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Abstract

We compare cultural learning and individualistic, belief-based learning in a class

of generalized stag hunt games. Agents can choose from among multiple potentially

cooperative actions or can take a secure, self interested action. We assume that a

proportion of the cooperative actions prove effective, while others can be undermined

by a predatory action. For this class of games, the set of stable equilibria is identical

under the two learning rules. However, we show that the basins of attraction for the

efficient equilibria are much larger for cultural learning. We further show that as the

stakes grow arbitrarily large, cultural learning always locates an efficient equilibrium

while belief-based learning never does.

KEYWORDS: Belief-based learning; cooperation; coordination game; cultural

learning; stag hunt.

JEL classification codes: C73; D79; H41
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1 Introduction

Game theorists motivate the prediction of equilibrium outcomes by assuming either

that rational agents select equilibrium strategies or that agents learn and settle into

an equilibrium. When a game possesses multiple equilibria, the assumption of ratio-

nal agents requires the introduction of refinement criteria to select from among the

equilibria. With learning agents, the explicit model of behavior determines a basin

of attraction for each equilibrium. The size of a basin can vary depending on the

learning rule.1 Thus, learning can be seen as a selector of equilibria.2

A natural practical question to ask is whether differences in learning rules can lead

to qualitatively different outcomes. In particular, does one type of learning rule make

cooperative behavior more likely to emerge in equilibrium than another? To get at

that question, in this paper, we explore the extent to which the type of learning rule

influences equilibrium selection in a class of generalized stag hunt games. We compare

two canonical learning models: cultural learning and individual belief-based learning.

We find that the former more often settles into a cooperative equilibrium. This does

1The stability of an equilibrium is usually invariant for broad classes of learning rules. Even

locally asymptotically stable equilibria, however, may have small basins (Epstein, 2003). In extreme

cases a basin of attraction may be arbitrarily small for one learning rule and arbitrarily large for

another (Golman and Page, 2008).
2Basins of attraction have been the focus of a related literature that considers learning models

with persistent randomness and selects stochastically stable equilibria (Foster and Young, 1990;

Kandori et al., 1993; Young, 1993; Kandori and Rob, 1995). These dynamics favor risk dominant

solutions.
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not imply that cultural learning is better for all games (see Golman and Page 2008),

but does suggest that for games that involve coordination on a cooperative action,

cultural learning may be a preferred learning rule.

The original stag hunt game traces back to 1773, when Rousseau proposed the

story of a stag hunt to represent a choice in which the benefits of cooperation conflict

with the security of acting alone. In the story, two individuals must each choose to

hunt a stag or to hunt a hare. Hunting stags can only be successful with cooperation,

while hunting a hare does not require the other player’s help. The catch is that

the stag offers both hunters a lot more meat than the hare. Thus, the stag hunt

obliges a choice between productivity and security. Skyrms (2001) argues that the

stag hunt captures the incentives present in choices whether to adopt or modify the

social contract.

Rousseau’s stag hunt has been modeled as a two-by-two game with two strict

pure Nash Equilibria: an efficient one in which both hunt stag and an inefficient

one in which both hunt hare. In playing a stag hunt, agents try to figure out which

equilibrium action to choose. Equilibrium selection arguments can be invoked in favor

of either action. While hunting the stag is payoff dominant, hunting the hare is risk

dominant (Harsanyi and Selten, 1988).

The stag hunt game, along with the prisoner’s dilemma, is often invoked as a

framework with which to study collective action problems (Medina, 2007). In a

prisoner’s dilemma or a public goods game, incentives lead to everybody defecting. In

contrast, in a stag hung game, players have an incentive to cooperate provided enough
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of the other players do so as well. Stag hunt differs from the prisoners’ dilemma in

that achieving cooperation does not require higher order strategies such as tit for tat

(Axelrod, 1984), trigger mechanisms (Abreu et al., 1990), or norm based strategies

(Bendor and Swistak, 1977), all of which allow defectors to be punished outside of

the context of the original game. Higher order strategies that produce cooperation in

the prisoner’s dilemma, in effect, transform that game into a stag hunt game, where

the choice to defect corresponds to the inefficient, but safer action (Skyrms, 2001).

Therefore, many of the results of this paper can be interpreted through the lens of

the repeated prisoner’s dilemma.

The choice between stag and hare simplifies a more complex reality in which

agents might choose between multiple stags and a hare. By that we mean a society

or a community would often have more than a single cooperative action to pursue. So,

here, we extend the canonical two-by-two stag hunt game to allow for more actions.

This increase in actions also provides sufficient space for learning rules to matter,

whereas in a two-by-two game, how agents learn has no effect. As in the canonical

stag hunt game, the models we consider include an insulated self interested action

that does not require agents to coordinate. It generates only a modest payoff, but it

is safe. We differ from the canonical model in that we allow for multiple potentially

cooperative actions.

In our basic model, any cooperative action would be optimal if the population

coordinated on it. We then expand our model to consider the possibility that some of

these actions would be effective, e.g., successful if followed, but that others, termed

5



naive, would be undermined by a predatory action.3 Thus, we add predation (Conlisk,

2001) to the stag hunt. The predatory action can be seen as a form of defection. It

robs those agents who undertake naive actions. This framework captures situations in

which a community may have several potential “stag” actions of which some would

prove fruitful and others would not. To illustrate, a community may have several

mechanisms to share water, but some of these may prove exploitable by predatory

actions.

Within this class of models, we find that cultural learning more often locates

the efficient cooperative equilibria than does individual belief-based learning. To

be precise, we show that cultural learning dominates individual learning: given any

starting point for which individual learning results in cooperation, so does cultural

learning.

Within the expanded framework that includes naive and predatory strategies, we

highlight three additional results. First, contrary to intuition, we find that the effect

of the learning rule becomes amplified as the stakes increase. As the stakes grow

infinitely large, cultural learning converges to full cooperation, always locating an

effective action, while belief-based learning converges to a zero probability of finding

an effective action. Thus, ramping up incentives makes the type of learning rule more,

not less important. Second, we find that as the number of potentially cooperative

actions increases, so does the probability of finding the self interested action. This

3Though the naive actions are not played in equilibrium, such dominated strategies play a crucial

role in equilibrium selection in coordination games (Ochs, 1995; Basov, 2004).
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coordination failure aligns with basic intuition that lots of options makes coordinating

on a single one more difficult. Third, and counter to intuition, given cultural learning

we find that changing one action from naive to effective can move some initial points

from the basin of attraction of a cooperative equilibrium into the basin of attraction

of the safe equilibrium.

2 Individual and Cultural Learning

Given the variety of potential learning rules, we feel it necessary to motivate our

decision to compare individual, belief-based learning to cultural evolutionary learning

(Camerer 2003, Fudenberg and Levine 1999). These two learning rules differ in how

they characterize behavior. Belief-based learning is prospective and individualistic;

cultural evolutionary learning is retrospective and social. By considering these two

extreme forms of learning we investigate the possibility that the type of learning rule

might matter for equilibrium selection.

We model individual learning using a simple best response learning rule (Gilboa

and Matsui, 1991; Hofbauer and Sigmund, 2003). Elaborated models of individual

learning, such as logit learning and quantal response learning, include noise terms and

individual errors. The extra degree of freedom introduced with this error term implies

that they can fit experimental data better than the simpler best response dynamic.

