges are almost the same and the

correlation of their judgments is high. This finding reconciles literature on weighting dependent

sources by their informativeness where small changes in the correlation of any pair of sources could

cause a large variability of informativeness measurement along with the corresponding aggregation

weights (Clemen and Winkler 1985, Morrison and Schmittlein 1991, Satopää 2017).

Within this simplified framework, reducing the sampling error in the estimated weights is equiv-

alent to improving the estimation accuracy of the true covariance matrix. A trade-off exists in

estimating the covariance matrix: the estimation error brought by an additional estimated param-

eter might be greater than the reduction in modelling error (i.e., misspecification) with respect

to the additional parameter. This tradeoff leads to regularized weighting methods that may, for

example, assume identical correlation among all judges or cluster judges into several groups, within

which each member is identical (Merkle et al. 2020). Schmittlein et al. (1990) have illustrated the

sensitivity of weighted judgment aggregation to various assumed covariance structures. Four oper-

ational models of estimating the covariance matrix are applied to compute the weights as well as

the aggregated judgment. These models respectively assume exchangeable individuals (i.e., permit-

ting only the equal weighting aggregation method), independent individuals with varied judgment

variance, dependent individuals with identical judgment variance and correlation, and dependent

forecasters with varied judgment variance and correlation (i.e., the fully general covariance matrix

used in the optimal weighting method). Simulation results show that as the number of judgments

collected from each judge increases, estimating the full covariance matrix (i.e., using the optimal

weighting method) can lead to a more accurate aggregated judgment than assuming exchangeable

judges (i.e., the equal weighting method), but the threshold number of judgments required depends

on the unknown true covariance matrix. In this paper, we do not apply any simplifying assumptions

on the true population parameter to keep the generalization of our algorithm, but our algorithm

can still be used to compare the above class of weighting methods to the simple average.
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2.2. Constrained Regularized Regression

The second way to reduce the sampling error is regulating judgment weights directly by taking

them as the coefficients in a constrained linear regression since the wisdom of crowds’ problem to

minimize the mean squared error is theoretically a constrained linear regression problem. Thus, we

can apply those common regularization techniques in the regularized linear regression to decide

the weights. Taking the LASSO regression as an example, due to the collinearity of predictors,

a penalty parameter is added to regulate the total number of coefficients to estimate, and as a

result only effective predictors are selected and noise is reduced. In the same way, especially for

those high-correlated judges, judgment weights from a constrained LASSO regression model are

regularized, and more influential judges are naturally selected according to the estimates of weights

(Gaines et al. 2018, James et al. 2020). Although these regularized weighting methods have been

proven to have a robust performance in empirical data, large sample size is still necessary to decide

an appropriate hyper-parameter such as the penalty parameter in the LASSO regression. Our

hypothesis test algorithm can compare the regularized weighted averages to the simple average,

and the output of our algorithm will tell us whether the current sample size is sufficient to trust a

particular implementation of a regularized weighted average.

2.3. Sub-crowds

The last way to deal with sampling error is to constrain the weights according to simple heuristics,

such as selecting a subset of the crowd to include in the aggregate judgment (and effectively setting

the weights for everybody else to be zero). In practice, this is the most popular, and often most

effective, method to improve the accuracy of aggregated judgments. In many cases selected small

crowds can outperform larger crowds (Budescu and Chen 2014, Mannes et al. 2014, Olsson and

Loveday 2015). Selecting a subset of the crowd can (1) remove poorly performing judges who just

add noise or who may be biased; and (2) decrease the risk of introducing sampling errors when

determining the weights. We will compare several typical classes of crowd selection methods to the

simple average in this paper to validate the effectiveness of our algorithm.
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3. Basic Model to Compare a Weighted Average and the Simple
Average

To determine a more reliably accurate judgment aggregation method, we compare the expected SE

of a weighted average to the simple average. We assume the judgement errors and the target value

are independent, as in previous literature. The expected SE is a function of the aggregation rule

(i.e., the weights) and the true parameters representing the judgments (i.e., true judgment bias and

true covariance matrix between judges). We cannot obtain a perfectly precise estimate of the true

parameters with finite samples; the estimates align with the true values only in the limiting case

following the Law of Large Numbers. Therefore, our model takes the sampling error introduced by

estimated weights into consideration when we compare the expected SE of a weighted average to

the simple average.

Let a target value of interest to a decision maker be y. A collection of M individuals provide

their judgments or forecasts XT = (X1, ...,XM) with multivariate-normally distributed errors, that

is, X = y + e and e ∼MVN(µ,Σ) where µ is a M × 1 vector of true bias and Σ is the M ×M

true covariance matrix of judgment errors. Holding the assumption that judgment errors and the

target value are independent, we can generally represent the estimated weights as a function of the

observed judgment bias (µ̂) and the sample covariance matrix (Σ̂):

ŵ = h(µ̂, Σ̂) (4)

Then we can denote a weighted average as fwa = ŵTX, and the simple average as fsa = 1
TX
M

.

The expected SE quantifies the accuracy and reliability of aggregation methods. Given the

estimated bias and covariance matrix, the conditional expected SE of a weighted average is:

E[(fwa− y)2|µ̂, Σ̂] = ŵT (µTµ+ Σ)ŵ (5)

According to the law of total variance, the unconditional expected SE of a weighted average is

obtained by taking the joint expectation of the estimated bias and covariance matrix:

E[(fwa− y)2] =Eµ̂,Σ̂[ŵT (µTµ+ Σ)ŵ] =

∫
µ̂,Σ̂

ŵT (µTµ+ Σ)ŵg(µ̂, Σ̂)dµ̂dΣ̂ (6)
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where g(µ̂, Σ̂) is the joint density probability function of the estimated bias and the sample covari-

ance matrix.

The most common way to estimate the bias and covariance matrix is using the maximum-

likelihood estimator (MLE), i.e., the sample mean error and sample covariance matrix. The sample

bias vector (i.e., sample error mean, µ̂) and sample covariance matrix (Σ̂) of judgments from M

individuals can be estimated by:

µ̂=
1
T
nX

n

Σ̂ =
1

n

n∑
i=1

(Xi− X̄)(Xi− X̄)T =
S

n

(7)

where n is the number of judgments from each individual, 1n is n units of one and Xi is a M -vector

judgments from all individuals for the ith target value.

When judgments are assumed to be drawn from a multivariate normal distribution, the sampling

distribution for the sample mean is still a multivariate normal distribution with shrunken variance

and covariance, denoted by µ̂ ∼N(µ,Σ/n). The sampling distribution for the sample covariance

matrix is a Wishart distribution, denoted by S ∼Wishart(Σ, n−1). Σ is the scale matrix (i.e., the

true covariance matrix) and n−1 is the degree of freedom (i.e., related to the number of judgments

from each individual). Therefore, the expected SE of a weighted average (see Eq. (6)) can further

be considered as a function of the true bias µ, true covariance matrix Σ (including the number of

individuals M) and the sample size n.

The expected SE of the simple average, on the other hand, only depends on the true bias µ and

covariance matrix Σ but not on the sample size:

E[(fsa− y)2] =
1
T (µTµ+ Σ)1

M 2
(8)

When the sample size (i.e., the number of judgments from each individual) increases to infinity,

the sample mean and sample covariance matrix approach to the true bias and covariance matrix,

respectively. We have proven that in the limiting case the expected SE of the optimally weighted

average would not exceed the expected SE of simple average (see EC.1.), indicating that the
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theoretically optimal weighting method is definitely more reliably accurate than the equal weighting

method with infinite samples. However, it is unrealistic to collect infinite judgments from each

individual, so in practice we need to consider the sampling error in our estimates. Can we tell when

the sample size is sufficient to control the sampling error such that a weighted average provides

a better performance (i.e., smaller expected square error of the aggregated judgment) than the

simple average? We propose a hypothesis test algorithm to answer this question.

4. Hypothesis Test for Deciding When to Weight

A guarantee of better accuracy for a weighted average for any true bias and covariance matrix is

impossible since there always exists the possibility that the true bias and covariance matrix make

equal weighting optimal. Still, estimates of the biases and the covariance matrix from finite samples

may provide useful information about the true values if the sampling errors can be controlled, for

example, by sufficiently increasing the sample size. We might be satisfied knowing that a weighted

average outperforms the simple average for those true bias and covariance matrix specifications

that we consider sufficiently likely. In our framework, we seek an analogue of a hypothesis test,

according to which we may reject the simple average in favor of a weighted average if the likelihood

of observing the current estimated bias and covariance matrix is sufficiently low for any true bias

and covariance matrix suggesting the simple average will be more accurate than the weighted

average. Thus, we develop an algorithm to test whether the observed judgments in an empirical

data set are sufficient for researchers to reject using the equal weighting aggregation method and

instead trust a weighted average.

