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Abstract

Quantal response equilibrium captures bounded rationality in a strategic game

by adopting a stochastic model of discrete choice along with the traditional ratio-

nal expectations framework. We examine the use of a single-agent, homogeneous

parametric quantal response model (e.g., logit response) to describe the aggregate

behavior of heterogeneous agents sharing the same parametric form for their quantal

response functions, but having individual rationality parameters, in a symmetric pop-

ulation game. For any parametric quantal response function arising from a unimodal

distribution of exchangeable payoff disturbances, we find that a mis-specified homo-

geneous rationality parameter will have downward bias. Logit response is one such

specification. This result implies that empirical work that disregards heterogeneity

underestimates subjects’ rationality.

KEYWORDS: logit equilibrium, quantal response equilibrium, bounded rational-

ity, heterogeneity, logit response
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1 Introduction

Discrete choice models have traditionally been interpreted as capturing heterogeneous

preferences in an observationally homogeneous population (McFadden 1974). But

stochastic models of choice, such as the logit model, can also be interpreted as cap-

turing bounded rationality due to perceptual or implementational errors (Luce 1959;

Anderson et al. 1992). We take the position that both heterogeneity and bounded

rationality should be accounted for in models of choice. We assume that individual

agents are boundedly rational and their behavior can thus be modeled with stochastic

choice functions. Moreover, a population of such agents should be heterogeneous and

thus contain agents who vary in their likelihoods of making bad choices.

We wish to consider as broad a category of discrete choice as possible, and so we

allow situations in which the payoffs to agents in the population depend on every-

body’s choices. This puts us in the realm of normal-form population games. We can

recover the single-player discrete choice environment in our analysis as a special case

in which payoffs do not depend on the population state and the single player is a

randomly selected agent. The game theoretic analogue of the logit model of discrete

choice is the logit equilibrium (McKelvey and Palfrey 1995).

The logit equilibrium model has been shown to fit experimental data better than

the Nash Equilibrium model of perfectly rational play in games (McKelvey and Pal-

frey 1995; Capra et al. 1999; Goeree and Holt 1999; Goeree et al. 2002; Fey et al.

1996; Anderson et al. 2002). Logit equilibrium extends the concept of Nash Equilib-
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rium by replacing sharp best reply functions with smooth logistic probabilistic choice

functions. These logit response functions give players a positive probability of se-

lecting any action. Logit responders can thus be seen as boundedly rational players,

making errors while trying to choose optimal strategies. But, the likelihood of an

error is inversely related to its cost. Logit response functions have one free param-

eter, interpretable as the player’s degree of rationality. The higher this rationality

parameter, the more likely the player is to select a best response.

Logit equilibrium is the most prominent parametric form of quantal response

equilibrium, a state of play occurring at the intersection of stochastic best-response

functions, or quantal response functions (McKelvey and Palfrey 1995; Goeree et al.

2005). Structural quantal response functions arise from random utility models in

which players observe payoffs disturbed by idiosyncratic noise. Logit response, in

particular, arises when payoff disturbances are all independently drawn from an ex-

treme value distribution.1 This logit specification of choice satisfies independence of

irrelevant alternatives and invariance under constant shifts of utility (Luce 1959).

In most experimental treatments a single logit parameter is estimated from the

play of a pool of subjects. But, in a large population of agents, we should expect

heterogeneity of behavior (Hommes 2006; Kirman 2006). A population of logit re-

sponders (or, more generally, any form of quantal responders) should consist of agents

1Logit response can also arise in models of players who have to make some effort in order to

implement any desired strategy, but who perfectly maximize utility subject to this control cost