Nevertheless, we stick here with best response learning owing to its foundational

nature and analytic tractability.
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Following convention, we use replicator dynamics (Taylor and Jonker, 1978) to

capture cultural learning in a population of players (Henrich and Boyd, 2002). Repli-

cator dynamics can be seen as capturing situations in which agents compare payoffs

with each other and copy better performing agents.4 Cultural learning is less greedy

than best response dynamics. Agents don’t move only in the direction of the best

action but towards all actions that have above average payoffs.

For the sake of analytic tractability, we consider continuous time dynamics.5 These

would arise in the limit of a large, well-mixed population. In this limit, both dynam-

ics can be derived as the expected behavior of agents with stochastic protocols for

switching their actions (Sandholm, 2009). A simple revision protocol in which agents

occasionally switch to the best response to the current population state generates

the best response dynamics. Imitative revision protocols, such as imitation driven

by dissatisfaction (Björnerstedt and Weibull, 1996) or pairwise proportional imitation

(Schlag, 1998), lead to the replicator dynamics.

The differences between belief-based learning rules and cultural evolutionary learn-

ing have been the subject of substantial theoretical, experimental, and empirical in-

vestigation. For the most part, the theoretical literature focuses on how the rules

operate and, in particular, on the stability of equilibria under the two types of rules.

That literature shows that in many games both rules produce the same set of stable

4Cultural learning can be performance-based if it depends on payoffs or conformist if it depends

on popularity. Here, we consider performance-based cultural learning.
5Showing that our main results hold with discrete dynamics as well is a straightforward, though

somewhat involved, exercise.
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equilibria (Hopkins, 1999; Hofbauer et al., 1979; Hofbauer, 2000). Counterexamples

rely on knife edge assumptions.

Though the stable equilibria may be the same across learning rules, the paths to

those equilibria differ. Experimental and empirical literatures attempt to flesh out

which rule people apply in practice. As the two rules differ in their informational

and cognitive requirements, we should expect each rule to be better suited to some

environments than the other. Cultural learning requires knowledge of the success

of others. Given that information, a cultural learning rule doesn’t require much

cognitive effort: agents need only copy someone doing better than they are. Best

response learning, on the other hand, does not require any information about the

success of others – other than the payoffs to the game – but it does require knowledge

of the full distribution of actions and calculation of the payoff from each possible

action. Thus, we shouldn’t expect to see best responses unless people understand the

game.

In two-by-two games, we might therefore expect best response learning to better

predict behavior. In fact, Cheung and Friedman (1998) find greater support for belief-

based learning than for replicator dynamics. However, the performance of these and

other learning rules is often so similar as to be almost indistinguishable (Feltovich,

2000; Salmon, 2001). What differences that do exist between the behavior predicted

by these rules and the data can often be explained by considering a hybrid model

that includes both belief-based and reinforcement learning (Camerer and Ho, 1999).6

6Reinforcement learning can also give rise to the replicator dynamics (Börgers and Sarin, 1997).
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Learning rules have also been studied in the field. Evidence from the real world

generally tilts towards cultural learning. Henrich (2001), in surveying evidence on

the adoption of innovations, finds S-shaped adoption curves to be prevalent. Cultural

learning, which relies on imitation, produces S-shaped curves. Individual learning

does not. A hybrid learning model would also produce S-shaped adoption curves.

Therefore, the empirical evidence should not lead us to declare cultural learning the

winner so much as it tells us that people do take into account how others act.7

Our interests here tend less toward the empirical question of what people do and

more in the direction of the theoretical question of what would happen if people were

to follow one rule at the expense of the other. We find that cultural learning locates

an efficient equilibrium more often than does best response learning. This could im-

ply that societies that have a more collective orientation might be better equipped

to coordinate their efforts and cooperate in the face of strategic uncertainty. That

said, cultural learning is not the only mechanism through which a society can achieve

efficient, coordinated cooperation. Many other mechanisms have been shown suffi-

cient, including focal points (Schelling, 1960) and, in the context of an evolutionary

dynamic, cheap talk (Skyrms, 2004). Alternatively, if groups or bands of people en-

gage in battles with neighboring groups, then group selection could produce altruistic

strategies that ensure cooperation (Gintis et al., 2003).

In what follows, we introduce our model of a stag hunt game with multiple co-

7Prestige bias, the coupling of prestige to success, is further evidence that imitation is a part of

how people learn (Henrich and Gil-White, 2001).
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operative actions, provide an example, and prove some general results. Then, in

Section 4, we modify our model to allow some of the cooperative actions to fail and

be undermined by a predatory action. In Section 5, we present the bulk of our results,

analyzing this model. Section 7 concludes with a discussion of the types of learning

we consider.

3 The Basic Model

In our basic model, we assume a self interested action that offers agents a risk-free

return. We also assume n cooperative actions. Each offers the agent a reward that is

assuredly positive and increases with the number of others taking the same action. In

the canonical example, hunting rabbits would be the self interested action. Hunting

stags would be a cooperative action, as would participating in a collective whale hunt.

In these cases, hunting cooperatively greatly increases the chances of a hearty meal,

while hunting alone for a stag or a whale gives the player a small (but nonzero) chance

at finding something to eat. (Perhaps while being faithful to the larger cause, the

hunter can still bag a small animal or fish on the side.) Taking a cooperative action

has positive spillovers in that it helps others who join in. Thus, taking a cooperative

action becomes the better choice (only) when a significant percentage of other agents

also take this action.

Formally, our game consists of n+1 actions, with the action set A = {1, · · · , n, S}.

We denote the set of cooperative actions C = {1, · · · , n}. We consider a single unit-
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mass population of agents. The state space is therefore the n-dimensional unit simplex

4n, with a point x ∈ 4n denoting the fraction of the population choosing each action.

The vector x = (x1, . . . , xn, xS) is called the population mixed strategy.

Payoffs in a population game are a function of the population state x. We normal-

ize payoff magnitudes by attributing a cooperative action taken in isolation a payoff

of 1, assuming it’s the same for any cooperative action, and we let the parameter

β > 0 capture the relative benefit of coordinating on a cooperative action. Larger β

imply greater benefits from achieving cooperation. The cooperative actions vary in

their efficiency according to a family of parameters, θi for each i ∈ C. The maximum

reward, if everybody coordinates on effective action i, is an additional θiβ. Finally,

the insulated, self interested action S receives a payoff of c > 1 regardless of the

actions of the other agents. The payoffs can therefore be written as follows:

π(i,x) = 1 + θiβxi for i ∈ C

π(S,x) = c > 1.

We make a technical assumption, (A1) θiβ + 1 > c for all i ∈ C, to create the

proper ordering over payoffs. This guarantees that successfully coordinating on a

cooperative action yields a higher payoff than taking the self interested action. Thus,

we have a strict pure Nash Equilibrium at every action in the game.

Learning rules operate on a state space 4 by specifying for any given payoff

structure a dynamical system ẋ = Vπ(x, t) such that 4 is forward invariant, i.e.,

trajectories stay within the simplex. The learning dynamic produces changes in the
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proportions of agents playing the various actions. In what follows we compare two

learning rules: best response dynamics and replicator dynamics. In best response

dynamics, some infinitesimal proportion of the agents are switching their action to

match the current best response. In replicator dynamics, agents are comparing payoffs

and learning from the success of others.

