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a b s t r a c t

Wedescribe the properties of a constraint satisfaction network that is able to reason and decide rationally
in strategic games. We use the structure of Bidirectional Associative Memory (BAM), a minimal two-layer
recurrent neural network, and assume that network layers represent self and other strategies, whereas
connection weights encode best responses. We apply BAM to finite-strategy two-player games, and show
that network activation in the long run is restricted to the set of rationalizable strategies. The network
is not guaranteed to reach a stable activation state, but any pure strategy profile that constitutes a
stable state in the network must be a pure strategy Nash equilibrium. We illustrate the properties of
the network using the traveler’s dilemma, the rock–paper–scissors game, and coordination games. The
network’s behavior also depends on starting activation states, and we show how biases in these starting
states can resolve equilibrium selection problems. Strategic decision making is a key part of complex
social behavior, and our results illustrate how bidirectional constraint satisfaction networks can perform
rational computations in this domain.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Rationality plays an important role in the study of high-level
cognition. Many theories of reasoning, thinking, judgment and
decisionmaking rely critically on the notion of a rational agentwho
is able to encode and process information in an optimal manner.
In some settings, the decision maker is assumed to be a rational
agent, and behavioral predictions are obtained by analyzing the
behavior of this agent (Anderson, 1990; Oaksford & Chater, 2007;
Tenenbaum, Griffiths, & Kemp, 2006). In other settings, the behav-
ior of the rational agent is juxtaposed with human behavior, and
the differences between human behavior and rational behavior
are of theoretical interest (Kahneman & Tversky, 1979; Tversky &
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Kahneman, 1974). In either case, a complete account of behavior in
a given domain requires an understanding of how rational thought
and action in that domain could be generated by psychologically
plausible cognitive mechanisms.

One area of high-level cognition in which rational behavior is
well understood involves game theoretic strategic decision mak-
ing. The standard decision task studied by game theorists involves
two or more players, each allowed to choose between two or more
decision strategies. Importantly, the rewards for the players do
not depend only on their own choices, but also on the choices of
the other players, so that good decision making involves reason-
ing through reward contingencies, predicting what the opposing
players will choose, and best responding to their expected choices.
Common knowledge of rationality implies that players will choose
only rationalizable strategies, which are bydefinition best responses
to other rationalizable strategies (Bernheim, 1984; Pearce, 1984).
The Nash equilibrium, a set of (rationalizable) strategies chosen
by players so that individual players are unable to benefit by
unilaterally changing their strategies, is commonly accepted as
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the fundamental game theoretic solution concept incorporating
rationality and strategic sophistication. Nash equilibrium has been
applied to the study of economies, political systems, and soci-
eties, and is a fundamental theoretical construct in social science
(Camerer, 2003; Colman, 2003; Hart, 1992; Luce & Raiffa, 1957).

Despite its importance, it is not clear how Nash behavior (or
rationalizable behaviormore generally) could be generated by psy-
chologically plausible cognitive mechanisms, such as those com-
monly used to describe cognition and behavior in non-strategic
domains. The goal of this paper is to address this problem using
a constraint satisfaction neural network modeling framework.
Our approach is based on Kosko’s (1988) Bidirectional Associative
Memory (BAM) network, a minimal two-layer recurrent neural
network that has traditionally been applied to pattern matching
and classification problems in computer science and engineering
(see Howard & Kahana, 2002, for a related application to human
memory). BAM has binary activation functions, and activation in
the network spreads sequentially between the two layers. Process-
ing in the network terminates once activation stabilizes, with final
activation states determining the network’s responses. In our anal-
ysis, we assume that the two layers in the BAM network represent
the strategies available to the two players (self and other), with
each node corresponding to a single strategy for a given player.
The connections between the nodes in the two layers encode best
responses, so that a node in self ’s layer sends activation to a node
in the other ’s layer only if the strategy represented by the second
node is a best response to the strategy represented by the first
node.

The BAM network is an analytically tractable generalization of
the Hopfield network (Hopfield, 1982), and can perfectly mimic
the Hopfield network when both layers have the same number of
nodes and node updating across the two layers is simultaneous. As
in the Hopfield network, decision making in BAM occurs through
constraint satisfaction. Constraint satisfaction networks are well-
known class of computationalmodels, with a long history in cogni-
tive science research (see e.g. McClelland, Botvinick, Noelle, Plaut,
Rogers, Seidenberg, & Smith, 2010; Read, Vanman, & Miller, 1997
for an overview). They are commonly used to model cognition
in non-strategic settings, including perception, causal reasoning,
stereotype formation, analogical mapping, legal reasoning, per-
son construal, and preferential choice (Bhatia, 2016; Glöckner &
Betsch, 2008; Glöckner, Hilbig, & Jekel, 2014; Holyoak & Powell,
2016; Holyoak & Simon, 1999; Holyoak & Thagard, 1989; Kunda &
Thagard, 1996; McClelland & Rumelhart, 1981; Mischel & Shoda,
1995; Simon, Krawczyk & Holyoak, 2004; Simon, Snow & Read,
2004; Thagard, 1989).Many of these constraint satisfactionmodels
also adopt a bidirectional structure. For example, the constraint
satisfaction networks proposed by Glöckner and Betsch (2008) and
Holyoak and Simon (1999) assume that decision makers have two
primary layers, with the first layer encoding cues and the second
layer encoding responses. Cues activate responses, but responses
can also activate cues, generating a range of anomalous behaviors
in judgment and decision making tasks. The BAM network has
also been applied to these tasks, and has been shown to mimic
preexisting models, while facilitating an analytically grounded
understanding of their properties, and the implications of these
properties for human behavior (Bhatia, 2016).