(Mattsson and Weibull 2002).
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who may have different error rates. In fact, McKelvey et al. (2000) find experimental

evidence for heterogeneous logit parameters in trying to fit data from two-by-two

asymmetric games. 2

Prior research in other directions has considered a distribution of logit responders

with varying rationality parameters (Tsakas 2005; Rogers et al. 2009). Tsakas (2005)

shows that heterogeneous mixed logit equilibrium models are sufficiently flexible to

approximate other quantal response equilibrium models, and Rogers et al. (2009)

finds that a heterogeneous logit model does indeed improve fit with data pooled

across games. Our interest here is how a mis-specified homogeneous logit model

misrepresents heterogeneous agents. A population of heterogeneous logit responders

can be captured by a single representative agent, but that representative agent is

not itself a logit responder (Golman 2011). Because the homogeneous logit model is

mis-specified if agents are heterogeneous, it cannot explain equilibrium choice prob-

abilities and payoffs in general. For a symmetric game with just two pure strategies,

we can obtain analytically a homogeneous logit parameter to match the behavior of

heterogeneous agents. In more general contexts, we can determine logit parameter

values with maximum likelihood estimation. However, we should not expect consis-

tency of our estimates of a mis-specified parameter across games. In order to make

predictions across games, we should estimate a reduced-form representative-agent

2Further motivation to consider heterogeneous logit responders comes from recent findings that

heterogeneity introduces bias in fitting the parameters of the experience-weighted attraction learning

model to data (Wilcox 2006; Ho et al. 2008).
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model from data spanning the full range of payoffs (Golman 2011). Whereas Tsakas

(2005), Rogers et al. (2009), and Golman (2011) show how heterogeneity should be

accounted for in a quantal response equilibrium model, this paper analyzes the bias

that emerges when heterogeneity is ignored. 3

We consider a population of agents who occasionally err in their choice of strat-

egy according to some (common) parametric form of quantal response (quite possibly

logit, but perhaps probit or a reduced form instead), and we suppose this popula-

tion is heterogeneous in that the agents vary in their rationality parameters. We

compare the single-agent, homogeneous parametric quantal response model to the

aggregate behavior of these heterogeneous quantal responders in the context of a

fixed symmetric game with two pure strategies. In the case that the quantal response

function satisfies a convexity condition corresponding to a unimodal distribution of

payoff disturbances, we find that a mis-specified homogeneous rationality parameter

will exhibit a downward bias. It will be less than the average (i.e., the arithmetic

mean) of the true heterogeneous rationality parameters. This implies that empirical

estimates mis-specify representative agents as less rational than the populations those

agents represent. The paper also includes numerical results that support the analysis

in contexts with higher-dimensional strategy spaces.

Nash proposed a population game interpretation of equilibrium in his unpublished

3In this sense, our analysis runs parallel to that of Wilcox (2006), which also describes a bias

when heterogeneity is ignored, but in the context of the experience-weighted attraction learning

model rather than the quantal response equilibrium model of bounded rationality in games.
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PhD dissertation (Weibull 1994). Following his lead, we assume that there is a pop-

ulation of agents who are randomly matched to play a symmetric game. We assume

the population is large, and we are interested in the chance that a given strategy is

played by a randomly selected member of the population. Each player in the original

game is associated with an entire population of agents in the population game, so a

mixed strategy relying on a randomizing device in the original game can be reinter-

preted as the expected strategy of a population. We refer to a person in a population

game as an agent, as distinguished from the player in the original game who is now

associated with an entire population. The assumption of a single population for a

symmetric game imposes the restriction that all players in the original game should

play identical population mixed strategies because their roles are indistinguishable.

For simplicity, we allow the possibility that an agent is matched to play against him-

self so that all agents face the same strategic context; this has a negligible effect in a

large population. An agent’s payoff is his expected payoff given the random matching

of agents to play against.

Population games provide a framework for the use of evolutionary learning dy-

namics. In some important classes of games, a learning rule that assumes that players

noisily best respond will converge to a logit equilibrium (Blume 1993; Fudenberg and

Levine 1998; Hofbauer and Sandholm 2002; Anderson et al. 2004; Hofbauer and Hop-

kins 2005; Alos-Ferrer and Netzer 2010). This paper focuses on the equilibrium itself

and not on the learning rules that might lead to it. Population games also describe

experimental settings well, as data is accumulated through the randomly matched
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interactions of many subjects.