Best Response Dynamics (Individual Learning) ẋ ∈ BR(x) − x where BR(x) is

the set of best replies to x.

Replicator Dynamics (Cultural Learning) ẋi = xi(πi− π̄) where πi is the payoff to

action i and π̄ is the average payoff.

3.1 An Example

A simple example with n = 2 demonstrates how these learning rules perform. In this

example, we take c = 3 and θ1β = θ2β = 5. This game has three pure strategy equi-

libria, one for each action. Each equilibrium is strict and is therefore asymptotically

stable for both learning rules.

We represent a distribution of actions as a point in the two dimensional simplex

42. To locate the basins of attraction under best response dynamics, we identify

the regions of the simplex 42 in which each action is a best response. These regions

are defined by the lines where each pair of actions earns the same payoff. We find

π1 = π2 when x1 = x2, π1 = πS when x1 = 2
5
, and π2 = πS when x2 = 2

5
. Because the

payoff to a cooperative action increases as the action spreads, the equilibrium chosen
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S

Figure 1: Basins of attraction under best response dynamics

under best response dynamics consists of the action that is initially a best response.

This is a feature of our basic model, but it will not be true of our modified model. It

means that the best response regions are the basins of attraction of the pure equilibria

under best response dynamics. They are shown in Figure 1. The corresponding flow

diagram for the best response dynamics is shown in Figure 2.

Figure 3 contains the flow diagram for the replicator dynamics, and then, in

Figure 4, we characterize the basins of attraction for replicator dynamics. Here, the

boundary separating the basins of attraction includes curves, not only lines. This

curvature arises because under replicator dynamics a cooperative action can grow in

the population even if the self interested action is the best response. As it grows, the

cooperative action becomes the best response. As a result, the population can slip
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Figure 2: Phase diagram for the best response dynamics. Black (white) circles are

stable (unstable) rest points. Figure made by the game dynamics simulation program

Dynamo (Sandholm and Dokumaci, 2007).
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from the self interested action’s best response region into a cooperative action’s best

response region. Thus, cooperation is more likely to arise under replicator dynamics.

3.2 General Results

We now show that the intuition developed in the example holds more generally. That

is, the replicator dynamics is more likely to lead to cooperation. In what follows, we

assume an initial distribution of actions with full support, bounded density, and no

mass points on the boundary of the strategy space, and then apply the two learning

rules. We first show for both learning rules that if a cooperative action ever has the

best payoff, it remains best forever and thus persists in the resulting equilibrium.

Lemma 1 For both best response dynamics and replicator dynamics, if for some

i ∈ C, πi > πj for all j 6= i ∈ A at some time, it remains so at all later times.

Proof For best response dynamics, the result is straightforward. Only a best re-

sponse grows in the population. If a cooperative action is a best response, it becomes

more widespread, and consequently its payoff increases. Meanwhile, other actions

become less common, so the payoffs to the other cooperative actions decrease.

For replicator dynamics, suppose πi ≥ πj for all j ∈ A. For j ∈ C,

π̇j = θjβẋj = θjβxj(πj − π̄) = (πj − 1)(πj − π̄). (1)

So π̇i ≥ π̇j for all j ∈ C, and π̇i > 0. The payoff to the cooperative action which is

the best response increases faster than the payoff to other cooperative actions. The
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Figure 3: Phase diagram for the replicator dynamics. Black (white) circles are sta-

ble (unstable) rest points. Figure made by the game dynamics simulation program

Dynamo (Sandholm and Dokumaci, 2007).
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S

Figure 4: Basins of attraction under replicator dynamics

self interested action has a constant payoff, so it cannot become the best response.

Cooperative action i must remain a best response forever.

Our first theorem identifies the basins of attraction under best response dynamics.

In an abuse of notation, we refer to the equilibrium with everyone choosing cooperative

action i ∈ C, (xi = 1, x−i = 0) as cooperative equilibrium i ∈ C. Similarly, we use the

term self interested equilibrium to stand for the equilibrium with everyone choosing

self interested action, (xS = 1, x−S = 0). For clarity in our presentation, we define

some new parameters that help us compare the payoffs of a cooperative action and

the self interested action. Let Ti = c−1
θiβ

be the threshold frequency for cooperative

action i ∈ C to be better than the self interested action. That is, πi ≥ πS if and only

if xi ≥ Ti, with equality in one following from equality in the other.
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Theorem 1 Given best response dynamics, a point x is in the basin of attraction of

the self interested equilibrium if and only if for all j ∈ C, xj < Tj.

A point x is in the basin of attraction of cooperative equilibrium i ∈ C if and only

if xi > Ti and xi >
θj

θi
xj for all j 6= i ∈ C.

Proof The inequalities given in the theorem define the best response regions. Lemma 1

tells us that the best response regions of cooperative actions are contained in the

basins of attraction of cooperative equilibria. Similarly under best response dynam-

ics, if the self interested action is a best response, cooperative actions decline in the

population and cooperative payoffs decrease. The self interested action thus remains

a best response, and the dynamic leads to the self interested equilibrium.

The next theorem states that the basins of attraction of the cooperative equilibria

under best response dynamics are proper subsets of these basins under replicator

dynamics.

Theorem 2 Assume n ≥ 2. The basin of attraction of any cooperative equilibrium

i ∈ C under best response dynamics is a proper subset of the basin of attraction of

this equilibrium under replicator dynamics.

Proof Lemma 1 and Theorem 1 together imply that the basin of attraction of a co-

operative equilibrium under best response dynamics is contained in the basin under

replicator dynamics because the former consists only of points for which the cooper-

ative action is the best response. It remains to show that the basin of attraction of
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any cooperative equilibrium i ∈ C under replicator dynamics includes some points for

which the self interested action is the best response. This is done in the appendix.

Theorem 2 tells us that when there are multiple cooperative actions, replicator

dynamics is more likely to select one than best response dynamics. (When there is

just one cooperative action, the learning rules behave alike, as they do in all two-

by-two games (Golman and Page, 2008).) Seeing that cultural learning outperforms

belief-based learning in this environment, we next consider the question of how much

better it can be.

4 A Model with a Predatory Strategy

We now modify our model by introducing a predatory strategy and making some of the

cooperative strategies susceptible to it. We maintain the n potentially cooperative

actions, but now we assume that only k of these cooperative actions are effective.

These actions have positive spillovers and are immune from predation. The others

we call naive because they are susceptible to attack from a predatory action. In the

context of the literal stag hunt, consider a scenario in which players have the option

of domesticating animals and sharing the burden of looking after them. This is a

potentially cooperative action, but in the case that nobody can be trusted to exercise

costly vigilance while watching over somebody else’s animals, it is naive. The animals

may be stolen.
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The predatory action can be thought of as a strong form of defecting. An agent

who takes the predatory action benefits at the expense of those attempting naive

actions. Neither the predatory action nor the self interested action aids the cooper-

ative efforts of other players, but unlike the predatory action, the self interested one

does not undermine the success of anybody who is trying to cooperate. An example

clarifies this distinction. Hunting rabbits instead of stags indirectly lowers the payoffs

to the stag hunters by denying them another participant. But, a player who steals

the aforementioned domesticated animals is taking a predatory action. This directly

harms those taking taking naive actions and creates no additional surplus. The preda-

tory action will often be an initial best response, but it is not an equilibrium. The

nature of these incentives proves important, as we shall show.