Our hypothesis test algorithm is slightly different from traditional hypothesis tests. Without

any prior knowledge of the true state of the world (i.e., true bias and covariance matrix), we

define the null hypothesis as the simple average being more reliably accurate than a proposed

weighted average, and then find the most representative bias and covariance matrix to use as

the null state in our algorithm. The null bias (µ∗) and covariance matrix (Σ∗) are the pair most

likely to generate current estimated bias and covariance matrix among those pairs for which the
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Figure 1 Conceptual illustration of our analogue P-value. The parameters µ̂ and Σ̂ are the observed bias and

covariance matrix, and the parameters µ∗ and Σ∗ are the presumed null state of the world, i.e., the

parameters most likely to generate µ̂ and Σ̂, given the constraint that the simple average would have

lower mean squared error than the weighted average.

simple average would outperform the proposed weighted average. The likelihood is computed from

the multiplication of a multivariate normal density and a Wishart density given the null bias

and covariance matrix. Searching for the null bias and covariance matrix provides flexibility for

retaining the simple average. Thus, our algorithm privileges the simple average.

The output of our algorithm is an analogue p-value, which indicates the probability of observing

the current estimated bias and covariance matrix (or something more extreme) when the true

state of world is the presumptive scenario in which the simple average is more accurate than the

proposed weighted average. Figure 1 conceptually shows the p-value given the null state (µ∗,Σ∗)

and observed sample size. Small p-values indicate that the probability of observing the realized

data would be low if it were the case that the simple average outperforms the weighted average.

4.1. Test Procedure

The first step of the hypothesis test algorithm is determining the bias and covariance matrix con-

sistent with the simple average outperforming the weighted average that would make the observed

bias and covariance matrix most likely (i.e., finding the null bias and covariance matrix). Given the

sample bias and sample covariance matrix (see Eq. (7)), we need to solve the constrained Maximum
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Likelihood Estimation (MLE) problem in Eq. (9):

max
µ∗,Σ∗

g(µ̂, S|µ∗,Σ∗, n)

s.t., E[(fwa− y)2|µ̂, Σ̂]>E[(fsa− y)2]

(9)

The objective function is the likelihood to generate the observed bias (µ̂) and covariance matrix

(Σ̂ = S/n) given µ∗, Σ∗ and sample size n, so it is the multiplication of a multivariate normal

density probability for µ̂ and a Wishart density probability for S due to the independence between

µ̂ and S. The constraint represents the condition that in the null state (µ∗ and Σ∗) the simple

average performs better than the proposed weighted average. The constrained MLE problem is

equivalent to the problem in Eq. (10) (more details can be seen in EC.2.):

max
µ∗,Σ∗

− 1

2
tr((Σ∗)−1S)− n

2
log(|Σ∗|)− n

2
(µ̂−µ∗)T (Σ∗)−1(µ̂−µ∗)

s.t., (
1

M
− ŵ)T (µ∗µ∗T + Σ∗)(

1

M
+ ŵ)< 0

(10)

where ŵ represents a weighted average as in Eq. (4), and 1 is M units of one.

There is no closed-form solution for this constrained MLE problem, so we solve it by using

the Monte Carlo method. Starting with the state in which judges have identical judgment bias,

variances and correlation, we search for parameters that are consistent with the simple average

outperforming the weighted average and that would be more likely to generate the observed samples

by moving in a direction towards the observed bias and covariance matrix. Specifically, we explore

parameters that are a linear combination of the current best parameters and the estimated bias

and covariance matrix, or that are drawn from the normal-Wishart distribution determined by the

current best parameters. Other optimization algorithms can also be used to solve this problem

(e.g., the interior point method) if greater precision is required.

After obtaining the null bias µ∗ and covariance matrix Σ∗, we can calculate the analogue p-value:

p-value =

∫
A(µ̃,S̃)

g(µ̃, S̃|µ∗,Σ∗)dµ̃dS̃ (11)

where A(µ̃, S̃) is the set of (µ̃, S̃) such that g(µ̃, S̃|µ∗,Σ∗) ≤ g(µ̂, S|µ∗,Σ∗). (This integral can be

evaluated numerically.) The set A(µ̃, S̃) is conceptually represented by the shaded area in Figure
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1, corresponding to bias and covariance matrix values that are more extreme than those actually

observed, relative to the null bias and covariance matrix. The p-value is the cumulative probability

of µ̃, S̃ in A(µ̃, S̃) with a joint multivariate normal × Wishart distribution (i.e., MVN(µ∗,Σ∗/n)×

Wishart(Σ∗, n− 1)). The p-value will depend on the true population parameters, the sample size,

and the proposed weighting method. Naturally, we find that the p-value decreases as the Euclidean

distance between the observed bias and covariance matrix and the null bias and covariance matrix

increases. If the p-value is sufficiently small, we reject the null hypothesis that the simple average

would outperform the weighted average.

4.2. Illustrative Example

For additional clarity, we provide an illustrative example of our algorithm by testing the optimally

weighted average against the simple average. For ease of visualization, we assume there are two

zero-bias judges (i.e., M = 2) in this example. This simplified illustration is meant to convey the

intuition underlying the test, but the test can easily be applied in more general contexts (i.e.,

biased and correlated judgments from multiple judges).

We simulate 10 judgments for each of two judges from a multivariate normal distribution

MVN(0,Σ) given the following true covariance matrix:

Σ =

 σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

=

 1 0.4

0.4 4


Then the sample covariance matrix is estimated according to Eq. (7), and the weights can be solved

through Eq. 3 by replacing the true covariance matrix with the sample covariance matrix. We

utilize our algorithm to solve Σ∗ numerically, and then calculate the p-value by drawing Wishart

samples based on Σ∗.

All related covariance matrices are visualized in a two-dimensional graph with the x-axis repre-

senting the log ratio of standard deviation (i.e., σ2/σ1) and the y-axis representing the correlation

(i.e., ρ12). Figure 2 provides an example of such illustration. The red star represents the true covari-

ance matrix Σ. Given Σ, we simulate individuals’ judgments and estimated the sample covariance
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matrix Σ̂ represented by the black dot. Based on Σ̂, we find the feasible area (covered by green

dots in (a)) for the most representative covariance matrix Σ∗ indicating the simple average would

outperform the optimally weighted average. In (b), the dark green dot is Σ∗, the most likely covari-

ance matrix to generate the sample covariance matrix such that the simple average outperforms

the optimally weighted average. Finally, independent samples (represented by gray dots in (c)) are

drawn from a Wishart distribution given Σ∗ as the scale matrix with n−1 degrees of freedom. The

corresponding p-value is calculated as 0.3430, which guides us to not reject the simple average in

this situation.

There are two determinants for this p-value calculation. One is the true covariance matrix. The p-

value is expected to decline as the true covariance matrix gets further away from the threshold line

shown in Figure 2(b). The other is the sample size, impacting the p-value calculation by reducing

the variance in the sampling distributions of the sample covariance matrix shown in Figure 2(c).

These mechanisms play a similar role in determining the p-value in the more general case with

judgment bias.

4.3. Comparison with Cross Validation

Next, we compare our hypothesis test algorithm to cross validation using simulated data. Cross

validation provides no signal to users about how representative current samples are, which may

lead to unreliable conclusions with small sample sizes, whereas our test algorithm may be more

reliable with small samples because it relies on statistical inference based on parametric structure.

We use both methods to compare a variety of different weighting methods to the simple average.

Besides the theoretically optimal weighting method (OW, as shown in Eq. (2)), we also consider

using the regularized estimator of the covariance matrix (tuning the parameters through cross

validation, (Fang et al. 2016)) to compute the optimal weights (RegCov), the constrained LASSO

method (LAS) (James et al. 2020), and crowd selection methods including taking just the top three

forecasters (Top3), the Ranked Performance method with an endogenous number of top forecasters

(RP) (Mannes et al. 2014), Contribution Weighted Model (CWM) (Budescu and Chen 2014),
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Figure 2 Illustration of hypothesis test algorithm with two zero-bias judges: (a) Red star indicates the true

covariance matrix, and Black dot is the sample covariance matrix. Blue dots represent all positive

semi-definite matrices in current searching area, and Green dots are matrices that not only satisfy the

positive semi-definite condition but also suggest the simple average would outperform the optimally

weighted average (i.e., candidates of Σ∗); (b) The dark green dot represents Σ∗; (c) Gray dots are

Wishart samples given Σ∗ as the true covariance matrix.
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and a Sequential Search method (both the increasing sequential search (SSIN) and the decreasing

sequential search (SSDE)) (Olsson and Loveday 2015). Aligning with previous research (Schmittlein

et al., 1990; Mannes et al., 2014), we conduct the simulation by taking five judges (i.e., M = 5).

We generate simulated judgments from a multivariate normal distribution, MVN(µ,Σ), given true

bias (µ) and covariance matrix (Σ) parameters. Based on these simulated judgments, we apply

our hypothesis test algorithm and cross validation to decide whether to use a weighted average

or the simple average. Specifically, we check the out-of-sample MSEs of all weighting methods on

held-out testing data, and then compare the Hit Rate (HR) and the False Alarm Rate (FAR) of our

algorithm and cross validation. We explore the performance of our algorithm across significance

thresholds and present Receiver Operating Characteristic (ROC) curves to fully characterize the

detecting capacity of the test algorithm.