2 Parametric Quantal Response Equilibrium

Consider a symmetric normal form game with players randomly selected from a popu-

lation of agents. (We can capture a discrete choice environment with additive random

utility as a one-player game.) Let S = {s1, . . . , sJ} be the set of pure strategies avail-

able to the agents. The collective play of all the agents in the population defines

the population mixed strategy vector x. Formally, x = (x1, . . . , xJ) ∈ 4J−1, the

(J − 1)-dimensional simplex where xj ≥ 0 for all j and
∑

j xj = 1. We interpret xj

as the expected proportion of plays of strategy sj, or in other words, the chance that

sj is used by a randomly selected member of the population. (As discussed below, in

our model there are two sources for randomness in an opponent’s strategy: random

selection of an agent in the population and that agent’s random selection of a pure

strategy according to her individual mixed strategy. The population mixed strategy

vector x reflects both sources of randomness.)

In a population game, payoffs may depend on the expected frequency with which

each strategy is played, but it does not matter which agents in a population take which

strategies because by assumption, agents care only about their expected payoffs given

random matching. All agents in a symmetric population game have the same payoff

function. The vector π = π1, . . . , πJ denotes the payoffs from choosing each of the

pure strategies. Of course, we should write π = π(x) to reflect the fact that payoffs
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are a function of the population mixed strategy vector describing what to expect from

the opposing agents, but at times we omit the payoff function’s argument for ease of

notation. Formally, π : 4J−1 → <J .

In a traditional population game, the agents select pure strategies; heterogeneity

of the agents is sufficient to generate mixed strategies at the population level. Here,

however, we wish to describe a heterogeneous population of boundedly rational agents.

Each agent should have some probability of making a mistake. So each agent has a

quantal response function determining a mixed strategy.4

The response function for each agent returns the agent’s likelihood of choosing

each strategy given the agent’s payoffs. Let Qµ
j (π) be the probability that agent µ se-

lects strategy sj given the payoffs to each strategy in S. We write Qµ = (Qµ
1 , . . . , Q

µ
J),

and we have Qµ : <J → 4J−1. For our analysis, the response function should sat-

isfy regularity (i.e., choice probabilities are positive, continuous in the payoff vector,

strictly increasing in own payoff, and monotonically ordered by payoff) and transla-

tion invariance (i.e., when a constant is added to all payoffs, the choice probabilities do

not change), properties which follow from a structural assumption that the response

function arises due to exchangeable disturbances (with full support and admissibil-

4Formally, a player obeying quantal response can be associated with a population of types,

each with an unobservable component in its payoffs (see, e.g., Signorino 2003). Our approach to

modeling a heterogeneous population of quantal responders is to use this trick twice over. Of course,

the interpretation remains that when an agent obeys quantal response, she is making errors, not

that agents are themselves composed of subpopulations.
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ity) added to payoffs (Goeree et al., 2005). We introduce a parameter λ > 0 into the

quantal response function so that it takes the form Q(π) = Q(λπ). The λ can be in-

terpreted as the agent’s level of rationality. Higher values of λ tend to produce choices

that are closer to best responses. For the logit specification of quantal response in

particular,

Qj(λπ) =
eλπj∑J
l=1 e

λπl
. (1)

The logit rationality parameter permits a clear illustration. As λ goes to infinity,

agents best respond perfectly. Conversely, as λ tends to zero, agents play the uniform

mixed strategy, choosing each action with the same probability without regard to

payoffs.

The response functions for all the agents in the population can be aggregated

to give the population mixed strategy response to any given population state. In a

finite population of m agents, the population aggregate response function is Q̂j =

1
m

∑m
µ=1Q

µ
j for all j.5 An equilibrium is defined by the fixed point equation xj =

Q̂j (π(x)) for all j. The equilibrium mixed strategy vector x∗ determines an equilib-

rium payoff vector π∗ = π(x∗) (and vice versa).

The conventional assumption that all agents have the same rationality parameter

λ yields a homogeneous parametric quantal response equilibrium.