Most prior work applying constraint satisfaction networks like
BAM to the study of decision making implicitly assumes that
long-term activation in the network is necessarily described by a
stable state. We find that our implementation of game theoretic
decisionmaking in the BAMnetwork restricts long-term activation
to the set of rationalizable strategies. However, as best response
connections are not necessarily symmetric, there are settings in
which the network never achieves a stable activation state. In
settings in which the network stabilizes with the activation of a

particular strategy profile, this profile is guaranteed to be some
pure strategy Nash equilibrium. Conversely, every pure strategy
Nash equilibrium corresponds to some stable state in the BAM
network. In other words, if a pure strategy Nash equilibrium exists
in a given game, the BAM network is able (though not guaranteed)
to select it, and likewise if BAM network does select a strategy, it is
guaranteed to be in a Nash equilibrium. Even if the BAM network
does not select a single strategy, the strategies it oscillates between
are all rationalizable.

We illustrate these properties of the BAM network with three
examples: The travel’s dilemma, the rock–papers–scissors game,
and coordination games. The first of these games consists of only
a single rationalizable strategy for each player, which corresponds
to a pure strategy Nash equilibrium, and we show that the BAM
network is guaranteed to stabilize with the activation of nodes
in this equilibrium. The second game does not involve any pure
strategy Nash equilibrium, but every strategy is rationalizable. We
show that the BAM network will display an oscillating pattern of
activation in this game, in which each strategy node activates con-
secutively. Finally, the third game involves multiple pure strategy
Nash equilibria. We show that each of these equilibria correspond
to a stable state in our network, and that the network is guaranteed
to stabilize with the activation of nodes corresponding to one of
these equilibria.

We also examine how equilibrium selection problems in coor-
dination games with payoff dominating equilibria can be resolved
by the BAM network (Colman, 2003; Harsanyi & Selten, 1988).
Payoff dominating equilibria are unambiguously better for all de-
cisionmakers.With appropriately biased starting states (reflecting
attentional biases in favor of desirable strategies),we show that the
BAM network necessarily stabilizes with the activation of payoff
dominating strategies. Related activation biases also help specify
the role of strategy prominence in coordination, and can help
generate (arguably rational) choices favoring prominent strate-
gies in coordination games with payoff symmetric equilibria (see
Schelling’s 1960 argument for focal points).

Finally, we outline extensions of the BAM network that would
allow us to make precise (probabilistic) predictions regarding be-
havior. People may occasionally violate these predictions, as Nash
equilibrium itself is not a great behavioral model (Camerer, 2003).
We thus also suggest modifications to the BAM network that may
allow it to generate behaviorally plausible (though not necessarily
rational) choices.

Overall, our results showhowconstraint satisfaction approaches
to modeling decision making can be used to describe the cognitive
basis of rational strategic choice. In doing so, they illustrate the the-
oretical power of models of constraint satisfaction, and highlight
their applicability to the study of complex social behavior.

2. Game theoretic decision making

In strategic games, two or more players make choices over a
set of strategies. Crucially, the strategies chosen by the players
collectively determine the outcomes of the game, so that each
player’s utility depends on the other ’s choice as well as on their
own. We define a finite-strategy two-player game with a set of
pure strategies for each player, S1 = {s11, . . . , s1N} and S2 =

{s21, . . . , s2M} respectively, and a pair of payoff functions u1 and
u2 that give each player’s utility for each profile of pure strategies
(s1i, s2j) (see, e.g., Hart, 1992). Thus if player 1 selects s1i and player
2 selectss2jthe utility for player 1 is u1(s1i; s2j) and the utility for
player 2 is u2(s2j; s1i). We use the notation uij as a shortcut for(
u1(s1i; s2j), u2(s2j; s1i)

)
.

Themost standard solution concept for a strategic game is Nash
equilibrium,which relies on common knowledge of rationality and
accurate expectations. A Nash equilibrium is a strategy profile in
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which no player can obtain higher utility by unilaterally changing
his strategy; each player is already playing a best response to
the equilibrium strategy profile. We define the set of best re-
sponses for player µ to an opponent’s strategy s−µ as BR

(
s−µ

)
=

arg max uµ(sµ; s−µ). Then a pure strategy Nash equilibrium can be
defined as a strategy profile (s1i, s2j) such that s1i ∈ BR(s2j) and
s2j ∈ BR(s1i).

The concept of Nash equilibrium can be generalized to relax
the assumption that players somehow have correct expectations
about what others will do. The solution concept of rationalizability
(Bernheim, 1984; Pearce, 1984) retains the assumption of common
knowledge of rationality, but imposes no additional constraints
on behavior. As in a Nash equilibrium, players best respond to
the strategy they expect their opponent to select, but in contrast
to a Nash equilibrium, this expectation is not necessarily correct.
Players must only be able to ‘‘rationalize’’ their strategy choice as
a best response to one of the opponent’s rationalizable strategies.
We define the set of rationalizable strategies for each player as the
maximal sets R1 and R2 such that any s1 ∈ R1 satisfies s1 ∈ BR(s2j)
for some s2j ∈ R2 and any s2 ∈ R2 satisfies s2 ∈ BR(s1i) for some
s1i ∈ R1. Clearly, any Nash equilibrium profile is rationalizable,
and if the sets of rationalizable strategies are singletons, then these
strategies form a Nash equilibrium.

3. Bidirectional associative memory

Nash equilibrium and rationalizability are two of the most
important solution concepts in game theory. Hereweexaminehow
choices corresponding to these concepts can be generated by ratio-
nal decision makers, modeled with constraint satisfaction neural
networks. These types of networks rely on bidirectional (recurrent)
connectivity between their component nodes, which is able to
generate sophisticated dynamics and subsequently explain a range
of human behavior. Although these networks have traditionally
been used only to explain behavior in non-strategic settings (as
outlined in the introduction above) they can be applied to strategic
game theoretic decision making. Indeed, these networks are par-
ticularly suitable for this task, as game theoretic decision making
features complex interactions between the choices of different
decisionmakers; interactions that can be specified using recurrent
bidirectional connectivity.