We consider a variety of cases of the true state of the world to ensure that there are multi-

ple scenarios in which weighted averages can outperform the simple average and corresponding

scenarios in which the simple average is best. Table EC.1 (see EC.3.) presents the precise values

of the assumed true biases, variances, and correlation matrices and the corresponding true opti-

mal weights for different cases that we simulate. For half of the trials, the true optimal weights

are equal weights and for the other half of the trials, the true optimal weights are approximately

w= [.436, .246, .170, .093, .055].

We change the sample size (i.e., the total number of judgments from each individual) from 32

to 256 following rule 2k, k= 5,6,7,8. For each set of simulated judgments, we apply our algorithm

and cross validation to test each of the weighted averages respectively against the simple average.

For our hypothesis test, if the p-value is less than the significance threshold, we consider the test

to support the corresponding weighted average, otherwise it sticks with the simple average. For

the cross validation, if the average validation error of a weighted average after 100-time and 5-fold

validation is lower than that of the simple average, we would say the cross validation supports the

weighted average, otherwise the simple average.
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For each case that we consider and each sample size, we estimate the FAR and HR for our

algorithm and cross validation using 1000 simulation runs. We determine the FAR and HR with

1000 held-out observations, used to evaluate which aggregation method actually performs better.

If the simple average (weighted average) performs better on this held-out sample, then deciding

to use the weighted average leads to a false alarm (hit). We consider the weighted average to

outperform the simple average (or vice versa) if it has significantly lower MSE (in a paired t-test

with significance threshold 0.01) on the held-out testing data. In a small number of simulation runs,

there may be no significant difference between the weighted and simple average (typically when

the weighting rule happens to assign equal weights). We exclude those inconclusive simulation runs

when computing the FAR and HR.

Figure 3 displays the detecting performance of our hypothesis test algorithm (varying the p-value

criterion from 0 to 1) and cross validation with different sample sizes in the comparison of the

theoretically optimal weights to equal weights. A method with a lower FAR, higher HR and larger

Area Under ROC Curve (AUC) would be considered a better detector for the true state of world.

We find that our hypothesis test outperforms cross validation at all sample sizes. As the sample size

increases, the AUC of both our hypothesis test and cross validation gradually increases, reflecting

a more confident decision about which aggregation rule should be applied given the simulated

observations.

Table 1 Detecting performance of hypothesis test (taking 0.05 as the p-value criterion) and cross validation

across all sample sizes and true states of world for different weighted averages

Weighting Method
Criterion Algorithm

TOP3 RegCov SSDE OW SSIN CWM RP LAS

Hypothesis Test 0.032 0.023 0.093 0.109 0.422 0.411 0.517 0.616
FAR

Cross validation 0.092 0.133 0.173 0.171 0.360 0.371 0.353 0.372

Hypothesis Test 0.858 0.794 0.883 0.914 0.854 0.812 0.837 0.866
HR

Cross validation 0.827 0.776 0.792 0.802 0.797 0.758 0.814 0.847
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(a) Sample size n= 32
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(b) Sample size n= 64
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(c) Sample size n= 128
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(d) Sample size n= 256

Figure 3 ROC curves of hypothesis test and cross validation in the comparison of the optimally weighted average

and the simple average

The detecting capacity of our hypothesis test and cross validation varies when we compare the

simple average to different weighted averages (as shown in Table 1). The corresponding ROC

curves are shown in Figure 4. The hypothesis test and cross validation both performed well in
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Figure 4 ROC curves of hypothesis test and cross validation for different weighting method across all sample

sizes and cases of true state of world

discriminating between using TOP3, SSDE, RegCov, and OW and using the simple average. Our

test has even lower FARs and higher HRs, i.e, better performance, than cross validation. Overall

performance was much lower for discriminating between using SSIN, CWM, RP and LAS and using

the simple average. We believe this is due to the latter group of methods generating weights that

are very close to equal. Figure EC.1 (see EC.3.) displays more details on percentages of inconclusive

simulation runs, which are due to weighting methods producing equal weights. For RP, SSIN and

CWM, there are more than 50% inconclusive comparisons to the simple average (and for LAS

more than 20%), including many situations where the weights output by these weighting methods

are exactly equal weights. Therefore, we provide additional results related to performance with

different sample sizes for these two groups of weighting methods separately.

Table 2 presents the FAR and HR at different sample sizes for TOP3, SSDE, RegCov, and OW.

Compared to cross validation, our test has lower FARs for all sample sizes and higher HRs for 3

out of 4 sample sizes. Both methods perform better as the sample size increases. Table 3 presents

the FAR and HR ad different sample sizes for SSIN, CWM, RP and LAS. Compared to cross

validation, our test has lower FAR and lower HR with a small sample size (n = 32), and higher
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Table 2 Detecting performance of hypothesis test (taking 0.05 as the p-value criterion) and cross validation

across weighted averages (TOP3, RegCov, SSDE, OW) with different sample sizes

Sample Size
Detecting Criterion Algorithm

32 64 128 256

Hypothesis Test 0.075 0.087 0.046 0.024
FAR

Cross validation 0.202 0.156 0.113 0.075

Hypothesis Test 0.528 0.829 0.987 0.999
HR

Cross validation 0.625 0.739 0.849 0.910

Table 3 Detecting performance of hypothesis test (taking 0.05 as the p-value criterion) and cross validation

across weighted averages (SSIN, CWM, RP, LAS) with different sample sizes

Sample Size
Detecting Criterion Algorithm

32 64 128 256

Hypothesis Test 0.266 0.731 0.909 0.946
FAR

Cross validation 0.358 0.357 0.395 0.427

Hypothesis Test 0.477 0.823 0.981 1.000
HR

Cross validation 0.659 0.763 0.845 0.913

FARs and higher HRs with larger sample sizes. Surprisingly, FARs increase with sample size (for

both methods). However, as shown in Tables EC.2 - EC.9 in Section EC.3, the absolute number of

false alarms remains low because it is quite rare that the simple average significantly outperforms

these weighting methods with larger sample sizes. The vast majority of these trials are hits or

inconclusive, because the weighting methods typically produce equal weights when equal weights

are best and tend not to overshoot when improvement is possible. While this makes it harder to

discriminate between these weighted averages and the simple average, it also makes the task of

choosing between them somewhat moot.

On the whole, the results of our simulation demonstrate that our hypothesis test performs as

well, and sometimes better, than cross validation. As expected, our test less frequently rejects
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the simple average than cross validation when the sample size is small for all proposed weighted

averages, resulting in a lower FAR, while still achieving a higher HR in some cases. These results

also show that the number of necessary judgments depends on the data context as well as the

robustness of the weighting method.

4.4. Application to Empirical Judgment Data

We now demonstrate the application of our algorithm to real data to gauge the number of judgments

that are sufficient for different weighting methods in one particular, naturalistic context. We analyze

a publicly available data set of judgments included in the ECB’s Survey of Professional Forecast-

ers (SPF), where professional economic forecasters are organized as experts in their fields to give

forecasts on real GDP growth, CPI and unemployment rate. This data set has been used to demon-

strate the outperformance of crowd wisdom compared to traditional macroeconomic forecasting

methods (Ang et al. 2007, Budescu and Chen 2014, Genre et al. 2013). The data can be extracted

from the publicly available databases of the European Central Bank (http://www.ecb.europa.eu).

We seek to show how to apply the hypothesis test algorithm to assess a variety of popular

weighting methods given multiple judges and their historical judgments, but we do not attempt

to identify the best weighting method or the best aggregate forecasts. Thus, we just use a subset

of forecasters with enough shared forecasts (i.e., forecasts of the identical target value in the same

prediction and targeted time period) to validate our hypothesis test algorithm, and we sidestep the

issue of missing forecasts in the SPF dataset. We filter the data by: (1) only including the prediction

for one or two years ahead indicators during the time period 1999-2018; (2) excluding predictions

for indicators in crisis years (2008 and 2009); (3) excluding forecasters with more than 90% missing

data; (4) filling in remaining missing data by using the AR(1) process proposed in Genre et al.

(2013), which assumes that the relative deviation of each forecaster from the simple average of

all forecasters in the current period is linked to its relative deviation in the previous period; and

(5) excluding unpredictable missing data, e.g., when forecasters did not provide their predictions

of the same indicators for more than 2 years. Finally, we are able to find two appropriate sets of
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data from EU SPF: One is for the unemployment rate with 8 forecasters and their 222 forecasts

(134 1-year-ahead forecasts and 88 2-year-ahead forecasts), and the other is for the inflation rate

including 9 forecasters and their 218 forecasts (133 1-year-ahead forecasts and 85 2-year-ahead

forecasts).