Definition A homogeneous parametric quantal response equilibrium to a game with

5The reader concerned with the small but nonzero chance that an agent is matched to play

against himself may take m→∞ here. While this is clearly an idealization, it poses no theoretical

problems (Boylan, 1992; Gilboa and Matsui, 1992; Alos-Ferrer, 1999).
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payoff function π is a mixed strategy vector x∗ that solves

x = Q (λπ(x)) . (2)

When the parametric quantal response function is logistic, as in Equation (1), we

have the logit equilibrium.

Definition A (homogeneous) logit equilibrium with any given λ ≥ 0 is a mixed

strategy vector x∗ that solves

xj =
eλπj(x)∑J
l=1 e

λπl(x)
(3)

for all j.

Whereas a Nash Equilibrium is a state of play with everybody simultaneously playing

a best response, a logit equilibrium is a state with everybody simultaneously playing

according to a logit response function. In particular, as λ tends toward infinity, the

logit equilibrium approaches the Nash Equilibrium.

We now suppose that agents’ quantal response functions take a particular para-

metric form – we have in mind the logit form, but probit and many other forms are

acceptable as well – and we recognize heterogeneity by allowing the agents to have

their own individual rationality parameters. That is, we assume

Qµ(π) = Q(λµπ). (4)

For the logit specification we would have

Qj(λµπ) =
eλµπj∑J
l=1 e

λµπl
. (5)
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Definition A mixed parametric quantal response equilibrium is a mixed strategy vec-

tor x∗ that solves

x =
1

m

m∑
µ=1

Q (λµπ(x)) . (6)

Definition When Equation (5) holds, the mixed parametric quantal response equi-

librium is called a (heterogeneous) mixed logit equilibrium (Tsakas 2005).

In a mixed logit equilibrium, agents are aware of the mixed strategy profile they face,

or more generally, have knowledge of the distribution of heterogeneous logit param-

eters. This mixed strategy profile is then a fixed point of the population aggregate

response function. The mixed logit equilibrium is distinct from Rogers et al.’s (2009)

heterogeneous quantal response equilibrium (HQRE) in that it applies to symmet-

ric population games as opposed to traditional (possibly asymmetric) games. We can

naturally embed a symmetric population game in the traditional framework and given

this perspective view a mixed logit equilibrium as a special case of HQRE with a loss

of information. In a population game knowledge of the distribution of heterogeneous

logit parameters is sufficient for an agent to deduce the equilibrium payoffs and the

mixed strategy profile she will face, because agents care only about their expected

payoffs with random matching. (In the more general framework of HQRE, agents

can deduce expected payoffs and the expected mixed strategy profile in equilibrium,

but the ex post equilibrium payoffs and mixed strategy profile after the realization of

agents’ types may be different.)

Our assumption of a common parametric form for all agents is a restriction not
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without loss of generality.6 Imposing this restriction lets us focus on bias caused by

disregarding heterogeneity apart from any bias due to mis-specification of the func-

tional form of one’s quantal response rule. We are thus giving the analyst the benefit

of the doubt by assuming correct specification of a functional form and then char-

acterizing the bias that results from forcing a homogeneous model on heterogeneous

agents.

3 Downward Bias

In this section, we see what happens when an analyst tries to force a homogeneous

parametric quantal response equilibrium (e.g., a logit equilibrium) model on a popu-

lation that is actually heterogeneous. We assume that the population is in a mixed

parametric quantal response equilibrium. Because the homogeneous model is mis-

specified, the value of the single rationality parameter will vary with the game being

considered. But, for a given game, any particular choice probabilities between two

actions that preserves payoff monotonicity (i.e., with choice probabilities increasing

in the payoffs) can be explained by a single homogeneous parameter (as long as the

parametric form is capable of approximating a pure strategy, which must be the case

for structural quantal responses arising from random payoff disturbances). For this

reason, we restrict attention to a symmetric game with two pure strategies.

6Golman (2011) characterizes a heterogeneous population of quantal responders nonparametri-

cally.