The Bidirectional Associative Memory Network (BAM) is a par-
ticularly powerful (and mathematically tractable) constraint sat-
isfaction neural network (Kosko, 1987, 1988). It consists of two
layerswith binary connections between their respective nodes and
binary activation functions for any given node. When the connec-
tions between its nodes are symmetric then BAM is guaranteed
to reach a stable pattern of activation, regardless of its starting
state. This property has been used by scholars to solve a variety of
practical tasks involving associative memory and pattern comple-
tion (Kosko, 1988) and also model non-strategic human decision
making, and the biases that it often involves (Bhatia, 2016).

In this paper, we model how an individual decision maker can
reason through two-player finite strategy games, using the BAM
network. Strategies in these games for each of the two players can
be represented in each of BAM’s two layers. We will assume that
the first layer in the BAMnetwork represents strategies available to
player 1 (or self ). If player 1 can choose from the set of strategies
S1 = {s11, . . . , s1N}, then the first layer in our network consists
of N nodes, with node i representing strategy s1i. The activated
nodes in this layer represent the strategies that the decisionmaker
considers playing in the game.

Correspondingly we will assume that the second layer in the
BAM network represents strategies available to player 2 (the op-
ponent, or other). If player 2 can choose from the set of strategies
S2 = {s21, . . . , s2M}, then the second layer in our network consists

Fig. 1. Example of a BAM network. Here node s1i corresponds to strategy i for self
and node s2j corresponds to strategy j for other. Connection weights encode best
responses. Here we have a game with two strategies for self and three strategies
for other, with strategy 2 for self serving as a best response to strategies 1, 2 and 3
for other, strategy 1 for other serving as a best response to strategy 1 for self, and
strategy 3 for other serving as a best response to strategy 2 for self. Note that the
only Nash equilibrium in the game encoded in this network is (s12 , s23).

of M nodes, with node j representing strategy s2j. The activated
nodes in this layer represent the strategies that the decisionmaker
thinks other might play in the game.

As mentioned earlier, node activation in BAM is binary, with
each node being on or off. We will assume that every node has
the same binary activation function, with activation triggered by
strictly positive input. For any node k (in either layer of the net-
work) with input Ik, the activation function fk is specified by Eq. (1).

fk (Ik) =

{
1 if Ik > 0;
0 if Ik ≤ 0.

(1)

In a slight abuse of notation, we denote by f the activation
function for either layer of the network, with components fk for
every node k.

Connections between nodes are also binary, with each node
in the first layer either connected or not connected to each node
in the second layer, and each node in the second layer either
connected or not connected to each node in the first layer. There
are no connections between two nodes in one layer. The network
structure can thus be described by thematricesW12 andW21 which
represent connections from layer 1 to layer 2, and from layer 2 to
layer 1 respectively.

We will assume the pattern of connections in our network
captures best responses. Particularly, if s2j ∈ BR(s1i) then we
assume the connection from node i in the first layer to node j in
the second layer is W 12

ij = 1. If s2j /∈ BR(s1i) then we assume
W 12

ij = 0.We assume a similar pattern of connectivity from the
second layer to the first, so that W 21

ji = 1 if s1i ∈ BR(s2j) and
W 21

ji = 0 otherwise. In essence, an activated strategy s1i for self
sends positive inputs to strategies s2j for other that serve as best re-
sponses to s1i. Conversely, an activated strategy s2i for other sends
positive inputs to strategies s1i for self that serve as best responses
to s2j. Fig. 1 provides an illustration of the proposed network.

We write the activation of any node i in the first layer, at time
t, as A1i(t), and any node j in the second layer, at time t, as A2j(t).
With the connectivity specified above, vectors A1(t) and A2(t)
together represent network activation at time t. We can describe
their dynamics using Eqs. (2a) and (2b).

A1(t) = f (A2(t − 1)·W21) (2a)

A2(t) = f (A1(t)·W12) (2b)

As formalized in the above equation, node updating in our
network is sequential, with layer 1 updating before layer 2. This
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does not affect the network’s behavior, except at the starting point
t = 0. Here, the above assumption implies that the network begins
processing the decision when some nodes in layer 1 are activated
exogenously (intuitively, self begins the decision process by first
considering his strategies). The activation of strategies in layer 1
then activates the strategies in layer 2which then alters the pattern
of activation in layer 1. In essence, deliberation involves iterative
activation of strategies that serve as best responses to previously
activated strategies. Fig. 2 illustrates the spread of activation in
the BAM network from Fig. 1. The choice of the starting point
activation in our network can affect subsequent node activation
and sometimes will determine selection among multiple stable
states.

Like related recurrent neural network models, the BAM net-
work can make some decisions through constraint satisfaction,
that is, by settling into a stable activation state. A stable activation
state in the network is a state from which endogenous deviations
are not possible. Activation states A∗

1 in layer 1 and A∗

2 in layer 2 are
stable if A∗

1(t) = A∗

1(t + 1) and A∗

2(t) = A∗

2(t + 1). We assume that
a decisionmaker chooses one of the strategies that are activated in
layer 1 and expects other to choose one of the strategies activated
in layer 2, in the network’s stable state.

The connections assumed in this paper are not necessarily
symmetric, as strategy s1i can be a best response to strategy s2j
without s2j being a best response to strategy s1i. This means that
the network is not always guaranteed to stabilize. If the network
does not stabilize, then it enters a pattern of oscillating activation
in which a certain subset of nodes are activated and deactivated
consecutively. We assume that the nodes that are activated (but
then deactivated) as part of this oscillating pattern correspond
to the set of strategies from which decision makers make their
final choice. Nodes that are not activated as part of this oscillating
pattern correspond to strategies that are ignored by the decision
maker.

Long-run activation of the BAM network does not always
uniquely determine a choice prediction. It does rule out non-
rationalizable strategies, which is the model’s primary testable
prediction. Still, we might like a fully specified choice rule. Later
in this paper, we consider various extensions that allow the model
to make more precise behavioral predictions.