This modified game consists of n+ 2 actions: a predatory action, a self interested

action, k effective actions, and n − k naive actions. We assume n > k ≥ 1 ensuring

that both the set of effective actions and the set of naive actions are nonempty.

The action set A = {1, · · · , n, P, S} with partition f : {1, · · · , n} → {E,N} where

E = {i|f(i) = E} denotes the effective actions and N = {i|f(i) = N} denotes the

naive actions.

Note that k = |E|. Effective actions i ∈ E have the same payoff as in the basic model

when all cooperative actions were effective. Naive actions i ∈ N differ in their payoff

structure. They each get a negative payoff per agent playing the predatory action.

The parameter γ measures the value that could be lost to or gained by predation. If
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the population were to tend towards 100% predatory action, the payoff deducted from

each naive action would be γ. The payoffs lost by naive actions are gained by agents

taking the predatory action. This predatory action P gets nothing from everybody

else, so its payoff scales with the prevalence of naive actions, approaching γ as the

population tends toward 100% naive actions. The payoffs from the various actions

can be written as follows:

π(i,x) = 1 + θiβxi for i ∈ E

π(i,x) = 1 + θiβxi − γxP for i ∈ N

π(P,x) = γ
∑
i∈N

xi

π(S,x) = c > 1.

Assumption A1 from the basic model still holds for all i ∈ E , but not necessarily

for i ∈ N . We now have (A1′) θiβ + 1 > c for all i ∈ E . We make two additional

technical assumptions, (A2) γ > c and (A3) γ > maxi∈N{θi}β c
c−1

. A2 guarantees

that in a population full of naive actions, the predatory action has a higher payoff

then the self interested action. A3 guarantees that a naive action is never best, i.e., a

predator can steal even more than the positive spillovers generated by a naive action.

5 Results

We now turn to our main results: how the equilibrium attained depends strongly on

the learning rule. We begin with an obvious theorem about the set of pure strategy
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equilibria to this class of games.

Theorem 3 Given assumptions A1′ and A3 and c > 1, this game has k + 1 pure

strategy equilibria: one in which all players take the self interested action and k

equilibria in which they all take the same effective action.

We maintain our abuse of notation in referring to one of these k effective equilibria

as effective equilibrium i ∈ E . We now show that Lemma 1 still applies to the effective

cooperative actions under best response dynamics, and can be broadened to include

the self interested action as well. However, we will need to slightly modify the lemma

for the replicator dynamics. For the best response dynamics, we can say that if an

effective action or the self interested action ever has the best payoff, it remains best

forever. This is not the case for the predatory action. (By assumption A3, a naive

action is never best.)

Lemma 2 For best response dynamics, if for some i ∈ E ∪ {S}, πi > πj for all

j 6= i ∈ A at some time, it remains so at all later times.

Proof Note that naive actions are dominated by a mixed strategy that plays the

self interested action with probability 1
c

and the predatory action with probability

c−1
c

. So, naive actions never have the highest payoff and are always decreasing. This

means the payoff to the predatory action is always decreasing. So, exempting the

naive actions, an effective action has the only increasing payoff when it is the strict

best response, and the self interested action has the only nondecreasing payoff when

it is the strict best response.
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Our next result identifies a sufficient condition for replicator dynamics to yield

effective cooperation. We do not have a similar sufficient condition for fixation of

the self interested action. This lemma is similar to Lemma 1 in that it applies to an

effective action that at some time is better than the self interested action and has

the most positive spillovers, but we do not require it to be better than the predatory

action. Of particular importance is the fact that this condition is independent of the

predation parameter γ.

Lemma 3 Under the replicator dynamics, if for some i ∈ E,

1. πi > πS and

2. xi >
θj

θi
xj for all j 6= i ∈ E ∪ N

at some time, then conditions 1 and 2 remain in effect at all later times and the

replicator dynamics leads to the equilibrium (xi = 1, x−i = 0).

Proof A piece of the average payoff, xPπP+
∑

j∈N xjπj, partially cancels, leaving only∑
j∈N (1 + θjβxj)xj. Thus, the average payoff π̄ = xSπS +

∑
j∈E∪N (1 + θjβxj)xj.

Now, conditions 1 and 2 together imply that πi > πj for all j ∈ A \ {i, P}, and in

turn,

πi − π̄ > 0. (2)

Condition 2 alone implies that

πi − π̄ > πj − π̄ for all j 6= i ∈ E ∪ N . (3)
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Inequality (3) gives action i the highest relative growth rate in E ∪ N , ensuring that

condition 2 continues to hold. Inequality (2) means that action i does indeed have

positive growth, maintaining condition 1 and leading to the equilibrium (xi = 1, x−i =

0).

We now derive the basins of attraction under best response dynamics. We will

make use of a new parameter r(x) that denotes the ratio of the predatory payoff

to the self interested payoff. (It depends on the prevalence of naive actions.) We

have r(x) = 1
c
γ
∑

j∈N xj. Also, recall that Ti = c−1
θiβ

, now for i ∈ E , is the threshold

frequency for effective action i to be better than the self interested action.

Theorem 4 Given best response dynamics, a point x is in the basin of attraction of

the self interested equilibrium if and only if for all j ∈ E,

xj < max [Tj, r(x)Tj] . (4)

A point x is in the basin of attraction of effective equilibrium i ∈ E if and only if

xi > max

[
Ti, r(x)Ti,

θj
θi
xj

]
for all j 6= i ∈ E .8 (5)

Proof See appendix.

The condition xi >
θj

θi
xj for all j 6= i ∈ E that is necessary for best response

dynamics to obtain effective equilibrium i ∈ E just says that action i is the best of all

8In the zero probability event that an equality holds exactly and neither of the conditions applies,

the best response dynamics finds a mixed equilibrium.
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the effective actions. It determines which effective equilibrium is attained, but could

be dropped from a claim asserting just that the equilibrium attained is of the form

(xS = 0,
∑

i∈E xi = 1).

Theorem 4 establishes a strict condition for best response dynamics to achieve

effective cooperation. The condition that an effective action does better than the self

interested action and all other effective actions proves to be necessary but not on

its own sufficient for best response dynamics to attain it as an equilibrium. On the

other hand, the condition that the self interested action initially does better than any

effective action, is sufficient (and not even necessary) for the best response dynamics

to lead to universal self interested action.

The next claim states that cultural learning more often achieves effective coop-

eration: whenever best response dynamics attains an effective equilibrium, replicator

dynamics attains it as well. The converse will not be true. Thus, cultural learning

is strictly preferred to individual learning.

Theorem 5 The basin of attraction of any effective equilibrium i ∈ E under best

response dynamics is contained in the basin of attraction of this equilibrium under

replicator dynamics.

Proof Using Lemma 3 and Theorem 4, we show that the necessary condition for the

best response dynamics to be in the basin of (xi = 1, x−i = 0) for some i ∈ E is

sufficient conditions for the replicator dynamics to be in the basin of this equilibrium.

The condition xi > Ti in Theorem 4 is equivalent to condition 1 in Lemma 3. The
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requirement xi > r(x)Ti in the theorem along with assumption A3 implies that xi >

maxj∈N
{θj}
θi

∑
l∈N xl, by plugging the A3 inequality in for the γ hiding in r(x). This

easily gives us xi >
θj

θi
xj for all j ∈ N . Theorem 4 explicitly fills in for all j 6= i ∈ E

and thus satisfies condition 2 in Lemma 3.