13



We identify a downward bias in the single logit parameter determined by the

mis-specified homogeneous model as compared with the average of the true logit

parameters in use. Thus, the population seems to behave less rationally if the modeler

believes the agents are all alike when in fact they each have their own levels of

rationality. This bias is exacerbated as the magnitude of the difference in payoffs

between the two actions grows. We describe the result here in the context of the

logit specification because this functional form is so commonly employed in practice,

but our results will hold for any stochastic choice function arising from a unimodal

distribution of payoff disturbances.

Let J = 2. Fix equilibrium choice probabilities and payoffs in accordance with

a mixed parametric quantal response equilibrium (6), and denote them x∗ and π∗

respectively. Assume a game in which the equilibrium payoffs to the two actions are

not equal, π∗1 6= π∗2. By translation invariance of the quantal response function, a

sufficient statistic for the equilibrium payoffs is their difference ∆π = π∗1 − π∗2. Now

we can express the quantal response in terms of the payoff difference,

Q(λµπ
∗) = (q(λµ∆π), 1− q(λµ∆π)) , (7)

where we have introduced q($) = Q1($, 0) to simplify notation going forward. De-

note by λ the rationality parameter of the homogeneous model that captures the

equilibrium choice probabilities and payoffs of this heterogeneous population.

Theorem 1 says that for any specification of the quantal response function Q

satisfying a convexity property corresponding to a unimodal distribution of payoff
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disturbances, the homogeneous rationality parameter is less than the average of the

heterogeneous parameters actually used by the agents. Moreover, the size of this

bias in the homogeneous model depends on the equilibrium payoffs. As the difference

in payoffs between the two actions grows large, the biased homogeneous rationality

parameter tends to a limit no greater than the geometric mean of the agents’ true

rationality parameters (which is, of course, always less than the arithmetic mean)

and perhaps as small as the minimum of the heterogeneous parameters. On the other

hand, when the magnitude of the payoff difference goes to zero, the homogeneous ra-

tionality parameter approaches the average of the agents’ true rationality parameters.

Thus, the bias disappears in this limit.

Theorem 1 Consider a mixed parametric quantal response equilibrium in accordance

with Equation (6) such that the two pure strategies have different equilibrium payoffs,

i.e., J = 2, and ∆π 6= 0. Let λ̄ = 1
m

∑m
µ=1 λµ be the average of the heterogeneous

rationality parameters used by the agents, and let λ be the homogeneous parameter

that explains this heterogeneous population’s choice probabilities and payoffs. If q is

convex on (−∞, 0) and concave on (0,∞), then

λ ≤ λ̄ (8)

with equality if and only if λ1 = λ2 = . . . = λm. Additionally,

lim
∆π→±∞

λ ∈

[
min{λµ},

m∏
µ=1

λµ
1
m

]
, (9)
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and if the derivative q′(0) is finite, then

lim
∆π→0

λ = λ̄. (10)

Proof We can use Equations (2), (4), and (7) to express λ in terms of the true

heterogeneous rationality parameters and the equilibrium payoffs:

λ =
1

∆π
q−1

(
1

m

m∑
µ=1

q(λµ∆π)

)
. (11)

By the responsiveness property of quantal response functions, we know that the func-

tion q has an inverse q−1, which is also monotonically increasing.

Without loss of generality, suppose action 1 has the higher equilibrium payoff so

that ∆π > 0. We apply Jensen’s Inequality to determine that

1

m

m∑
µ=1

q(λµ∆π) ≤ q
(
λ̄∆π

)
with equality if and only if λ1 = λ2 = . . . = λm. The inequality is preserved when we

apply q−1 to both sides because this function is monotonically increasing. So,

q−1

(
1

m

m∑
µ=1

q(λµ∆π)

)
≤ λ̄∆π.

Putting this inequality together with Equation (11) and cancelling the ∆π leads us

to (8).

We prove the limits in (9) and (10) in the Appendix.

Theorem 1 describes a downward bias in the determination of a homogeneous ra-

tionality parameter when agents are actually heterogeneous. The less rational agents
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seem to leave a larger mark on the aggregate population behavior. The disproportion-

ate impact the less rational agents have on aggregate behavior stems from the fact

that the marginal effect on the probability of a mistake with respect to a changing

rationality parameter is of greater magnitude for these agents.