4. Stability and Nash equilibrium

First, suppose the network reaches a stable state corresponding
to a pure strategy profile, that is, a stable state of activation in
which only one node is activated in each layer of the network. Our
first result characterizes that stable activation state as correspond-
ing to a Nash equilibrium.

Proposition 1. Suppose that limt→∞ (A1 (t) ,A2 (t)) = (A∗

1,A
∗

2)
with unique nodes i and j in each layer for which A∗

1i > 0 and A∗

2j > 0.
Then (s1i, s2j) is a Nash equilibrium.

Proof. Strategy s1i is activated at time t (i.e., A1i(t) > 0) if and only
if there exists s2j such that s1i ∈ BR(s2j) and A2j(t − 1) > 0, and
conversely, strategy s2j is activated at time t (i.e., A2j(t) > 0) if and
only if there exists s1i such that s2j ∈ BR(s1i) and A1i(t − 1) > 0.
Thus, if the network converges to (A∗

1,A
∗

2) with unique nodes i and
j in each layer for which A∗

1i > 0 and A∗

2j > 0, then s1i ∈ BR(s2j) and
s2j ∈ BR(s1i), which means that (s1i, s2j) is a Nash equilibrium. □

Proposition 1 tells us that the neural network will find a Nash
equilibrium if it is able to converge on a single strategy profile. The
process through which the network finds this Nash equilibrium
is constraint satisfaction. The example of the traveler’s dilemma in
the section below illustrates how the network converges on a pure
strategy Nash equilibrium.

The game of rock–paper–scissors discussed in the section below
illustrates that the network may not converge to a stable state.
Even if the network does not reach a stable state, however, we can
characterize the nodeswhichmay experience recurrent activation.
In the long run, activation is restricted to the set of rationalizable
strategies, R1 and R2 respectively. Let A1(t) and A2(t) respectively
denote the sets of strategies that are activated at time t, i.e., s1i ∈

A1(t) if A1
i (t) > 0.

Theorem 1. There exists τ such that for any t > τ we have A1 (t) R1
and A2 (t) ⊆ R2.

Proof.We show that if s1i /∈ R1, then for large enough t, A1i (t) = 0.
(The argument for player 2’s strategies is analogous.) If s1i /∈ R1,
then any chain of best responses can include s1i at most once.
Strategy s1i is activated at time t (i.e., A1i(t) > 0) if and only if
there exists s2j /∈ R2 such that s1i ∈ BR(s2j) and A2j(t − 1) > 0.
The players only have a finite number (N + M) of strategies, so for
t > N + M , there are no more strategies available to seed a chain
of best responses, so A1i (t) = 0. □

Theorem 1 tells us that the neural network will select only
rationalizable strategies. Thus, strategic rationality emerges from
the structure of the bidirectional network. The network may never
converge to a state with stable activation, so we may not be able
to identify a single strategy that will necessarily be chosen, but we
can make testable predictions about what will not be chosen.

We can also recognize that the lack of a point prediction creates
space for contextual factors to matter. An individual’s eventual
decision may depend on which strategy he considers first, which
could in turn depend on the salience of different strategies, how
the strategies are framed, or how the decision maker’s attention
is anchored. The coordination game discussed in the section below
illustrates how the starting point determineswhich of themultiple
Nash equilibria is eventually selected by the network.

It is straightforward to observe that any pure strategy Nash
equilibrium would constitute a stable state in our network. The
strategies in the Nash equilibrium would, due to the nature of
the connection weights, reinforce each other and, once activated,
sustain their activation.

Theorem 2. If (s1i, s2j) is a Nash equilibrium, then there exists a stable
state (A∗

1,A
∗

2) with unique nodes i and j in each layer forwhich A∗

1i > 0
and A∗

2j > 0.

Proof. This follows from our assumption that strategies are con-
nected to their best responses. □

Theorem 2 tells us that a Nash equilibrium is in fact a dynamic
equilibrium, a stable stationary state of the network. If an equilib-
rium is made salient to a decision maker behaving in accordance
with the BAM network, the individual will indeed choose his equi-
librium strategy.

5. Illustrations

In this section we apply the BAM network to three representa-
tive games. The games vary in the number of Nash equilibria and
in the size of the set of rationalizable strategies. These examples
demonstrate that activation in the BAM network in different con-
texts either may converge to a unique pure strategy Nash equilib-
rium from any initial state, may fail to converge at all as it oscillates
through multiple rationalizable strategies, or may converge to one
of many stable profiles depending on the initial state.
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Fig. 2. Example of spread of activation in the BAM network shown in Fig. 1. Here the decision begins with the activation of strategy 1 for self. This activates strategy 1 for
other, which in turn activates strategy 2 for self. Finally strategy 2 for self activates strategy 3 for other. This is a stable activation state (and corresponds to the only Nash
equilibrium in the encoded game).

Fig. 3. Example of a BAM network encoding the traveler’s dilemma game. Here the best response for self is to claim $1 less than other, and vice versa. Node activation in
this network is guaranteed to terminate with the activation of the $2 strategy nodes for self and other .

5.1. Traveler’s dilemma

The traveler’s dilemma is a generalization of the famous pris-
oner’s dilemma, conceived in order to demonstrate unraveling in
a strategic game (Basu, 1994). In the original parable, two travel-
ers have lost identical antiques and must request compensation
between $2 and $100. The airline (which is responsible for the
lost luggage) will accept the lower claim as valid and pay that
amount to both players, and, to deter lying, will penalize the
higher claimant with a $2 fee and will reward the lower claimant
with $2 bonus. We represent the game with the strategy sets
S1 = S2 = {2, 3, . . . , 100}, where x1i and x2j correspond to the
dollar amounts associated with strategies s1i and s2j, and with the
following utilities:

uij =

⎧⎨⎩
(
x2j − 2, x2j + 2

)
if x1i > x2j;(

x1i, x2j
)

if x1i = x2j;
(x1i + 2, x1i − 2) if x1i < x2j.