These results characterize fully the basins of attraction under best response dy-

namics, but do not do so for replicator dynamics. Because the replicator dynamics are

nonlinear, we cannot solve for the basins exactly. In Section 6, we make a simplifying

assumption that allows us to proceed without an exact description of the replicator

dynamics’ basins. We would like to make analysis of the replicator dynamics more

tractable without losing generality from our results for the best response dynamics.

To see how this is possible, let us refer back to Theorem 4, which characterizes the best

response dynamics’ basins of attraction. Observe that Theorem 4 makes no reference

to the naive actions’ efficiency parameters. As long as the {θj}j∈N obey assumption

A3, they have no effect on the best response dynamics. These parameters do influence

the replicator dynamics, but it appears that the behavior of the replicator dynamics

is qualitatively similar for a range of possible values (see appendix).

6 Comparative Statics

We now consider the case that naive actions fail to produce positive spillovers for

others taking the same action. In what follows, we assume θj = 0 for all j ∈ N . This
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gives each of the naive actions the same payoff,

π(i,x) = 1− γxP for i ∈ N .

While we may still refer to naive actions as potentially cooperative, in this frame-

work they are not actually cooperative in the sense that they do not create positive

externalities. As we have indicated, results for the best response dynamics in this

section would still hold for nonzero {θj}j∈N , but with our assumption analysis of the

replicator dynamics is more tractable.

6.1 Changing the Incentives to Coordinate and Predate

The next two results consider the effects of increasing the stakes by ramping up both

the incentives to coordinate on an effective action and the benefits of predation. The

result in the first claim aligns with the intuition that increasing incentives increases

the probability of an efficient outcome. It states that as β, the benefit from coordi-

nating on an effective action, grows large, replicator dynamics almost always achieves

coordinated, effective cooperation. However, the cooperative action taken may not

be the most efficient one. Since the result follows from an application of Lemma 3, it

holds regardless of whether the incentives to predate are large as well.

The second claim states that under best response dynamics, as the benefits to

predation grow, the basin of attraction of the self interested action expands to the

entire space. This holds even if β goes to infinity as well, so long as the benefits of

predation are sufficiently larger.
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Together, these two results imply that as the stakes rise, we need not worry

about the initial distribution of strategies. As long as an effective action is played

occasionally, a population using replicator dynamics will learn to coordinate effective

cooperation. And as long as naive actions cannot be ruled out entirely, if the incentive

to predate rises faster than the incentive to cooperate, then a population using best

response dynamics will learn to take safe, self interested action.

Theorem 6 As β →∞, the basins of attraction of the equilibria featuring only effec-

tive actions (xS = 0,
∑

i∈E xi = 1) approach the entire strategy space under replicator

dynamics. This holds even if γ →∞ as well.

Proof Let m = arg maxj(θjxj) be the set of effective actions with highest payoff.

By the logic that proved Lemma 1 and the fact that equation (1) still holds for our

modified model, this set of best effective actions remains constant over time. If for

i ∈ m, xi > Ti, then Lemma 3 applies in the case that |m| = 1 and a straightforward

extension of it applies when multiple effective actions tie for the highest payoff. In

short, the replicator dynamics flow to an equilibrium that satisfies (
∑

i∈m xi = 1, xj =

0 : j 6∈ m). As β → ∞, every Ti → 0 and the set of points satisfying xi > Ti for

i ∈ m approaches the entire strategy space.

Theorem 7 Under best response dynamics the basin of attraction of the self inter-

ested equilibrium monotonically increases in γ.

Proof As γ increases, the condition xj < Tj
γ
c

∑
l∈N xl for all j ∈ E is satisfied for
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more initial points. By Theorem 4, if this condition is met, the best response dynamics

flow to (xS = 1, x−S = 0).

Corollary 1 As γ → ∞, the basin of attraction of (xS = 1, x−S = 0) approaches

the entire strategy space under best response dynamics. This conclusion holds even if

β →∞ as well, as long as γ
β
→∞.

Proof Points with
∑

i∈N xi >
cθjβ

(c−1)γ
(and thus, r(x)Tj > 1) for all j ∈ E satisfy

inequality (4) and are in the basin of attraction of (xS = 1, x−S = 0) given best

response dynamics. So, as γ → ∞ faster than β, the basin of attraction of (xS =

1, x−S = 0) approaches the entire strategy space.

In the case where β and γ
β

approach infinity, Theorem 6 and Corollary 1 taken

together show that best response dynamics and replicator dynamics predict entirely

different outcomes. Replicator dynamics always achieves effective cooperation. Best

response dynamics never does.

6.2 Changing the Number of Effective Actions

Up to this point, we have taken the partitioning function f as exogenous and examined

the effects of varying payoff parameters on the basins of attraction. In practice, stag

hunt games may vary in their number of effective actions: some communities may have

a choice of many collective goods to produce; others may have few. To see the effect

of having more potentially cooperative actions, we now treat the number of actions as

a parameter. We find that when the self interested action is sufficiently attractive and
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the number of potentially cooperative actions grows large, both learning dynamics

settle on the self interested action. Note that the condition we place on the payoff to

the self interested action is only sufficient and could be weakened.

Theorem 8 Assume c > 3. As n→∞, the fraction of the strategy space in the basin

of attraction of the self interested equilibrium grows to 1 under both best response and

replicator dynamics.

Proof See appendix.

Now, we fix the payoff parameters and the number of potentially cooperative

actions and examine the effect of changing which of these actions are effective. That is,

we compare basins of attraction across different partition functions. Given partition

fi, let B(fi) be the union of the basins of attraction of the equilibria featuring only

effective actions (xS = 0,
∑

j∈Ei xj = 1).

Definition Partition f2 effectively contains f1 if E1 ⊂ E2 and for all j ∈ E1, θj is the

same for both partitions.

If f2 effectively contains f1, then k2 > k1. That is, more of the n potentially coopera-

tive actions are effective with partition f2 than with f1. We might expect that making

more of the potentially cooperative actions effective would improve the probability

of locating such an equilibrium. And, indeed, the basins of attraction of these good

equilibria do grow under best response dynamics as more actions are made effective,

as the next claim states.

31



Theorem 9 If f2 effectively contains f1, then under best response dynamics, any

initial point that results in coordination on an effective action under partition f1 also

does under partition f2, i.e., B(f1) ⊂ B(f2).

Proof From Theorem 4 we know that under best response dynamics a point is in

B(fi) if and only if for some l ∈ Ei, (i) xl > Tl and (ii) xl > Tl
γ
c

∑
j∈Ni

xj. If these

inequalities are satisfied for a given xl under partition f1, they must still be satisfied for

xl under f2 because (i) is unchanged and (ii) is weaker because N2 ⊂ N1. Moreover,

there are additional actions in E2 for which these inequalities may be satisfied. So

B(f1) ⊂ B(f2).

Surprisingly, a similar result does not hold for replicator dynamics. Increasing

the number of effective actions creates a crowding effect. It can raise the average

payoff in the population and therefore prevent any effective action from growing in

the population.

Theorem 10 If f2 effectively contains f1, then under replicator dynamics there can

exist initial points that lead to coordination on an effective action under partition f1

that do not under partition f2, i.e., B(f1)\B(f2) need not be empty.