Corollary 1 points out that Theorem 1 holds for logit parameters because the logit

response function Qj in Equation (1) is indeed convex in π∗j − π∗−j on (−∞, 0) and

concave on (0,∞) (and has a finite derivative at ∆π = 0).

Corollary 1 Consider a mixed logit equilibrium in accordance with Equations (5)

and (6) in the same context as in Theorem 1. Now let λ be the analyst’s determina-

tion of a homogeneous logit parameter rationalizing the mixed logit equilibrium choice

probabilities and payoffs. Then λ ≤ λ̄ with equality if and only if λ1 = λ2 = . . . = λm.

Additionally, lim∆π→0 λ = λ̄. (Equation (9) will be refined in Proposition 1.)

For the logit specification, we can more precisely characterize the maximal bias

when the payoff difference gets large, complementing our finding that the bias vanishes

as the payoff difference gets small. Proposition 1 establishes that as the magnitude of

the payoff difference grows, the homogeneous logit parameter approaches the smallest

of the heterogeneous logit parameters in the population. In this limit, the population

behaves like its single most irrational agent.

Proposition 1 Retain the context of Corollary 1. We have

lim
∆π→±∞

λ = min{λµ}. (12)
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The proof of Proposition 1 is in the Appendix.

Our formula for λ, Equation (11), also allows us to ask whether a determination

of the homogeneous rationality parameter from data on a choice between two actions

restricts the set of possible rationality parameters for members of the population.

The next result says it very well may. A large value of the homogeneous rationality

parameter imposes a minimum possible value on the set of heterogeneous parameters.

Conversely, a small homogeneous parameter precludes any individual agent from hav-

ing too large a value. For intermediate homogeneous parameter values, however, we

cannot rule out any parameters for a single agent. Naturally, these bounds depend

on the population size and are much less restrictive for a large population.

Proposition 2 Retain the context of Theorem 1. If q (λ |∆π|) > 1− 1
2m

, then

min{λµ} ≥
1

|∆π|
q−1 (mq (λ |∆π|)− (m− 1)) .

If q (λ |∆π|) < m+1
2m

, then

max{λµ} ≤
1

|∆π|
q−1

(
mq (λ |∆π|)−

(
m− 1

2

))
.

Proof See Appendix.

Homogeneous logit parameters are estimated in much of the experimental litera-

ture on two-by-two games, although often with data pooled across many populations

and many games. Proposition 2 applies to a homogeneous logit parameter calculated
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for a single given symmetric game. If we believe that agents use logit responses,

but are heterogeneous in their levels of rationality, this proposition translates a mis-

specified homogeneous logit parameter into restrictions on the set of possible logit

parameters in a finite population.

To illustrate these results, we can compare a homogeneous logit model fit to data

in a two-by-two symmetric game to compatible heterogeneous logit models featuring

two types of responders – one with a high rationality parameter and the other with a

low one. To make the example as simple as possible, we assume exactly half the agents

are of each type (though with the data coming from an experiment on 214 subjects,

we have no reason to actually believe there are just two types). We consider Guyer

and Rapoport’s (1972) “No Conflict” game, Game #6 in their series of experiments.

The payoff matrix is:

No Conflict

A2 B2

A1 4, 4 2, 3

B1 3, 2 1, 1

The players have a dominant strategy choosing action A. Guyer and Rapoport observe

action A played 90% of the time. Choosing to model this as a homogeneous logit

equilibrium, we have an equilibrium payoff difference ∆π = 1 (as the payoff to A

happens to always exceed the payoff to B by one), and thus λ = ln(9) in accordance

with Equation 3.7

7Goeree and Holt (2004) estimate a homogeneous logit parameter from data pooled across 37

19



Plugging ∆π = 1 and λ = ln(9) into Equation 11 (and specifying the logit func-

tional form) produces an equation implicitly relating λLOW and λHIGH. Figure 1 shows

possible values of these heterogeneous logit parameters. Pairs of λLOW and λHIGH val-

ues are determined by fixed x-values in the graph. Larger x-values correspond to

greater dispersion in the heterogeneous logit parameter values, but the scaling along

this axis is arbitrary. We can see that the average of λLOW and λHIGH always exceeds

ln(9), and the lower value is bounded below by ln(4) while the higher value may be

arbitrarily large. Guyer and Rapoport’s data thus puts a bound on how irrational

the low-type agents can be, and they only approach this bound if the other agents

are hyper-rational.