(3)

The airline’s scheme, of course, does not actually reward hon-
esty; it rewards undercutting the other traveler. The best response
is always to claim exactly $1 less than the other traveler does (if it
is feasible to do so). As it turns out, the only rationalizable strategy
for either player is to claim $2, and the unique Nash equilibrium
has both players claim $2.

The network connectivity implied by the traveler’s dilemma
is illustrated in Fig. 3. Given enough time this network is guar-
anteed to stabilize with the activation of the node corresponding
to $2 in layer 1, the node corresponding to $2 in layer 2, and
the deactivation of all the other nodes (corresponding to higher
claims). If, for example, the deliberation process begins with self
considering claiming $100, i.e., node $100 being activated in layer
1, then node $99 will become activated in layer 2, and in turn node
$98 will become activated in layer 1, and so on, until only the
nodes corresponding to $2 in each layer are activated. The unique
Nash equilibrium corresponds to the only stable state of activation
here, because it consists of the only rationalizable strategy for each
player. Intuitively, when a decision maker is given enough time to

reason, our model predicts that he will choose to claim $2 and will
expect the other player to do so as well.

5.2. Rock–paper–scissors

The classic game of rock–paper–scissors is the simplest sym-
metric, zero-sum game with non-transitive winning strategies.
Each player has three pure strategies: rock, paper, or scissor. The
loop is that rock ‘‘defeats’’ scissors, scissors ‘‘defeats’’ paper, and
paper ‘‘defeats’’ rock. If both players play the same strategy, then
the game is a tie. We can represent the rock–paper–scissors game
with the utilities uij described in Table 1.

The game of rock–paper–scissors has no pure strategy Nash
equilibrium, but every strategy is rationalizable. Every strategy is
a best response to some other strategy, but no strategy is a best
response to itself.

The network connectivity implied by the rock–paper–scissors
game is illustrated in Fig. 4. With a single node initially activated,
the network will never stabilize, regardless of which node is the
starting point. Instead, the network will display an oscillating
pattern of activation, in which each node in each layer activates
consecutively. If, for example, the network begins with the activa-
tion of the rock node in layer 1, then the node corresponding to
paper (the best response to rock) will activate in layer 2. In turn,
the node corresponding to scissorswill then activate in layer 1. This
leads to activating rock in layer 2, and so on. Intuitively, our model
predicts that a decision maker will cycle through all three possible
strategies as he reasons about the game, and any of these strategies
may eventually be chosen.

5.3. Coordination game

A coordination game captures situations in which the players’
primary incentives are to behave similarly, as for example in the
case that two friends would like to get together at a meeting place
and each has to choose where to go. If they both arrive at the same
location, then they each obtain a high reward (e.g., they get to enjoy
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Table 1
Utilities,uij , in the rock–paper–scissors game. Each player has three pure strategies:
rock, paper, or scissor. The loop is that rock ‘‘defeats’’ scissors, scissors ‘‘defeats’’
paper, and paper ‘‘defeats’’ rock. If both players play the same strategy, then the
game is a tie.

Other
Rock Paper Scissors

Self
Rock (0, 0) (−1, 1) (1, −1)
Paper (1, −1) (0, 0) (−1, 1)
Scissors (−1, 1) (1, −1) (0, 0)

Fig. 4. Example of a BAM network encoding the rock–paper–scissors game. Here
rock (R) is a best response to paper (P), which is a best response to scissor (S), which
in turn is a best response to rock. Node activation does not stabilize, and instead
oscillates with the successive activation of each of these three strategies for self and
other .

Fig. 5. Example of a BAM network encoding a coordination game. Here the other’s
best response to any strategy played by self is the same strategy, and vice versa. The
activation of each pair of strategies (s1i , s2j) with i = j is stable in the network.

each other’s company). If they arrive at different locations, then
they each obtain a low reward or a punishment (e.g., a solitary
evening). We can represent a coordination game with S1 = S2 and
a utility function that has the following property:

uij =

{
(v1i, v2j) if s1i = s2j;
(0, 0) if s1i ̸= s2j.

(4)

with v1i > 0 and v2j > 0 for all i and j. In a coordination game, self
is always incentivized to play the strategy that he expects other
to play and vice versa, regardless of the specific strategy involved.
Thus, there are N = M pure strategy Nash equilibria in the game,
with each Nash equilibrium corresponding to an outcome inwhich
self and other choose the same strategy. As in the rock–paper–
scissors game, every strategy is rationalizable. However, whereas
the network never stabilizes for the rock–paper–scissors game, it
immediately stabilizes for a coordination game.

The network connectivity implied by a coordination game is
illustrated in Fig. 5. The network is guaranteed to stabilize with the
activation of the same strategy nodes in layers 1 and 2. The precise

strategies activated in the stable state depend on the starting point
in the deliberation process, so that if deliberation begins with the
activation of node i in layer 1 (representing strategy s1i for self ),
then the network will stabilize with the activation of node i in
layer 1 and the activation of the corresponding node j = i in layer
2. Any pair of nodes corresponding to a Nash equilibrium creates
a mutually reinforcing pattern of activation, a stable state in the
network. Intuitively, our model predicts that a decision maker will
choose to play the strategy that he first begins thinking about and
will expect other to play this strategy as well.

6. Salience and starting points

Our analysis of coordination games in the prior section suggests
that the starting states BAM network can be used to resolve issues
regarding equilibrium selection in such games. Here we explore
these issues in more detail in two different types of coordination
games.