First, we randomly draw 80% of each individual’s judgments as the training data and use the

remaining 20% as testing data. Within the training data, a random subset of judgments with

different sample size (n = 16,32,48, ...,80) are selected to conduct the hypothesis test to decide

whether using a weighted average rather than the simple average. We investigate weighted averages

based on OW and CWM that were discussed in Section 4.3. The estimated weights from each

weighting method are then applied to the testing data and compared to the simple average. By

changing the number of judgments from each forecaster in the training dataset for 100 times, we

observe how often we can reject using the simple average in favor of the weighted average, as well

as how often the choice to use the weighted average would have worked out, i.e., yielded lower

out-of-sample Mean Squared Error (MSE) on the testing dataset. We repeat this analysis for five

random splits of the dataset into training data and testing data.

Figures 5 and 6 respectively present the proportion of rejections of the simple average at a

significance level of 0.05 for different sample sizes in the inflation rate data and unemployment rate

data, with shading indicating how many of these rejections were correct based on out-of-sample

prediction. Genre et al. (2013) have demonstrated that the simple average is more robust for the

unemployment rate data than for the inflation rate data. Our results are consistent with their

findings, as for the inflation rate data our hypothesis test begins to (correctly) reject the simple

average very often with fewer samples than for the unemployment rate data.

Overall, when the sample size is small, our algorithm provides high p-values such that the total

rate of rejection of the simple average is low. As sample size increases, the rate of rejection of

the simple average increases rapidly, with most of these rejections ultimately being correct (i.e., in

accordance with out-of-sample accuracy). The results verify that the estimated bias and covariance
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Figure 5 Proportion of rejection of the simple average given the p-value criterion α= 0.05 and proportion of of

which are correct based on out-of-sample prediction, for different sample sizes and weighted averages

by using the inflation rate data.
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Figure 6 Proportion of rejection of the simple average given the p-value criterion α = 0.05 and proportion of

which are correct based on out-of-sample prediction, for different sample sizes and weighted averages

by using the unemployment rate data.
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matrix may provide useful information about the true state of the world if we have large enough

sample sizes to be confident that sampling errors will not lead us astray.

We can also examine how many judgments are necessary to trust these weighted averages. In

the inflation rate context, only 32 judgments (per forecaster) seem to be sufficient for us to trust

the optimally weighted average rather than the simple average, and even a smaller sample size is

sufficient for CWM. As the sample size increases, those weighted averages perform accurately and

robustly. In the unemployment rate context, we find that the optimal weights become reliable as

the sample size increases, with 48 judgments (per forecaster) usually sufficient for us to trust using

it. The contribution weighted model becomes fairly reliable with at least 40 judgments.

We have demonstrated that our hypothesis test can support a decision whether to use a weighted

average or the simple average given specific observations, and also can be used to gauge the sufficient

sample size for different weighting models in a given data context. In EC.4., we also compare our

test algorithm to cross validation using the real SPF data. While most of the trials are inconclusive,

we find that our hypothesis test algorithm performs similarly to cross validation with a larger

sample size and performs better than cross validation with a smaller sample size.

5. Discussion

Previous literature has provided a variety of weighting models in the field of wisdom of crowds

and judgment aggregation, but few of them offer a systematic decision rule to determine whether

it is appropriate to use such a weighting method rather than the simple average given current

observations. In this paper, we propose a hypothesis test algorithm to assist the decision maker to

decide whether to use a weighted average based on the observable data by establishing whether

it will be reliably more accurate than the simple average. This test can be applied to different

weighting models in which judgment weights are computed from estimates of judges’ ability and

correlation (e.g., judgment bias and covariance matrix). We believe this is a necessary step before

decision makers decide to use any non-equal weighting models.

Our hypothesis test algorithm can only compare a proposed weighted average scheme to the

simple average, and cannot determine whether alternative weighting schemes might be the most
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accurate. However, a decision maker can test all candidate models for weighted averages, and

only consider the application of those that reject equal weights according to our hypothesis test

algorithm, and family-wise error rate corrections can be applied for the use of multiple tests. For

example, a decision maker might find that optimal weights suffer from sample error and fail to

reject the null hypothesis. Then she or he could test regularization methods that balance sampling

error by reducing the total number of parameters to estimate, thereby increasing the robustness

of the estimated weights. There is no guarantee that this weighting method will be more reliably

accurate than equal weights in a given environment. However, our hypothesis test algorithm can

provide a quantitative measure of the reliability of this weighted average, reflecting how confident

the decision maker could be to trust this weighting strategy.

Our hypothesis test algorithm provides a general approach to prevent overfitting, which is

inspired by the imperfect performance of the theoretically optimal weighting method. Optimal

weights for crowd wisdom have been established theoretically in prior work (Davis-Stober et al.

2014, 2015, Lamberson and Page 2012) but are not as prevalent as equal weights in practice.

Weighting crowds based on observable data may deliver sub-optimal performance because the con-

ditions for optimal performance have not been clearly defined and used to identify situations where

weighting should actually work (though for the case of 2 forecasters, see Schmittlein et al. (1990)

and Winkler and Clemen (1992)). Although the optimal weighting method based on observable

data performs well retrospectively (i.e., when evaluated on the same judgments used to estimate

the statistical properties taken as inputs into the optimal weights), insufficient sample size often

introduces poor estimates of the statistical properties of the judgments and distorts the estimated

weights, resulting in an unreliable out-of-sample performance of the theoretically optimal weighting

method. With our method, we now have a way of determining when the optimal weighted average

computed with empirical estimates of judgment biases, variances, and correlations will likely out-

perform the simple average. Thus, our parametric approach guards against overfitting in judgment

aggregation.
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In our hypothesis test algorithm, we assume there exists a judgment generation model with fixed

true parameters, and project the information in the sample estimates onto candidate parameters,

which describe our knowledge about the future observations. The null hypothesis specifies candidate

parameters, a bias and covariance matrix determined by the sample bias and covariance matrix,

reflecting a world in which weighting based on the sample parameters would be less accurate than

the simple average. Overfitting is prevented by our algorithm by looking for sample parameters

that have a small probability of being encountered under the null hypothesis that equal weighting

will have less expected error. When the sample size is too small, the sampling distributions will

be wide, making a large collection of sample parameters more likely under the null. On the other

hand, when the sample size becomes large, our test algorithm only rejects the simple average when

the sampling distribution of the estimated weights indicate that members of the crowd are in-fact

different. Rejecting the null hypothesis provides a strong signal that the crowd should be weighted

according to the observed statistical properties of the judges.

Cross validation is a common approach to prevent overfitting. In cross validation, there is no

assumption of an underlying judgment model and the decision rule is only based on the realized

error. Therefore, cross-validation can be used in situations where researchers are unwilling to make

assumptions about the parametric structure of their crowd. However, the parametric structure

that we introduce has some advantages over cross validation because it facilitates crowd design,

experiments, and data collection efforts by making clear what aspects of judgment affect aggregate

performance, where cross-validation is limited to a given data set. We describe two advantages of

our proposed model in detail.

First, cross-validation may be unreliable with small sample sizes (Piironen and Vehtari 2017).

When the variance of the true environment or judgments is large, a small set of unrepresentative

samples can potentially mislead a decision maker relying on cross validation. Our model-based

hypothesis test is more conservative with small samples because we assume the sampling distri-

bution of the sample covariance matrix is a Wishart distribution where a small sample size makes

Wishart samples spread broadly around the observations.
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Second, our hypothesis test algorithm can facilitate power analysis, and assist in the planning

of data collection. Like other hypothesis tests, our algorithm can help to determine the number of

judgements that would be needed to trust a weighted average given an initial guess about the true

judgment parameters (i.e., how variable or different the judges are). Such a framework can be used

to generate more powerful studies of information aggregation by facilitating the identification of

contexts and data sets with enough estimation precision for weighted averages to potentially work

well.

In summary, our framework facilitates the weighting of crowds by warning us when we are in

danger of overfitting. We present a hypothesis test algorithm that other researchers can download

and easily use in the free statistical platform R. This test can be interpreted in the same way as

other familiar statistical tests. Our freely available algorithm can be applied generally to decide

when to use a weighted average of judgments from a crowd to reliably generate better, more

accurate forecasts.
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Electronic Companions

All proof, deviation and supplementary information of simulation and empirical analysis are

provided here below.

EC.1. Comparing Simple Average and Weighted Average in the
Limiting Case

We ideally would like to find the minimum sufficient number of each individual’s judgments that

ensures that the optimal weighting method outperforms the equal weighting method. In some

special cases, however, the perfect aggregation method is exactly the equal-weighting method. For

instance, when all judges have zero bias and the true covariance matrix implies exchangeability

among judges, then the weighted average cannot be guaranteed more reliably accurate than the

simple average since estimation errors are unavoidably involved in the estimated weights used to

compute the weighted average. We define it the “worst” case for the optimal weighting method

because even infinite sample size can only ensure that the weighted average matches the simple

average, and any finite sample size, no matter how large, cannot guarantee that the weighted

average is as good.

When the true judgment parameters are unknown, we prove that in the limiting case the weighted

average can has a smaller expected squared error than that of the simple average. Here we start

with a simple case where all judges have zero bias, and then the expected SE becomes the error

variance (i.e., E(f − y) = V ar(f − y)).