Proof See appendix.

In interpreting these last two claims, we must keep in mind our earlier result that

the basin of attraction for effective actions is always larger under replicator dynamics.

Thus, when we change one cooperative action from naive to effective, any initial points
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that we move out of the basin of attraction of an effective action and into the basin

of attraction of the self interested action under replicator dynamics must remain in

the basin of attraction of the self interested action under best response dynamics as

well.

7 Discussion

In this paper, we have analyzed a class of generalized stag hunt games and shown

that cultural learning dominates individual learning: any initial condition for which

individual, belief-based learning achieves effective cooperation necessarily leads to

effective cooperation under replicator dynamics too. Moreover, we have shown that

as the stakes grow large, cultural learning, as captured by replicator dynamics, almost

always achieves coordinated, effective cooperation. In contrast, individualistic, belief-

based learning captured by best response dynamics almost never does.

These dichotomous limiting results are clearly a product of our specification. Nev-

ertheless, the core intuition holds generally: cultural learning allows moderately suc-

cessful attempts at coordination to gain a foothold and potentially grow in the pop-

ulation, while best response learning only rewards the best action, which rarely is a

nascent attempt at cooperation.9 It is the greediness of the best response dynamics

that distinguishes its behavior from the replicator dynamics. In general, we would

9Given that as a general rule, small changes in payoffs have correspondingly small effects on the

basins of attraction, we can expect that slight variations in the payoff structure of our model have

only mild effects on our results.
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expect the greediness of a learning dynamic to be the key factor in determining out-

comes here, even more so than whether the underlying revision protocol is imitative

or direct.10

Our results reveal the importance of learning rules for equilibrium selection. We

show that ramping up incentives may not be sufficient to produce a desired outcome,

as it may make equilibrium selection even more dependent on the learning rule. Also,

our finding that increasing the number of effective cooperative actions can move some

initial conditions into the basin of an inefficient equilibrium demonstrates the costs

of abundance. More effective actions can produce a crowding effect.

The primary result – that cultural learning performs better here – suggests the

possibility that it might evolve. Stag hunt games are common, and societies that

use cultural learning should have greater success in them. Group selection, either

cultural or genetic, could promote cultural learning over belief-based learning. This

hypothesis requires further study into the mechanism through which societies adopt

new learning styles (see Henrich and McElreath, 2003). Evolution is not the only

force. Learning may well include transference of behaviors learned in one context to

other contexts (Bednar and Page 2007).

Recent work has found that behavior in a common experimental setting varies

widely across cultures and that some of that variation can be explained by features of

those cultures (Henrich et al., 2001). For example, cultures that engage in collective

10Sandholm (2009) defines a direct revision protocol as one in which a revising agent’s choice of

an alternative action to consider is without regard to its popularity.
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enterprises, like whale hunting, appear more likely to share. These findings suggest

that distinct cultures may differ in their learning styles. Relatedly, a substantial body

of survey and case study research shows that cultures vary in their levels of individ-

ualism and collectivism (Inglehart, 1997). In more collectivist societies, people may

have richer social networks giving them better knowledge of the actions of others

and the payoffs of those actions. This suggests a possible link between collectivism

and cultural learning. Comparably, in individualistic societies, people may be less

informed about others and more concerned with acting optimally. These character-

istics would point to best response learning. Seeing that, in our framework, cultural

learning induces cooperation, which could reinforce underlying collectivist sentiment,

it is conceivable that cooperation, collectivism, and cultural learning form a positive

feedback loop that could amplify initial differences between societies.

While there is logic to the idea that more collectivist societies might have an easier

time mustering cooperation, levels of collectivism and individualism do not indepen-

dently determine how societies learn. Best response learning requires greater cognitive

effort than cultural learning. The members of a collectivist society with strong at-

tachment to rationality could indeed use best response learning. And members of

an individualistic society might turn to cultural learning when a game becomes too

complicated to think through. Surprisingly, additional cognitive effort could be coun-

terproductive for the society if it means belief-based learning prevails over cultural

learning in contexts such as ours.

Our findings also have relevance for institutional design. How agents learn may not
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seem to be a choice variable, and yet, each learning style requires information about

the payoffs or actions of others. That information can be made more or less avail-

able through institutional choices. Additionally, when societal differences in learning

processes result in significant differences in outcomes, we can try to design the games

created by economic and political institutions with respect for the prevailing learning

style so that the society attains better outcomes.

We conclude by reiterating the observation that the type of learning rule in use

matters most when a model admits multiple equilibria. Except in those cases where

learning rules do not attain an equilibrium (Hofbauer and Swinkels, 1996), single

equilibrium models leave little room for how people learn, or for culture more gener-

ally, to have any effect. Thus, if we want to understand the implications of variation

in learning rules, we need to consider games with more than two strategies.

Appendix A

Completing the Proof of Theorem 2.

We now identify points for which the self interested action is the best response, but

for which the replicator dynamics leads to the cooperative equilibrium (xi = 1, x−i =

0). Consider points of the form xi = c−1−ε
θiβ

, xl = c−1
2θlβ

for some other l ∈ C, and

xj <
θi

θj
xi for all j 6= i ∈ C. Assume ε is small. Such points have been chosen so that

πi = c− ε and πl = c+1
2

. The self interested action is the best response at this point,

but cooperative action i is very close and better than all other cooperative actions.
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Plugging in for πi and parts of π̄, we have

ẋi = xi

(
(c− ε)(1− xi)− cxS −

∑
j 6=i∈C

πjxj

)

= xi

(
−ε(1− xi) +

∑
j 6=i∈C

(c− πj)xj

)
.

The second step here used the fact that
∑

j∈A xj = 1. Dropping some positive terms

from the right hand side, we get the inequality ẋi > xi ((c− πl)xl − ε). Plugging in

for πl and simplifying, we have

ẋi > xi

(
c− 1

2
xl − ε

)
. (6)

As long as ε is small, the right hand side of inequality (6) is positive and xi increases

past c−1
θiβ

right away. This makes cooperative action i a best response, and then

Lemma 1 applies and we know the dynamics leads to the cooperative equilibrium

(xi = 1, x−i = 0).

Proof of Theorem 4.

For the purposes of the proof, it is helpful to write inequality (4) as

xj < Tj (7)

or

xj < r(x)Tj, (8)

and inequality (5) as the following set of three conditions:

i) xi > Ti;
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ii) xi > r(x)Ti; and

iii) xi >
θj

θi
xj for all j 6= i ∈ E .

We point out that if for some i ∈ E , xi > Ti and xi < r(x)Ti, then xi <
1
θiβ

(
γ
∑

l∈N xl − 1
)
.

(Actually, if equality holds in one but not both of the conditions, we still obtain the

desired inequality.) This fact follows just from rearranging terms, using a fair bit

of basic algebra. It means that if we are relying on inequality (8) to establish that

a point is in the basin of the self interested equilibrium (i.e., when inequality (7)

fails and some effective action is initially better than the self interested action), then

inequality (8) ensures that the predatory action is initially better than this effective

action. Alternatively, if we are establishing that a point is in the basin of attraction of

an effective equilibrium, we can say that in order for an effective action to be initially

better than the self interested action and the predatory action, condition (ii) must

hold.