6.1. Coordination with payoff dominance

Consider first the case of a coordination gamewith payoff dom-
inance. This game also involves the structure outlined in Eq. (4),
however, it further restricts strategy payoffs so that v1i = v2jifs1i =

s2j, that is, each strategy offers both players an identical payoff if
they successfully coordinate on that strategy. Moreover, the set of
strategy payoffs are structured so that there exists one strategy k∗

so that we have v1k∗ = v2k∗ > v1k = v2k for all k ̸= k∗. Here,
successful coordination on k∗ yields higher payoffs to both players
than successful coordination on any other strategy, and for this
reason, k∗ is a payoff dominating Nash equilibrium. In the example
with two friends decidingwhere to go, k∗ corresponds to a location
that is individually optimal for both friends.

As in the more general coordination game outlined above, each
of the N = M strategy pairs in which both players select the
same strategy serve as pure strategyNash equilibria: If the decision
maker is a rational utility maximizer he should select k∗ only if he
expects his opponent to do so as well; but there is no reason to do
so, as the opponent faces the same dilemma (see Colman, 2003;
Harsanyi & Selten, 1988). While common knowledge of rationality
does not restrict the decision maker’s choice, we might still think
that if all players are rational, they should somehow figure out how
to obtain the payoff dominating Nash equilibrium k∗.

The cognitive implementation of game theoretic reasoning in
the BAM network is capable of solving the equilibrium selection
problem with reasonable assumptions about the psychology of
attention. Particularly, if we assume that decisionmakers aremore
likely to attend to desirable strategies first, then we can specify
starting activation states as being a function of strategy payoffs. For
examplewe can state that strategy i is activated at t = 0 if and only
ifmaxs2j∈S2u1(s1i; s2j) > maxs2j∈S2u1(s1k; s2j) for all k ̸= i. With such
an assumption it is guaranteed that the payoff dominating strategy
is activated first, and that the network in turn stabilizes with the
activation of this strategy. Attention that is biased in favor of highly
rewarding actions has been argued to be a component of rational
thought and behavior (see Lieder, Griffiths and Hsu, in press, for
an overview). Our analysis shows how such an attentional bias,
when implemented within the BAM network, facilitates rational
behavior in game theoretic decision making.

6.2. Prominence

Another setting in which the BAM framework can facilitate
the selection of optimal strategies involves coordination games
with prominent labels. Strategies in these games do not differ in
terms of payoffs but rather by exogenous cues that distinguish one
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strategy label from the rest. An example of such a game involves
variants of the game in Eq. (4), with a fixed standard payoff v1i =

v2j = v whenever s1i = s2j, but with some strategy k∗ artificially
highlighted or emphasized (Crawford, Gneezy, & Rottenstreich,
2008; Mehta, Starmer, & Sugden, 1994; Schelling, 1960). In the
example with two friends deciding where to go, such a strategy
could be one that is especially popular or one on which they had
coordinated previously.

As with payoff dominance, common knowledge of rationality
does not imply choice of the prominent strategy: The decision
maker should select k∗ only if he expects his opponent to do so
as well; but there is no reason to do so, as the opponent faces
the same dilemma. Still, we would expect rational players to use
strategy prominence to avoid coordination failure. Once again, the
BAM framework provides a convenient specification of the effects
of prominence in terms of the starting states of the network. It
is reasonable to assume that attention is directed towards the
prominent strategy, and that this strategy is thus most likely to
be activated at the first time period. This leads to the prominent
strategy being activated once the network stabilizes. Furthermore,
if the opponent also behaves as predicted by the BAM network,
then both players would eventually select the prominent strategy
and successfully coordinate. This analysis indicates how the BAM
implementation of game theoretic reasoning generates rational
behavior from core cognitive principles.

7. Model extensions

The above sections present a fairly abstract exposition of the
BAM network. We consider only the general properties of the
network that give rise to different dynamics in different games.
This generality allows us to make mathematically rigorous claims
about the relationship between BAM activation and rationalizabil-
ity, and thus understand how rational strategic decision making
can be instantiated within a plausible cognitive model. However,
more structure is required in order to make unique behavioral
predictions. For example, it is not yet specified what the BAM
network chooses when there are multiple possible stable states,
when there aremultiple strategies activated in a single stable state,
or when the network oscillates indefinitely without stabilizing.
These settings emerge in games for which rationalizability fails to
specify unique choices – i.e. games in which there are multiple
Nash equilibria or games in which there are no pure strategy
Nash equilibria –, suggesting that in order to make more specific
predictions we need to consider extensions of the BAM network
that may cause it to go beyond rationalizability.

7.1. Precise probabilistic predictions

We first consider extensions of the BAM network that allow
it make precise predictions that facilitate empirical tests and po-
tentially quantitative model fits. Due to the probabilistic nature
of choice (see Loomes, 2015, for a review) we consider extensions
that give rise to a probability distribution over all possible choices.
For a set of N player 1 strategies S1 = {s11, . . . , s1N} these pre-
dictions take the form of an N dimensional vector of probabilities
p1 = [p11, . . . , p1N ], such that

∑N
i=1 p1i = 1, with p1i capturing the

choice probability of strategy s1i.
The predicted choice probabilities are generated by network’s

final activation states. These activation states themselves depend
on thenetwork’s starting point, that is, the strategy that is activated
at t = 0 (intuitively, the strategy that the decision maker thinks
of first). We assume that the network always begins with the
activation of a single strategy, that the selection of this strategy
is probabilistic, and that activation probabilities depend on the
relative salience of the player’s strategies. We write the starting

point activation probabilities for player 1 as r1 = [r11, . . . , r1N ],
with

∑N
i=1 r1i = 1. We interpret r1i as capturing the relative

salience of strategy s1i for player 1, and this corresponds to the
probability that the network starts with only strategy i activated
at t = 0 (i.e. r1i = Prob[A1i(0) = 1 and A1k(0) = 0 for k ̸=

i]). Relative salience could be a product of payoff magnitude or
prominence manipulations, in which case the high-payoff strategy
or the prominent strategy would have a higher r1i. Alternatively, it
could be the case that there are no salience biases, in which case
r1i = 1/N for all i.