• Proof : limn→∞ V ar(fw− y|Σ̂(n,Σ))≤ V ar(fs− y)

As n→∞, Σ̂→Σ, then

V ar(fw− y|Σ̂(n,Σ))→ 1
TΣ−1ΣΣ−1

1

1TΣ−111TΣ−11
=

1

1TΣ−11

Thus, we want to show 1
TΣ−1

11
TΣ1≥M 2.

Since Σ is positive definite, we can have Σ =QDQT where Q is the orthonormal matrix and D is

diagonal matrix. Then Σ−1 =QD−1QT and D−1 is just the inverse of the diagonal elements of D.
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Thus, 1TΣ1 = (1TQ)D(1TQ)T and 1
TΣ−1

1 = (1TQ)D−1(1TQ)T . If we write 1
TQ =

∑
ai where

ai, i= {1, ...,M} is elements of Q, then we have 1
TΣ1 =

∑
a2
idi and 1

TΣ−1
1 =

∑ a2i
di

where di is

the ith diagonal element of D. By the Cauchy-Schwarz inequality, we obtain

1
TΣ11TΣ−1

1= (
∑

a2
idi)(

∑ a2
i

di
)≥ (

∑
(ai

√
di)(

ai√
di

))2 = (
∑

a2
i )

2

Since we have
∑
ai =M due to the property of orthonormal matrix Q, thus the smallest value of∑

a2
i would be M when ai = 1,∀i. Finally, we have proved 1

TΣ−1
11

TΣ1≥M 2. �

EC.2. Derivations

• Derivation of the conditional error variance of the optimally weighted average:

V ar(fw− y|Σ̂) =E[(fw− y)2|Σ̂]− (E[fw− y|Σ̂])2

=wT (Σ̂) ·Σ ·w(Σ̂)

= (
1
T Σ̂−1

1T Σ̂−11

) ·Σ · ((Σ̂−1)T1

1T Σ̂−11

)

=
1
T Σ̂−1ΣΣ̂−1

1

1T Σ̂−111T Σ̂−11

(due to symmetric Σ̂−1)

• Derivation of constrained MLE problem in Eq. (10)

The objective function can be represented as follows:

g(µ̂, S|µ∗,Σ∗, n) = h1(S|Σ∗, n− 1) ·h2(µ̂|µ∗, Σ∗

n
)

=
|S|n−M−2

2 exp(− 1
2
tr((Σ∗)−1S))

2
(n−1)M

2 |Σ∗|n−1
2 ΓM(n−1

2
)

· (2π)−
M
2 |Σ

∗

n
|− 1

2 exp(−1

2
(µ̂−µ∗)T (

Σ∗

n
)−1(µ̂−µ∗))

(EC.1)

Taking the log of the likelihood function:

log g(µ̂, S|µ∗,Σ∗, n)

=
n−M − 2

2
log(|S|)− 1

2
tr((Σ∗)−1S)− (n− 1)M

2
log 2− n− 1

2
log(|Σ∗|)− log(ΓM(

n− 1

2
))

−M
2

log(2π)− 1

2
log(|Σ

∗

n
|)− 1

2
(µ̂−µ∗)T (

Σ∗

n
)−1(µ̂−µ∗)

(EC.2)
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Given the observed bias and covariance matrix µ̂ and Σ̂ (S = nΣ̂), Eq. (EC.2) is also a function of

µ∗ and Σ∗, so we can obtain:

log g(µ̂, S|µ∗,Σ∗, n)

=− 1

2
tr((Σ∗)−1S)− n− 1

2
log(|Σ∗|)− 1

2
log(|Σ

∗

n
|)− 1

2
(µ̂−µ∗)T (

Σ∗

n
)−1(µ̂−µ∗) +C

=− 1

2
tr((Σ∗)−1(nΣ̂))− n

2
log(|Σ∗|)− n

2
(µ̂−µ∗)T (Σ∗)−1(µ̂−µ∗) +C ′

(EC.3)

where C and C ′ are constants.

As for the constraint, from the linear system in Eq. (2) we can solve a more general weights

represented by the observed bias and covariance matrix when assuming the target value is invariant,

that is, ŵµ̂,Σ̂ = 1
T (µ̂µ̂T +Σ̂)−1

1T (µ̂µ̂T +Σ̂)−11
. Meanwhile, the expected SE will count two terms, squared bias and

error variance. Thus, the constraint can be represented as follows:

E[(fs− y)2]<E[(fw− y)2|µ̂, Σ̂]

⇒1
T (µ∗µ∗T + Σ∗)1

M 2
< ŵT

µ̂,Σ̂
(µ∗µ∗T + Σ∗)ŵµ̂,Σ̂

⇒(
1

M
− ŵµ̂,Σ̂)T (µ∗µ∗T + Σ∗)(

1

M
+ ŵµ̂,Σ̂)< 0

(EC.4)

EC.3. Supplementary of Simulation
True states of world in our simulation

We consider three benchmark cases where the true optimal weights are exactly the equal weights

to explore type I errors: (1) Independent judgments with zero bias and identical variance; (2) Inde-

pendent judgments with non-zero bias (but can be mutually canceled out) and identical variance;

and (3) identically correlated judgments with zero bias and identical variance. We also consider

three cases where weighting could potentially decrease MSE if the sample size is sufficient. To

generate these three cases, we respectively change the true bias, variance and correlation matrix

to achieve roughly the same set of non-equal true optimal weights.

Table EC.1 presents details of the assumed true biases, variances, and correlation matrices and

the corresponding true optimal weights for different cases that we simulate. Case I, II, and III are

benchmark cases where the true optimal weights are equal weights although they differ in bias or

correlation matrix. Case IV, V, and VI are cases where the true optimal weights are far away from



ec4 e-companion to Huang, Broomell and Golman: Getting More Wisdom from the Crowd

the equal weights due to varied variances, bias and correlations. We utilize these six cases to create

a balanced true state of world.

Table EC.1 True Bias, Variance and Correlation Matrix in Simulation (M = 5)

Case Bias Variance Correlation Matrix Optimal Weights

I (0, 0, 0, 0, 0) (1, 1, 1, 1, 1) I5×5 (.2, .2, .2, .2, .2)

II (-.2, -.1, 0, .1, .2) (1, 1, 1, 1, 1) I5×5 (.2, .2, .2, .2, .2)

III (0, 0, 0, 0, 0) (1, 1, 1, 1, 1)



1 .1 .1 .1 .1

.1 1 .1 .1 .1

.1 .1 1 .1 .1

.1 .1 .1 1 .1

.1 .1 .1 .1 1


(.2, .2, .2, .2, .2)

IV (0, 0, 0, 0, 0) (.737, .945, 1, 4.934, 4.934) I5×5 (.355, .277, .262, .053, .053)

V (0, .5, .7, .9, 1) (1, 1, 1, 1, 1) I5×5 ( .436, .246, .170, .093, .055)

VI (0, 0, 0, 0, 0) (1, 1, 1, 1, 1)



1 .1 .1 .2 .2

.1 1 .3 .4 .5

.1 .3 1 .5 .6

.2 .4 .5 1 .7

.2 .5 .6 .7 1


(.355,.277,.262,.143,-.037)

Details of comparing weighted averages to the simple average

In our simulation, for each case of true state of world and each sample size, we compare one common

weighted average to the simple average for 1000 times by applying our hypothesis test algorithm

and the cross validation. Table EC.2-EC.9 show the type I and II error rates of hypothesis test

and cross validation and the number of inconclusive cases respectively for each weighting method.

Generally, our hypothesis test algorithm keeps a lower type I error rate than the cross validation,

except in the comparison of the LASSO method and the simple average. But with the very small

sample size (e.g., n = 32), our algorithm still behave conservatively to reject the simple average
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Table EC.2 Type I/II error rate of the hypothesis test algorithm (Test) and the cross validation (CV) in the

comparison of the optimally weighted average and the simple average

Case

Sample Size
Total

32 64 128 256

Test CV Test CV Test CV Test CV Test CV

I

Inconclusive 4 23 59 160 246

Type I 23/996 117/996 74/977 130/977 70/941 137/941 43/840 118/840 210/3754 502/3754

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

II

Inconclusive 2 13 42 144 201

Type I 26/998 115/998 77/987 147/987 76/958 131/958 64/856 139/856 243/3799 532/3799

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

III

Inconclusive 5 24 73 187 289

Type I 42/995 143/995 118/976 170/976 108/927 162/927 91/813 139/813 359/3711 614/3711

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

IV

Inconclusive 255 87 5 0 347

Type I 104/178 76/178 6/10 5/10 0/0 0/0 0/0 0/0 110/188 81/188

Type II 101/567 268/567 4/903 201/903 0/995 43/995 0/1000 6/1000 105/3465 518/3465

V

Inconclusive 359 265 64 1 689

Type I 28/367 130/367 33/68 31/68 2/4 1/4 0/0 0/0 63/439 162/439

Type II 234/274 121/274 228/667 243/667 18/932 144/932 0/999 51/999 480/2872 559/2872

VI

Inconclusive 226 476 549 348 1599

Type I 200/729 185/729 178/397 132/397 55/97 35/97 6/8 5/8 439/1231 357/1231

Type II 25/45 34/45 17/127 72/127 16/354 137/354 4/644 168/644 62/1170 411/1170

Total

Inconclusive 851 888 792 840 3371

Type I 423/4263 766/4263 486/3415 615/3415 311/2927 466/2927 204/2517 401/2517 1424/13122 2248/13122

Type II 360/886 423/886 249/1697 516/1697 34/2281 324/2281 4/2643 225/2643 647/7507 1488/7507

but trust the regularized weighting method. For the case IV and VI where the true non-equal

optimal weights are derived from the varied covariance matrix, our algorithm performs a higher

type I error rate than the cross validation but a lower type II error rate simultaneously. Another

general conclusion is that as the sample size increases, both errors decrease, making the weighting

methods as well as algorithms to test the reliability of the weighting methods more robust.