Because a homogeneous model is mis-specified in the presence of heterogeneity,

estimates of a single rationality parameter do not translate across different game

environments. For any given Q, the analyst’s parameter λ may depend both on the

true heterogeneous parameters {λµ} and the equilibrium payoff difference ∆π, so

we may write λ ({λµ},∆π). Theorem 1 and Proposition 2 imply the following result,

which tells us that an estimate of a homogeneous rationality parameter in a particular

game environment places no restriction on such an estimate in an alternative game

environment, even with a working assumption that agents’ rationality levels are fixed

across games. Theorem 2 states that the set of heterogeneous rationality parameters

that is consistent with a given homogeneous parametric quantal response equilibrium

games, including this one, from Guyer and Rapoport’s study. We obtain a different value of the

homogeneous logit parameter because we use data from just this one game.
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Figure 1: Possible values of a pair of logit parameters (determined at any fixed x-

value) that would be consistent with a homogeneous λ = ln(9), when ∆π = 1. These

values fit data from Guyer and Rapoport’s (1972) “No Conflict” game.

in any one game could in some other game give rise to behavior consistent with any

other homogeneous parameter.

Theorem 2 Consider symmetric normal form games with two pure strategies, J =

2. Adopt any parametric specification with q′(0) finite and q having full range (i.e.,

lim$→−∞ q($) = 0 and lim$→∞ q($) = 1). For any (mis-specified) homogeneous

parametric quantal response equilibrium with payoff difference ∆π∗ 6= 0 and rationality

parameter λ∗ > 0 in a game Γ, and any alternative value λ′ > 0, there exists a set of

heterogeneous rationality parameters {λµ} that are consistent with the homogeneous

parametric quantal response model applied to Γ,

λ ({λµ},∆π∗) = λ∗, (13)

and there exists a game Γ′ with a mixed parametric quantal response equilibrium with
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payoff difference ∆π′ 6= 0 given heterogeneous parameters {λµ}, such that

λ ({λµ},∆π′) = λ′. (14)

Proof See Appendix.

Recall that Equation (11) for λ ({λµ},∆π) gives us the homogeneous parameter

that produces the same equilibrium choice probabilities as the heterogeneous ratio-

nality parameters {λµ} when the equilibrium payoff difference is ∆π. Equation (13)

means that any estimate of a homogeneous rationality parameter in a given game

environment can be explained by some set of heterogeneous parameters, and Equa-

tion (14) means that these heterogeneous parameters could be consistent with any

other homogeneous rationality parameter in an alternative game environment. We

should not expect mis-specified parameter estimates to accurately describe behavior

across all games.

We illustrate Theorem 2 with an example, again using Guyer and Rapaport’s No

Conflict game data as a jumping-off point and adopting the logit specification. As

previously shown, an analyst fitting a homogeneous logit equilibrium to this data

would find ∆π∗ = 1 and λ∗ = ln(9). What is the external validity of this finding?

We do not know the true composition of the population, but we suspect it may be

heterogeneous. Is it possible that we might analyze the same population playing a

different game Γ′ and find that a wildly different rationality parameter λ′ is necessary
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for a homogeneous logit equilibrium to rationalize behavior in Γ′? Theorem 2 answers

this question in the affirmative. We might obtain any other λ′. (We should be careful

about stating our result precisely here. For any other λ′, there is a heterogeneous

composition of the population that we cannot rule out and there is a game Γ′ in which

the homogenous logit equilibrium with parameter λ′ fits the data generated by this

heterogeneous population. We are not asserting that we may obtain λ′ regardless of

the true composition of the population, nor are we asserting that in a particular game

Γ′, any λ′ is possible.)