Given the specification of starting network activation states we
can now derive choice probabilities for the BAM network.We have
been thinking of choice as corresponding to long-run activation,
but what value of t constitutes the long run? For purposes of
making precise predictions, we assume that choice probabilities
are determined by the network activation the first time that a
network activation state repeats. In the case in which the net-
work stabilizes, this activation state is indeed the long-run stable
network activation state. In the case in which the network never
stabilizes, this activation state is the first activation state reached in
the sequence of activation states that characterizes the network’s
long-run oscillatory regime. The first repetition rule could be im-
plemented with a second set of nodes that track how often each
network state becomes activated, and a threshold for triggering
choice set at T = 2 activations. Actually, because periodic network
oscillations repeat deterministically, any value of T > 1 will select
the samenetwork activation state, andwe adopt the first repetition
rule (T = 2) just for simplicity. We can represent the selected
activation state for layer 1 as AR

1 . The nodes that are activated in
AR
1 correspond to a subset of player 1’s rationalizable strategies.
We assume that this activation state combines with a tremble

noise term to generate choice probabilities p1, so that the choice
probability for player 1’s strategy i is given by:

p1i =
AR
1i + θ∑N

k=1 A
R
1k + θ

(5)

where θ is a noise parameter that determines the extent of the
tremble noise. If θ = 0, the decision maker always chooses
uniformly one of the strategies that are activated in AR

1 , whereas
if θ = ∞, the decision maker selects each available strategy with
an equal probability regardless of the AR

1 . For moderate values of θ
we obtain higher choice probabilities for strategies activated in AR

1
compared to other strategies (though every strategy has a non-zero
probability of being chosen).

When combined with the starting point probabilities and an
analysis of BAM dynamics, Eq. (5) can be used to make precise
probabilistic predictions for choice in any game that can be repre-
sented by the BAMnetwork. Although these predictions depend on
the structure of the game, contextual factors that influence starting
network activation, and on the degree of tremble noise, we can
still generally predict that the strategies that are given the highest
choice probabilities are guaranteed to be rationalizable. Thus, our
probabilistic extension of the BAM network can still be seen as
implementing a rational choice with some noise.

7.2. Predicting Behavior

Of course it is well known that human decision makers dis-
play systematic deviations fromNash equilibrium predictions, and
often select non-rationalizable strategies with a high probability.
These behaviors are thus outside of the explanatory scope of the
BAM network. For example, the BAM network involves an iterative
reasoning process according to which strategies successively acti-
vate their best responses. We assume that this type of reasoning
continues until the network stabilizes into either a consistent
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activation state or else an oscillating activation state (which neces-
sarily includes only rationalizable strategies). Of course, real people
do not exhibit so much strategic sophistication. In the aforemen-
tioned traveler’s dilemma, for example, people often make higher
claims, which cannot be supported by any rationalizable strategy
(Capra, Holt, Goeree, & Gomez, 1999; Goeree & Holt, 2001). Actual
behavior is often better modeled by level-k thinking (or cognitive
hierarchies), which captures bounded rationality (Camerer, 2003;
Nagel, 1995; Stahl &Wilson, 1994). The level-kmodel assumes that
players can reason through k steps of best response analysis, where
the value of kmay be heterogeneous in a population. Our proposed
BAM network could capture this sort of level-k thinking if we did
not associate decisions with long-run patterns of activation, but
rather terminated the network dynamics at a finite time horizon
and associated decisions with activation when this horizon was
reached. Such an extension to the BAMnetworkwould also predict
that the extent of strategic sophistication depends on the amount
of time that the network is allowed to deliberate, and thus predict
that the network’s decisions can vary with deliberation time and
time pressure.

Yet another deviation from Nash theory involves sensitivity
to the payoffs in the game. For example, Capra et al. (1999) find
that final choices in the traveler’s dilemma are higher with higher
values of the fee for the higher claimant and the bonus for the lower
claimant, even though the precise value of the fee and bonus does
not influence the structure of best responses (the Nash equilibrium
is to always claim the lowest amount, regardless of the size of the
fee and bonus). Other games, such as the minimum-effort coordi-
nation game, the stag hunt game, and the matching pennies game
also display this behavioral pattern, so that changing payoffs with-
out altering the structure of best responses (i.e. changing how bad
it is to play a suboptimal strategy, but not changingwhen a strategy
is suboptimal) can alter observed choices (Goeree & Holt, 2001).
The BAM network cannot capture this type of payoff sensitivity as
network connection weights (and thus network activation states,
dynamics, and final responses) depend entirely on best responses.
Actual behavior in these settings is often bettermodeled by quantal
response equilibrium, which proposes that decision makers may
select suboptimal responses to the opponent’s expected play, but
that the frequency of these mistakes varies inversely with their
cost (McKelvey & Palfrey, 1995). This property of quantal response
equilibrium introduces a responsiveness to payoff size, and could
be incorporated into the BAM network by allowing for continuous
connection weights and activation states. For example, connection
weights from strategy s2j to s1i could depend not on whether or
not s1i is a best response to s2j, but rather on the payoff that
would be obtained by playing s1iif the opponent played s2j. This
would ensure that changes to the payoffs would be reflected in
changes to network connectivity, even if there are no correspond-
ing changes to the best response structure. Likewise, activation
states that are continuous, rather than binary, would ensure that
continuous changes to network memory influence the extent to
which different strategies are activated, and thus the likelihood of
playing these strategies. With both payoff-dependent continuous
connection weights and continuous activation states, increasing
the payoff of a particular strategy would increase the likelihood of
choosing that strategy.