Figure EC.1 displays the percentages of trials that go to different conclusions for each weight-

ing method across all simple sizes. In general, the increasing sequential search method (SSIN),

the ranked performance model (RP) and the Contribution Weighted Model (CWM) and the con-

strained LASSO regression method (LAS) perform better than the simple average by comparing the
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Table EC.3 Type I/II error rate of the hypothesis test algorithm (Test) and the cross validation (CV) in the

comparison of the equally weighting top 3 model and the simple average

Case

Sample Size
Total

32 64 128 256

Test CV Test CV Test CV Test CV Test CV

I

Inconclusive 0 0 0 0 0

Type I 22/1000 150/1000 3/1000 90/1000 0/1000 27/1000 0/1000 2/1000 25/4000 269/4000

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

II

Inconclusive 0 0 0 0 0

Type I 18/1000 141/1000 4/1000 76/1000 0/1000 18/1000 0/1000 0/1000 22/4000 235/4000

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

III

Inconclusive 0 0 0 0 0

Type I 50/1000 213/1000 26/1000 127/1000 3/1000 53/1000 0/1000 8/1000 79/4000 401/4000

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

IV

Inconclusive 0 0 0 0 0

Type I 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Type II 167/1000 256/1000 6/1000 107/1000 0/1000 64/1000 0/1000 18/1000 173/4000 445/4000

V

Inconclusive 296 217 110 44 667

Type I 1/77 32/77 9/23 10/23 4/6 2/6 0/0 0/0 14/106 44/106

Type II 547/627 209/627 283/760 227/760 26/884 159/884 1/956 124/956 857/3227 719/3227

VI

Inconclusive 276 286 282 239 1083

Type I 116/630 155/630 99/614 96/614 72/626 81/626 39/670 68/670 326/2540 400/2540

Type II 42/94 44/94 7/100 41/100 0/92 35/92 0/91 34/91 49/377 154/377

Total

Inconclusive 572 503 392 283 1750

Type I 207/3707 691/3707 141/3637 399/3637 79/3632 181/3632 39/3670 78/3670 466/14646 1349/14646

Type II 756/1721 509/1721 296/1860 375/1860 26/1976 258/1976 1/2047 176/2047 1079/7604 1318/7604

percentage difference at two sides, which represents the percentage of trials where simple average

is significantly better than the weighted average (left) and vice versa (right). Using the regularized

estimator of covariance matrix to compute weights (RegCov) cannot beat the simple average in

most trials, becoming the least trustful weighted average followed by TOP3, OW and SSDE.

We can also find that TOP3, SSDE, RegCov and OW have less frequently inconclusive perfor-

mance as the simple average, and our test algorithm outperforms cross validation in both Type

I and Type II error rate. For RP, CWM and SSIN, that produce more frequently inconclusive

comparisons (including many situations where weights output from these weighting methods are
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Table EC.4 Type I/II error rate of the hypothesis test algorithm (Test) and the cross validation (CV) in the

comparison of the ranked performance model and the simple average

Case

Sample Size
Total

32 64 128 256

Test CV Test CV Test CV Test CV Test CV

I

Inconclusive 789 920 981 1000 3690

Type I 48/211 71/211 64/80 20/80 18/19 1/19 0/0 0/0 130/310 92/310

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

II

Inconclusive 788 926 991 1000 3705

Type I 42/212 69/212 51/74 20/74 9/9 0/9 0/0 0/0 102/295 89/205

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

III

Inconclusive 617 812 941 999 3369

Type I 95/383 140/383 137/188 59/188 53/59 11/59 1/1 0/1 286/631 210/631

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

IV

Inconclusive 134 23 2 0 159

Type I 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Type II 248/866 242/866 8/977 122/977 0/998 68/998 0/1000 18/1000 256/3841 450/3841

V

Inconclusive 414 281 142 54 891

Type I 3/45 21/45 10/14 7/14 0/0 0/0 0/0 0/0 13/59 28/59

Type II 467/541 219/541 321/705 226/705 91/858 186/858 0/946 119/946 879/3050 750/3050

VI

Inconclusive 538 625 684 735 2582

Type I 164/290 125/290 149/164 60/164 93/97 43/97 37/37 17/37 443/588 245/588

Type II 88/172 72/172 26/211 73/211 8/219 57/219 1/228 37/228 123/830 239/830

Total

Inconclusive 3280 3587 3741 3788 14396

Type I 352/1141 426/1141 411/520 166/520 173/184 55/184 38/38 17/38 974/1883 664/1883

Type II 803/1579 533/1579 355/1893 421/1893 99/2075 311/2075 1/2174 174/2174 1258/7721 1439/7721

exactly equal weights), our test has similar performance as cross validation, that is, slightly higher

Type I error rate but lower Type II error rate. It’s interesting to find that both our test and cross

validation have many Type I errors when comparing the LAS to the simple average, and our test is

even worse. By looking into Table EC.9, we could find this high Type I error rate only comes from

the first three cases. When the sample size is very small (i.e., n= 32), our test could keep a lower

Type I error rate than cross validation, but it rapidly increases when the sample size increases. We

think this is because within the constrained LASSO regression model, overfitting problem has been

controlled by choosing an appropriate penalty parameter through generalized cross validation, thus
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Table EC.5 Type I/II error rate of the hypothesis test algorithm (Test) and the cross validation (CV) in the

comparison of the contribution weighted model and the simple average

Case

Sample Size
Total

32 64 128 256

Test CV Test CV Test CV Test CV Test CV

I

Inconclusive 612 871 976 1000 3459

Type I 89/388 144/388 97/129 40/129 20/24 2/24 0/0 0/0 206/541 186/541

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

II

Inconclusive 607 879 987 1000 3473

Type I 84/393 132/393 87/121 39/121 12/13 0/13 0/0 0/0 183/527 171/527

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

III

Inconclusive 413 715 930 998 3056

Type I 137/587 209/587 198/285 93/285 61/70 13/70 2/2 1/2 398/944 316/944

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

IV

Inconclusive 616 559 481 417 2073

Type I 0/1 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/1 1/1

Type II 98/383 101/383 1/441 68/441 0/519 73/519 0/583 45/583 99/1926 287/1926

V

Inconclusive 349 288 161 119 917

Type I 4/42 18/42 4/8 5/8 0/0 0/0 0/0 0/0 8/50 23/50

Type II 532/609 219/609 309/704 218/704 31/839 187/839 0/881 113/881 872/3033 737/3033

VI

Inconclusive 322 244 174 140 880

Type I 105/211 115/211 73/118 60/118 29/49 32/49 11/24 11/24 218/402 218/402

Type II 269/467 213/467 109/638 242/638 20/777 217/777 2/836 165/836 400/2718 837/2718

Total

Inconclusive 2919 3556 3709 3674 13858

Type I 419/1622 619/1622 459/661 237/661 122/156 47/156 13/26 12/26 1013/2465 915/2465

Type II 899/1459 533/1459 419/1783 528/1783 51/2135 477/2135 2/2300 323/2300 1371/7677 1861/7677

our test and cross validation would prefer to accept the weighted average. Moreover, as the LAS

gets closer to the simple average with more samples, our test would more support for the LAS

model.