Now, assume best response dynamics. We will invoke Lemma 2, which tells us

that if either the self interested action or an effective action is initially a best response

or becomes one, it remains a best response forever, so the best response dynamics

flow towards the equilibrium featuring this action.

For effective action i to initially be the best response, conditions (i) and (iii)

obviously must hold and the need for condition (ii) is described in the proof’s first

paragraph. For the self interested action S to initially be the best response, inequal-

ity (7) is clearly necessary.
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If neither the self interested action nor any of the effective actions are initially a

best response, then the predatory action P must initially be the best response. In

this case, the equilibrium attained depends on which action next becomes the best

response. So, let us now consider points for which the predatory action P is the best

response. If for all j ∈ E , inequality (7) holds and xj < Tj, then the self interested

action S has a higher payoff than any of the effective actions. As the dynamic moves

toward P , the payoffs to the predatory and effective actions decrease, so eventually S

becomes the best response. Alternatively, suppose for some i ∈ E , condition (i) holds

and xi > Ti. Then we define α(t) =
xj(t)

xj(0)
for j 6= P and t such that action P is still a

best response. This definition is independent of j because actions which are not best

responses have the same relative decay rate. Note that α(t) is a strictly decreasing

function. Now either

πS = πP when α =
c

γ
∑

l∈N xl(0)
(9)

or for some i ∈ E ,

πi = πP when α =
1(

γ
∑

l∈N xl(0)− θiβxi(0)
) , (10)

whichever happens first. Equation (9) follows from πP = γ
∑

l∈N α(t)xl(0). Equa-

tion (10) depends on this as well as on πi = 1+θiβα(t)xi(0) for i ∈ E . If inequality (8)

applies, i.e., if for all j ∈ E , xj(0) < (c−1)γ
cθjβ

∑
l∈N xl(0), then rearranging terms pro-

duces

c

γ
∑

l∈N xl(0)
>

1(
γ
∑

l∈N xl(0)− θjβxj(0)
) ,
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and this means action S eventually becomes the best response. On the other hand,

if for some i ∈ E , xi(0) > (c−1)γ
cθiβ

∑
l∈N xl(0) and xi(0) >

θj

θi
xj(0) for all j 6= i ∈ E ,

conditions (ii) and (iii) respectively, then action i always has the highest payoff of all

the effective actions and becomes the best response before the self interested action

does.

Proof of Theorem 8.

Let M{∗} denote the fraction of the strategy space satisfying {∗}. As n → ∞,

M{xj < Tj for all j ∈ E} approaches 1. By Theorem 4, all points satisfying this con-

dition are in the basin of attraction of (xS = 1, x−S = 0) with the best response

dynamics.

Assume replicator dynamics. A sufficient condition to be in this basin of attraction

is at some time t,

cxS(t) > 1 + θjβxj(t) for all j ∈ E , (11)

as this ensures that πj < π̄ then and at all future times. An alternative condition is

that

π̄ −
∑
i∈N

xi ≥ 2πj − 1 for all j ∈ E (12)

at some time. Inequality (11) is self enforcing because it ensures that xS increases

while πj decreases for all j ∈ E . To see that inequality (12) is self enforcing is slightly

more involved. It too ensures that πj decreases for all j ∈ E , but now we must take
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a time derivative of π̄ −
∑

i∈N xi and show that it is positive. We get

˙̄π −
∑
i∈N

ẋi =
∑
l∈A

ẋlπl + xlπ̇l −
∑
i∈N

ẋi

=
∑
l∈A

ẋl(πl − π̄) + xlπ̇l −
∑
i∈N

ẋi.

The last step here uses
∑

l∈A ẋl = 0. We can write ẋl(πl − π̄) as xl(πl − π̄)2. For

l ∈ E , xlπ̇l = xl(πl− 1)(πl− π̄), and xl(πl− π̄)2 > xl(πl− 1)(π̄−πl) by inequality (12)

itself. So ∑
l∈E

ẋl(πl − π̄) + xlπ̇l > 0. (13)

We can plug in the payoffs for the predatory and the naive actions and as a shortcut

use
∑

l∈{P}∪N xlπl =
∑

i∈N xi, taking the time derivative of both sides, to write

∑
l∈{P}∪N

ẋl(πl − π̄) + xlπ̇l =
∑

l∈{P}∪N

ẋl(−π̄) +
∑
i∈N

ẋi.

We find that
∑

l∈{P}∪N ẋl ≤ 0 as long as π̄ ≥ 1 because
∑

l∈N ẋl =
∑

l∈N xl (1− γxP − π̄)

and ẋP = xP
(∑

l∈N γxl − π̄
)

imply that

∑
l∈{P}∪N

ẋl =
∑
l∈N

xl(1− π̄) + xP (−π̄).

And we know π̄ ≥ 1 from inequality (12). So

∑
l∈{P}∪N

ẋl(πl − π̄) + xlπ̇l −
∑
i∈N

ẋi > 0. (14)

Finally, xS(πS − π̄)2 is clearly positive and π̇S = 0, so

ẋS(πS − π̄) + xSπ̇S > 0. (15)

Thus, piecing together inequalities (13), (14) and (15), we get ˙̄π −
∑

i∈N ẋi > 0.
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Let j be a best effective action. We can place an upper bound on the rate at

which action j spreads, ẋj = xj(1 + xjθjβ − π̄) < xj(1 + xjθjβ). This bound has the

form of a logistic differential equation. The solution is then bounded by the logistic

function,

xj(t) ≤
xj(0)

(1 + θjβxj(0))e−t − θjβxj(0)
. (16)

Because inequality (12) is sufficient for the replicator dynamics to flow to (xS =

1, x−S = 0), we consider an assumption that π̄ < 2πj−1+
∑

i∈N xi ≤ 2πj. This allows

us to place a lower bound on the rate at which action S spreads, ẋS = xS(c − π̄) >

xS(c− 2− 2θjβxj). Then, plugging in inequality (16) for xj(t) and integrating,

xS(t) ≥ xS(0)e(c−2)t(1 + θjβxj(0)(1− et))2.

Applying this to our first sufficient condition, inequality (11), it is sufficient to show

cxS(0)e(c−2)t(1 + θjβxj(0)(1− et))2 > 1 +
θjβxj(0)

(1 + θjβxj(0))e−t − θjβxj(0)

or equivalently,

cxS(0)e(c−2)t(1 + θjβxj(0)(1− et))3 > 1 + θjβxj(0). (17)

This last step requires some algebra. The left hand side of (17) is maximized at

t = ln

(
1 + θjβxj(0)

θjβxj(0) c+1
c−2

)
.

Plugging in for t in (17), the sufficient condition becomes

cxS(0)

(
(1 + θjβxj(0))(c− 2)

θjβxj(0)(c+ 1)

)c−2(
1 + θjβxj(0)

(
1− (1 + θjβxj(0))(c− 2)

θjβxj(0)(c+ 1)

))3

> 1 + θjβxj(0).
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As n→∞, xj(0) becomes small, so we keep only terms of lowest order in xj(0). This

simplifies our sufficient condition to

cxS(0)

(
c− 2

θjβxj(0)(c+ 1)

)c−2(
3

c+ 1

)3

> 1.

It remains only to show that this condition is met almost everywhere when n is large.