In this paper we have avoided complex assumptions regarding
finite time horizons for network dynamics or continuous con-
nection weights and activation functions. This has allowed us to
make mathematically rigorous claims regarding the relationship
between the BAM network and rational behavior. However, in
follow up work we are considering these extensions to the BAM
network. We find that a pair of stochastic accumulator networks
with bidirectional links (what we call the dual accumulator model)
provides a more accurate characterization of human behavior in

game theoretic decision making than the present BAM network,
and that it can even outperform sophisticated behavioral theo-
ries such as level-k reasoning and quantal response equilibrium
(Golman & Bhatia, 2017; Golman, Bhatia, & Kane, 2018). These
results show that both rational and irrational aspects of game
theoretic deliberation can be captured by constrained satisfaction
processes in a two-layer recurrent neural network.

8. Discussion

Constraint satisfaction is a key feature of high-level cognition,
and models of constraint satisfaction – often formalized using
recurrent neural networks – are frequently used to study human
reasoning, judgment, and decisionmaking. In this paperwe extend
this research to game theoretic decision making. In particular, we
adapt the Bidirectional Associative Memory (BAM) model (Kosko,
1988), a minimal two-layer recurrent neural network, to make
decisions in finite strategy two-player games.

BAM is well-suited for this task. Choices in game theoretic
settings are interdependent,with the payoff generated by choosing
any one strategy being a function of the choice made by the other
decision maker. The recurrent connectivity in BAM can be used to
model this type of interdependence.We assume that the two layers
in the BAM represent strategies available to the self and strategies
available to the other, and connections between these two layers
capture the best responses to the various strategies. With this
structure, we show that activation in the BAM network in the long
run can only be sustained for rationalizable strategies. Decision
making with the BAM network can thus achieve rational strate-
gic choice, although it dispenses with the assumption of perfect
foresight (i.e., rational expectations). In the special case in which
the network stabilizes with the activation of only one strategy in
each layer, that pair of strategies is guaranteed to be a Nash equi-
librium.Moreover, every pure strategy Nash equilibrium is a stable
state in the network. Finally, as starting activation states in the
BAM network influence final stable states, cognitively-grounded
assumptions regarding the determinants of strategy salience easily
resolve issues of equilibrium selection.

The BAM network has previously been used tomodel reasoning
in non-strategic judgment and decision tasks (Bhatia, 2016; see
also Howard & Kahana, 2002 for an application of BAM to human
memory). In Bhatia’s (2016) model, the two layers of the BAM
network are assumed to correspond to responses (e.g. hypotheses
or choice options) and cues (e.g. evidence or choice attributes).
Bidirectional connectivity between these two layers implies that
not only do cues activate supported responses, but responses in
turn activate the cues that support them. The BAM network is a
mathematically tractable variant of the Co3 model analyzed by
Spellman, Ullman, and Holyoak (1993) and Holyoak and Simon
(1999), and the PCS-DM model analyzed by Glöckner and Betsch
(2008) andGlöckner et al. (2014). Aswith these preexistingmodels
it is able to generate coherence shifts in cue-based judgment and
multiattribute choice through the dynamics of the spread of activa-
tion in the two layers. Starting point biases formalize the effects of
anchors, and activation dynamics generate sequential adjustment
in numerical response tasks. Finally starting point biases also cap-
ture the effect of reference points on both choice behavior as well
as on attribute memory and attention.

The current specification of BAM in game theoretic decision
making can be seen as a conceptual extension of Bhatia (2016).
In the current paper, the two layers correspond to self and other
strategies. The former are the set of responses that the decision
makers choose between, and the latter are the reasons or cues that
support these choices. Even though connections can be asymmet-
ric, they nonetheless correspond to support in the samemanner as
connection weights in Co3, PCS-DM and other constraint satisfac-
tion frameworks.
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It is interesting to note that bidirectional reasoning has, in some
cases, been argued to be irrational—certainly the effect of beliefs
and preferences on the use of evidence and on the evaluation of
choice attributes is often considered to be a ‘‘bias’’ in psychological
research (Fischhoff & Beyth, 1975; Nisbett & Ross, 1980; Tversky
& Kahneman, 1974). In contrast, Thagard (1989) has argued for
the value of this type of bidirectional processing in scientific and
legal reasoning. In support of Thagard’s claims, our work shows
that this type of directional process is a core property of rational
strategic deliberation. Indeed, strategies for self and other are
only considered to be part of Nash equilibria if they are mutually
reinforcing.

Our paper leaves open the question of strategy learning. We
have assumed the network is able to encode best responses, but
how do decision makers learn these best responses? One solution
to this problem may involve a simple form of supervised learning.
If, after playing each game (either hypothetically or for real), the
decision maker is able to infer both the best response to the strat-
egy that was played by other, and other’s best response to the strat-
egy thatwas played by self ţhen a variant of the perceptron learning
rule (that is restricted to binary connections) could over time allow
the network to learn the pattern of best response connectivity
assumed in our BAM network. This could also be accomplished by
reinforcement learning, as the individual considers various pos-
sible responses to each strategy. In the long run, reinforcement
learning would ensure that the response with the highest payoff
would be selected for, and the connection to the best response
would be the strongest of all connections. To the extent that the
structure of many natural games is learnt, our implementation of
strategic reasoning in BAM suggests that optimal strategic choice
in games from memory may emerge entirely out of associative
processes implemented in a constraint satisfaction network.

Finally, although game theory is most commonly used to de-
scribe economic phenomena, such as price setting in markets and
bidding in auctions, it also has a large number of applications for
the study of cognition and behavior. For example, games such
as the traveler’s dilemma can help us understand some of the
difficulties involved in maintaining cooperation in social settings
(Axelrod & Hamilton, 1981). Likewise, rock–paper–scissors can be
used to represent evolutionary predator–prey dynamics (Nowak &
Sigmund, 2004), and the coordination game provides a perspective
for understanding the evolution of language, as different individu-
als have to agree on the meaning of words (Demichelis & Weibull,
2008). Thus our analysis of the BAM network in this paper has
the potential to address core questions regarding human cognition
and behavior.We look forward to further integrating psychological
research and research on game theoretic decisionmaking in future
work.
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