EC.4. Supplementary of Empirical Analysis
Comparing hypothesis test to cross validation

We apply our hypothesis test and cross validation to two sets of data from EU SPF (used in Section

4.4) and data sets from USA SPF.
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Table EC.6 Type I/II error rate of the hypothesis test algorithm (Test) and the cross validation (CV) in the

comparison of the sequential search (increasing) method and the simple average

Case

Sample Size
Total

32 64 128 256

Test CV Test CV Test CV Test CV Test CV

I

Inconclusive 620 872 976 1000 3468

Type I 81/380 127/380 91/128 36/128 20/24 2/24 0/0 0/0 192/532 165/532

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

II

Inconclusive 625 880 987 1000 3492

Type I 93/375 121/375 81/120 40/120 13/13 0/13 0/0 0/0 187/508 161/508

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

III

Inconclusive 431 717 927 998 3073

Type I 138/569 202/569 193/283 97/283 61/73 13/73 2/2 1/2 394/927 313/927

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

IV

Inconclusive 144 24 2 0 170

Type I 2/3 0/3 0/0 0/0 0/0 0/0 0/0 0/0 2/3 0/3

Type II 228/853 242/853 9/976 126/976 0/998 68/998 0/1000 18/1000 237/3827 454/3827

V

Inconclusive 416 297 148 76 937

Type I 5/74 37/74 18/28 14/28 5/5 5/5 2/2 0/2 30/109 56/109

Type II 444/510 216/510 311/675 222/675 10/847 185/847 0/922 122/922 765/2954 745/2954

VI

Inconclusive 326 322 261 215 1124

Type I 120/237 120/237 70/76 41/76 23/23 13/23 2/2 2/2 215/338 176/338

Type II 257/437 202/437 94/602 209/602 9/716 163/716 1/783 123/783 361/2538 697/2538

Total

Inconclusive 2562 3112 3301 3289 12264

Type I 439/1638 607/1638 453/635 228/635 122/138 33/138 6/6 3/6 1020/2417 871/2417

Type II 929/1800 660/1800 414/2253 557/2253 19/2561 416/2561 1/2705 263/2705 1363/9319 1896/9319

The data analysis process for the EU SPF data is similar to our simulation. We randomly

split each dataset into training data with different sample sizes (40 forecasts or 160 forecasts

per forecaster) and testing data (40 forecasts) without replacement. Within the training data,

we estimate weights according to different weighting methods and conduct the hypothesis test

algorithm and cross validation to decide whether the simple average can be rejected in favor of

using each weighted average. The estimated weights are then applied to the testing data set and

their performance is compared to that of the simple average. The out-of-sample MSE difference

between weighted averages and the simple average from the testing data is taken as evidence about
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Table EC.7 Type I/II error rate of the hypothesis test algorithm (Test) and the cross validation (CV) in the

comparison of the sequential search (decreasing) method and the simple average

Case

Sample Size
Total

32 64 128 256

Test CV Test CV Test CV Test CV Test CV

I

Inconclusive 0 0 0 0 0

Type I 90/1000 260/1000 110/1000 189/1000 21/1000 126/1000 0/1000 34/1000 221/4000 609/4000

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

II

Inconclusive 0 0 0 0 0

Type I 108/1000 263/1000 98/1000 186/1000 13/1000 100/1000 0/1000 42/1000 219/4000 591/4000

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

III

Inconclusive 0 0 0 0 0

Type I 162/1000 276/1000 232/1000 239/1000 67/1000 158/1000 2/1000 63/1000 463/4000 736/4000

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

IV

Inconclusive 122 21 2 0 145

Type I 3/15 1/15 0/0 0/0 0/0 0/0 0/0 0/0 3/15 1/15

Type II 118/863 253/863 3/979 125/979 0/998 68/998 0/1000 18/1000 121/3840 464/3840

V

Inconclusive 415 290 144 74 923

Type I 11/70 42/70 16/26 11/26 7/7 5/7 2/2 0/2 36/105 58/105

Type II 448/515 216/515 258/684 225/684 10/849 187/849 0/924 120/924 716/2972 748/2972

VI

Inconclusive 280 243 152 107 782

Type I 134/225 114/225 64/66 36/66 16/17 11/17 0/0 0/0 214/308 161/308

Type II 250/495 224/495 43/691 249/691 9/831 195/831 0/893 138/893 302/2910 806/2910

Total

Inconclusive 817 554 298 181 1850

Type I 508/3310 956/3310 520/3092 661/3092 124/3024 400/3024 4/3002 139/3002 1156/12428 2156/12428

Type II 816/1873 693/1873 304/2354 599/2354 19/2678 450/2678 0/2817 276/2817 1139/9722 2018/9722

whether our test algorithm or the cross validation makes type I or type II errors. We again use

the paired t-test on the out-of-sample MSEs of the weighted average and the simple average and

only count trials with a significant difference at the significance level of 0.05 for error calculation.

In accordance with previous literature, we apply the non-negative optimally weighting method to

empirical data (OW+). We repeat this random selection process for up to 1000 times to explicitly

reveal the error rates.

Tables EC.10 and EC.11 show that overall, our hypothesis test algorithm performs similarly

to cross validation. Where they differ, our hypothesis test tends to make fewer type II errors,

compared to cross validation. With a small sample size, both our test and cross validation make
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Table EC.8 Type I/II error rate of the hypothesis test algorithm (Test) and the cross validation (CV) in the

comparison of the regularized weighting method (shrinking the covariance matrix) and the simple average

Case

Sample Size
Total

32 64 128 256

Test CV Test CV Test CV Test CV Test CV

I

Inconclusive 5 31 78 217 331

Type I 18/995 171/995 27/969 156/969 31/922 144/922 18/783 96/783 94/3669 567/3669

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

II

Inconclusive 4 24 95 208 331

Type I 11/996 167/996 38/976 173/976 34/905 151/905 36/792 107/792 119/3669 598/3669

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

III

Inconclusive 15 67 154 251 487

Type I 21/985 206/985 53/933 206/933 48/846 179/846 19/749 102/749 141/3513 693/3513

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

IV

Inconclusive 65 91 87 102 345

Type I 13/824 86/824 10/741 67/741 8/680 52/680 0/634 58/634 31/2879 263/2879

Type II 26/111 67/111 9/168 51/168 5/233 73/233 1/264 77/264 41/776 268/776

V

Inconclusive 329 171 34 1 535

Type I 0/196 76/196 1/23 5/23 0/0 0/0 0/2 2/2 1/221 83/221

Type II 414/475 184/475 319/806 253/806 19/966 121/966 0/997 35/997 752/3244 593/3244

VI

Inconclusive 119 13 0 0 132

Type I 11/814 131/814 3/981 22/981 0/1000 0/1000 0/1000 0/1000 14/3795 153/3795

Type II 49/67 49/67 2/6 6/6 0/0 0/0 0/0 0/0 51/73 55/73

Total

Inconclusive 537 397 448 779 2161

Type I 74/4810 837/4810 132/4623 629/4623 121/4353 526/4353 73/3960 365/3960 400/17746 2357/17746

653 489/653 300/653 330/980 310/980 24/1199 194/1199 1/1261 112/1261 844/4093 916/4093

fewer (more) type I (II) errors in unemployment rate data than that in inflation rate data, which

implies our test and cross validation suggest using the simple average more often in unemployment

data than in inflation rate data. This finding aligns the conclusion in Genre et al. (2013) but we

are different in split the training and testing data.

We also found that our test algorithm has a higher type I error rate than cross validation even

with small sample size in the inflation rate data when comparing the optimally weighted average

to the simple average. To investigate whether this observation is derived from the noisy data, we

reduce the sample size of training data to 20 and check whether our test could produce a lower
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Table EC.9 Type I/II error rate of the hypothesis test algorithm (Test) and the cross validation (CV) in the

comparison of the regularized weighting method (constrained LASSO regression) and the simple average

Case

Sample Size
Total

32 64 128 256

Test CV Test CV Test CV Test CV Test CV

I

Inconclusive 86 231 488 702 1507

Type I 204/914 303/914 560/769 282/769 460/512 228/512 280/298 137/298 1504/2493 950/2493

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

II

Inconclusive 104 248 511 731 1594

Type I 195/896 284/896 529/752 271/752 462/489 192/489 264/269 103/269 1450/2406 850/2406

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

III

Inconclusive 101 250 475 701 1527

Type I 240/899 292/899 572/750 273/750 483/525 236/525 284/299 128/299 1579/2473 929/2473

Type II 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

IV

Inconclusive 2 0 0 0 2

Type I 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Type II 147/998 205/998 0/1000 63/1000 0/1000 14/1000 0/1000 2/1000 147/3998 284/3998

V

Inconclusive 84 6 0 0 90

Type I 0/2 2/2 0/0 0/0 0/0 0/0 0/0 0/0 0/2 2/2

Type II 761/914 285/914 287/994 205/994 14/1000 75/1000 0/1000 11/1000 1062/3908 576/3908

VI

Inconclusive 474 293 90 20 877

Type I 79/126 55/126 13/13 8/13 0/0 0/0 0/0 0/0 92/139 63/139

Type II 198/400 219/400 46/694 271/694 3/910 207/910 0/980 113/980 247/2984 810/2984

Total

Inconclusive 851 1028 1564 2154 5597

Type I 718/2837 936/2837 1674/2284 834/2284 1405/1526 656/1526 828/866 368/866 4625/7513 2794/7513

Type II 1106/2312 709/2312 333/2688 539/2688 17/2910 296/2910 0/2980 126/2980 1456/10890 1670/10890

type I error than cross validation. Still, we randomly select data for 1000 times, and the results

show that our test algorithm could have a lower type I error rate (25/36) then cross validation

(29/36).