Our sufficient condition holds if

xj(0) ≤ 1

n
c

3(c−2)

and xS(0) >
1

c

(
θjβ(c+ 1)

c− 2

)c−2(
c+ 1

3

)3
1

n
c
3

. (18)

Because these two inequalities are positively correlated, 11

M{Constraint (18)} ≥

M

{
xj(0) ≤ 1

n
c

3(c−2)

}
·M

{
xS(0) >

1

c

(
θjβ(c+ 1)

c− 2

)c−2(
c+ 1

3

)3
1

n
c
3

}
.

Consider the first of these inequalities. We have

M

{
xj(0) >

1

n
c

3(c−2)

}
≤ M

{
xi(0) >

1

n
c

3(c−2)

for some i ∈ E ∪ N
}

≤ n ·M
{
x1(0) >

1

n
c

3(c−2)

}
= n

(
1− 1

n
c

3(c−2)

)n+1

.

Here, and again in equation (19), we evaluate the fraction of the strategy space

satisfying a given inequality simply by integrating over the strategy space. Now,

c
3(c−2)

< 1 because we assumed c > 3, so

lim
n→∞

n

(
1− 1

n
c

3(c−2)

)n+1

= 0.

11Recall that M{∗} denotes the fraction of the strategy space satisfying {∗}.
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Thus,

lim
n→∞

M

{
xj(0) ≤ 1

n
c

3(c−2)

}
= 1.

Now consider the second inequality. We have

M

{
xS(0) >

1

c

(
θjβ(c+ 1)

c− 2

)c−2(
c+ 1

3

)3
1

n
c
3

}

=

[
1− 1

c

(
θjβ(c+ 1)

c− 2

)c−2(
c+ 1

3

)3
1

n
c
3

]n+1

. (19)

This approaches 1 as n→∞ because c
3
> 1. Thus,

lim
n→∞

M

{
cxS(0)

(
c− 2

θjβxj(0)(c+ 1)

)c−2(
3

c+ 1

)3

> 1

}
= 1.

The fraction of the strategy space satisfying a condition that puts it in the basin of

attraction of (xS = 1, x−S = 0) approaches 1.

Proof of Theorem 10.

We construct a specific counterexample for the case n = 3 that can be extended to

a more general case. Let E1 = {1}, E2 = {1, 2}, θ1 = 1, θ2 = 1 under partition f2

(whereas, of course, θ2 = 0 under partition f1), and β > 2c. Then any point which

satisfies

x1 = x2 =
c− 1

β
− ε, xS =

c− βε
c

(
1 + 2ε− 2

c− 1

β

)
for small enough ε will be in B(f1) but not in B(f2).

Consider partition f1. Recall that ẋ1 = x1(π1− π̄). By construction π1 = (c−βε)

and still πS = c. Plugging in and simplifying, we get the average payoff

π̄ = (c− βε)
(

1− c− 1

β
+ ε

)
+
c− 1

β
− ε+ x3.
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We combine terms and find that at our initial point, π1−π̄ = β
(
c−1
β
− ε
)2

−x3. There-

fore, initially, ẋ1 = β
(
c−1
β
− ε
)3

−
(
c−1
β
− ε
)
x3. From the fact that

∑
j∈A xj = 1, we

know our initial point satisfies x3 ≤ βε
c

(
1 + 2ε− 2 c−1

β

)
. This gives us a minimum

initial value for ẋ1,

ẋ1 ≥ β

(
c− 1

β
− ε
)3

−
(
c− 1

β
− ε
)
βε

c

(
1 + 2ε− 2

c− 1

β

)
. (20)

Observe that the right hand side of (20) has a positive leading order term with no ε

dependence. As ε is small, x1 soon grows larger than c−1
β

. By Lemma 3, the point

must be in B(f1).

Now consider partition f2. The average payoff is larger with this partition. In

fact, π1 = π2 = c − βε, and it turns out π̄ = c − βε + x3 at our initial point. This

means that initially π1 = π2 = π̄ − x3. We will now see that the state of

π1 = π2 ≤ π̄ − x3 (21)

must persist forever because it is self enforcing. Note that x1 = x2 and π1 = π2 at all

times by the symmetry of their initial conditions. We can plug in π̄−x3 = cxS+2πixi

with i ∈ {1, 2} and then rewrite equation (21) as

πi (1− 2xi) ≤ cxS. (22)

We now compare time derivatives of both sides of inequality (22) and show cẋS >

π̇i (1− 2xi) + πi (−2ẋi). In particular, π̇i < 0 because of inequality (21) itself, and

clearly 1 − 2xi > 0. It remains to show cẋS + 2πiẋi ≥ 0. We have c > πi > 0, so it

is sufficient to show ẋS + 2ẋi ≥ 0. And, recognizing that
∑

j∈A ẋj = 0, it is fine to
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show ẋ3 + ẋP ≤ 0. In the proof of Theorem 8, we show this will be negative as long

as π̄ > 1. We know π̄ > cxS, and we know xS has been increasing because c > π̄. (To

check this last inequality, just examine the formula for the average payoff and recall

that we have already argued that c > πi in our persistent state.) Finally, we obtain

cxS(0) = (c− βε)
(

1 + 2ε− 2
c− 1

β

)
= c− 2c

β
(c− 1) +O(ε) > 1,

using in the last step the facts that ε is small and 2c < β. Because the average payoff

always remains above the payoff to either of the effective actions, the effective actions

become rarer, and it follows that the initial point is not in B(f2).

Appendix B

Figures 5 and 6 show sample trajectories of the two learning dynamics for a game with

just one effective action and one naive action. The images have a three-dimensional

perspective because the strategy space for a game with four actions is the three-

dimensional simplex 43. The parameter values (c = 2, γ = 100, β = 10, θE = θN =

1)12 are inspired by our results in Section 6.1. As we can see in Figure 5, the best

response dynamics often approach the predatory action at first, before flowing directly

to the self interested action; although not shown, some points near the effective

action would flow to that equilibrium as well. In Figure 6, we see that the replicator

dynamics often curves towards the effective action as the naive action decays; again,

12We denote the single effective action by E and the naive action by N .
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P

N

E
S

Figure 5: Sample trajectories for the best response dynamics in a game with just one

effective action and one naive action, setting c = 2, γ = 100, β = 10, θE = θN = 1.

Figure made by the game dynamics simulation program Dynamo (Sandholm and

Dokumaci, 2007).

some trajectories (not shown) in the neighborhood of the self interested action would

reach that equilibrium, too. We show in Figures 7 and 8 sample trajectories of the

replicator dynamics while varying θN and retaining the other parameter values used

in Figure 6.
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P
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E
S

Figure 6: Sample trajectories for the replicator dynamics in a game with just one

effective action and one naive action, setting c = 2, γ = 100, β = 10, θE = θN = 1.

Figure made by the game dynamics simulation program Dynamo (Sandholm and

Dokumaci, 2007).
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Figure 7: Sample trajectories for the replicator dynamics, setting c = 2, γ = 100, β =

10, θE = 1, θN = 0. Figure made by the game dynamics simulation program Dynamo

(Sandholm and Dokumaci, 2007).

P

N

E
S

Figure 8: Sample trajectories for the replicator dynamics, setting c = 2, γ = 100, β =

10, θE = 1, θN = 2. Figure made by the game dynamics simulation program Dynamo

(Sandholm and Dokumaci, 2007).
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