The results in Tables EC.10 and EC.11 also present how robust different weighting methods

perform under given data contexts. For the unemployment rate data, the optimally weighted aver-

age with the non-negative constraint is more robust than the contribution weighted model and

the regularized weighting method, although they all could outperform the simple average as the

sample size increases. For the inflation rate data, the contribution weighted model is more robust

than other two models. Particularly for the optimal weighted average, it approaches to the simple
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Figure EC.1 Type I/II error rate results of our hypothesis test algorithm (Test) and cross validation (CV)

for different weighting models compared to the simple average across all cases and sample sizes

(Percentages from left to right indicate the percent of trials where the simple average outperforms

the weighted average in held-out samples, inconclusive trials, and trials where the weighted average

outperforms the the simple average in held-out samples)

average as the sample size increases, resulting in more inconclusive trials. However, for the contri-

bution weighted model and the regularized weighting method which allow subset crowd selection,

they keep outperforming the simple average with sufficient samples.
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Table EC.10 Confusion matrices of hypothesis test and cross validation (shaded background) in comparison of

different weighted averages to the simple average with small and large sample sizes for unemployment rate data

Sample Size

40 160

True State True State
OW+ vs. SA

SA (Null) WA (Alt.) Inconclusive
Total OW+ vs. SA

SA (Null) WA (Alt.) Inconclusive
Total

2 14 204 220 0 0 0 0
Retain Null (SA)

2 50 271 323
Retain Null (SA)

0 2 0 2

4 76 700 780 0 168 832 1000
Decision

Reject Null (WA)
4 40 633 677

Decision

Reject Null (WA)
0 166 832 998

Total 6 90 904 1000 Total 0 168 832 1000

True State True State
CWM & SA

SA (Null) WA (Alt.) Inconclusive
Total CWM & SA

SA (Null) WA (Alt.) Inconclusive
Total

1 3 30 34 0 0 0 0
Retain Null (SA)

4 28 280 312
Retain Null (SA)

0 1 0 1

9 59 898 966 0 114 886 1000
Decision

Reject Null (WA)
6 34 648 688

Decision

Reject Null (WA)
0 113 886 999

Total 10 62 928 1000 Total 0 114 886 1000

True State True State
LAS & SA

SA (Null) WA (Alt.) Inconclusive
Total LAS & SA

SA (Null) WA (Alt.) Inconclusive
Total

3 18 247 268 0 0 0 0
Retain Null (SA)

2 43 356 401
Retain Null (SA)

0 3 10 13

11 62 659 732 3 154 843 1000
Decision

Reject Null (WA)
12 37 550 599

Decision

Reject Null (WA)
3 151 833 987

Total 14 80 906 1000 Total 3 154 843 1000

We also apply our hypothesis test algorithm to the US SPF data where domain experts are

registered as professional forecasters to make prediction on more than 20 target values (e.g., nominal

GDP, average unemployment rate, average level of the index of industrial production and so on).

Most forecasts are collected from 1968 quarterly, including both quarterly and yearly forecasts.

We download the data from 1968 to 2019, and obtain 161 sub dataset (each dataset is for one

specific target value and for one target prediction time period, e.g., current quarter, future 1 year

and etc.). If there is no missing data, we are able to get forecasts from 443 forecasters and each of

them gives 205 forecasts. However, missing data problem is even more severe in the US SPF data

due to the long-term forecasting process. Therefore, we filter data by removing all missing data
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Table EC.11 Confusion matrices of hypothesis test and cross validation (shaded background) in comparison of

different weighted averages to the simple average with small and large sample sizes for inflation rate data

Sample Size

40 160

True State True State
OW+ vs. SA

SA (Null) WA (Alt.) Inconclusive
Total OW+ vs. SA

SA (Null) WA (Alt.) Inconclusive
Total

0 0 11 11 0 0 0 0
Retain Null (SA)

6 19 165 190
Retain Null (SA)

0 0 0 0

38 43 908 989 19 18 963 1000
Decision

Reject Null (WA)
32 24 754 810

Decision

Reject Null (WA)
19 18 963 1000

Total 38 43 919 1000 Total 19 18 963 1000

True State True State
CWM & SA

SA (Null) WA (Alt.) Inconclusive
Total CWM & SA

SA (Null) WA (Alt.) Inconclusive
Total

0 0 0 0 0 0 0 0
Retain Null (SA)

0 12 21 33
Retain Null (SA)

0 0 0 0

4 125 871 1000 1 157 842 1000
Decision

Reject Null (WA)
4 113 850 967

Decision

Reject Null (WA)
1 157 842 1000

Total 4 125 871 1000 Total 1 157 842 1000

True State True State
LAS & SA

SA (Null) WA (Alt.) Inconclusive
Total LAS & SA

SA (Null) WA (Alt.) Inconclusive
Total

0 0 19 19 0 0 0 0
Retain Null (SA)

0 19 216 235
Retain Null (SA)

0 0 0 0

10 55 916 981 2 121 877 1000
Decision

Reject Null (WA)
10 36 719 765

Decision

Reject Null (WA)
2 121 877 1000

Total 10 55 935 1000 Total 2 121 877 1000

and integrate forecasts for different target prediction time periods to guarantee enough samples.

Eventually, we obtain the following selected dataset as shown in Table EC.12. The explanation

of each item of the target values can be seen in https://www.philadelphiafed.org/research-and-

data/real-time-center/survey-of-professional-forecasters/data-files.

Without random selection as empirical analysis for the ECB SPF data, for each subset data

we take the first 50% (or 80%) historical data as the training data and the later 50% (or 20%)

historical data as the testing data to compare our algorithm and the cross validation. The proposed

weighting methods include (1) the theoretically optimal weighting method (OW); (2) the ranked

performance method (RP), (3) the contribution weighted model (CWM), (4) the sequential search
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Table EC.12 Subset data of US SPF for algorithm validation

Target value Number of Forecasters Number of Sample Judgments

NGDP 8 122

PGDP 7 187

CPROF 3 317

RGDP 8 132

RCONSUM 5 387

RNRESIN 5 381

RRESINV 5 363

RFEDGOV 4 429

RSLGOV 5 351

RCBI 5 361

REXPORT 5 358

(decreasing) method (SSD), and (5) the LASSO regularized method (LAS). Paired t-test is still

utilized to judge whether the out-of-sample MSE of the weighted average is significant different

from that of the simple average.

Table EC.13 presents the analysis results. We could find that our hypothesis test algorithm

has a similar performance as the cross validation to decide which weighting model is appropriate

for current observed judgments. After combining the performance in the simulation and empirical

analysis, we believe our hypothesis test algorithm could be a competitive alternative way of the

cross validation if decision makers desire to explore more data characteristics during the selection

of a proper aggregation rule.
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Table EC.13 Analysis results of the US SPF data

Target #Training #Testing
OW-SA RP-SA CWM-SA SSD-SA LAS-SA

Actual TS CV Actual TS CV Actual TS CV Actual TS CV Actual TS CV

CPROF
158 159 SA SA SA RP RP RP CWM CWM CWM SSD SSD SSD LAS LAS LAS

253 64 SA SA SA RP RP RP CWM CWM CWM SSD SSD SSD LAS LAS LAS

NGDP
61 61 SA SA SA RP RP RP CWM CWM SSD SSD SA LAS LAS

97 25 SA SA SA RP RP CWM SA SSD SSD LAS LAS

PGDP
93 94 SA OW SA RP RP CWM CWM CWM SSD SSD LAS SA

149 38 OW SA RP RP CWM CWM SSD SSD LAS LAS

RCBI
180 181 SA SA SA RP RP CWM CWM SSD SSD LAS LAS

288 73 SA SA RP RP CWM CWM SSD SSD LAS LAS

RCONSUM
193 194 SA SA SA RP RP RP CWM CWM CWM SSD SSD SSD LAS LAS LAS

309 78 SA SA SA RP RP CWM CWM SSD SSD SSD LAS LAS

REXPORT
179 179 SA SA SA RP RP CWM CWM CWM SSD SSD LAS LAS LAS

286 72 SA SA SA RP RP RP CWM CWM CWM SSD SSD SSD LAS LAS

RFEDGOV
214 215 SA SA SA SA RP RP CWM CWM SA SSD SSD SA LAS LAS

343 86 SA SA SA RP RP CWM CWM SA SSD SSD LAS LAS

RGDP
66 66 SA SA SA RP RP CWM CWM SSD SSD SA SA LAS

105 27 SA SA SA RP RP CWM CWM SSD SSD SA LAS LAS

RNRESIN
190 191 SA SA SA RP RP RP CWM CWM CWM SSD SSD SSD LAS LAS

304 77 SA SA SA RP RP CWM CWM SSD SSD LAS LAS

RRESINV
181 182 SA SA SA RP RP RP CWM CWM CWM SSD SSD SSD LAS LAS LAS

290 73 SA SA SA RP RP RP CWM CWM CWM SSD SSD SSD LAS LAS LAS

RSLGOV
175 176 SA SA SA RP RP CWM CWM CWM SSD SA LAS LAS

280 71 SA SA SA RP RP CWM CWM SSD SSD LAS LAS
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