For our illustration, we show how λ′ ≈ 108 might be obtained. We suppose m

is even and consider the possibility that λ1 = . . . = λm
2
≡ λLOW and λm

2
+1 = . . . =

λm ≡ λHIGH. (To obtain a λ′′ ≈ 0, we would have imposed a lower bound on m.) The

values λHIGH = 200 ln(10) ≈ 461 and λLOW = ln
(
4 + 25

10200−4

)
≈ 1.39 are consistent

with ∆π∗ = 1 and λ∗ = ln(9) in the No Conflict game Γ, in accordance with the

curves shown in Figure 1. If a population with this composition were to play the

game Γ′ with payoff function defined to be πΓ′ = 1
100

πΓ (i.e., a version of the No

Conflict game with payoffs scaled down by a factor of 0.01), then the homogeneous

logit equilibrium would explain behavior in Γ′ only if the rationality parameter were

λ′ = 100 ln

(
201

(
4 + 25

10200−4

).01
+ 100(

4 + 25
10200−4

).01
+ 102

)
≈ 108,

as determined by Equation (11) under the logit specification.

So, do Guyer and Rapaport’s data and an estimate of a homogeneous rationality

parameter in a particular game Γ offer us any predictive insight into behavior in an

23



alternative game Γ′? Yes. The responsiveness property of quantal response functions

carries empirical content across games (Goeree et al. 2005; Haile et al. 2008). If

we scale down the payoff function, we should see more errors. So, in the scaled-

down No Conflict game Γ′ above, we can predict that action B (the mistake) will be

played at least 10% of the time. But, we have not gained any additional information

from estimating a mis-specified homogeneous rationality parameter. Without more

information about the composition of the population, we do not know precisely how

often action B will be played in Γ′. On the other hand, if we had fit a correctly

specified representative-agent model of the heterogeneous population, the parameters

would be consistent across all games (Golman 2011). A well-specified representative-

agent model does make precise predictions across games.

3.1 Maximum Likelihood Estimation

We continue to focus on a single population in a fixed symmetric game, but we now

allow more than two pure strategies. No longer can a homogeneous parametric quantal

response model produce the same equilibrium choice probabilities and payoffs as the

mixed parametric quantal response model. However, we can simulate equilibrium

choice probabilities and payoffs for a set of heterogeneous rationality parameters and

a given payoff matrix, and then determine a best fitting homogeneous parameter using

maximum likelihood estimation. We proceed with the logit specification. In the vast

majority of our simulations, the estimated homogeneous logit parameter is less than

the average of the heterogeneous logit parameters. The effect is often quite large.
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For a symmetric game with J ≥ 2, we take the payoff matrix A as given, and for

any set of heterogeneous logit parameters, we determine equilibrium choice probabil-

ities x∗ and payoffs π∗ simultaneously using Equations (5) and (6) and π∗ = A(x∗)tr.

The likelihood that a homogeneous logit model with rationality parameter λ yields

these choice probabilities in a sample of T trials (T � 1) is

L(λ) ∝
∏

j∈{1···J}

(xj)
x∗jT

where the estimated choice probability xj is an implicit function of λ defined by

xj =
eλπj∑J
l=1 e

λπl
(15)

and π = Axtr.

The first order condition for maximizing the log-likelihood is then

d

dλ
ln (L(λ)) =

J∑
j=1

Tx∗jx
−1
j

dxj
dλ

= 0. (16)

We can solve for dx
dλ

by taking derivatives and using matrix algebra. Let X be the

diagonal matrix with x1, . . . , xJ on the diagonal, (X)ij = xjδij, where δij is the

Kronecker delta. Also denote by I the identity matrix, 1 a column vector of ones,

and π̄ the average payoff x · π. Tedious algebra will give us

dx

dλ
=
(
I − λXA+ λxtr xA

)−1
X (π − 1π̄) .

This can be plugged into Equation (16), making the first order condition for maxi-

mizing the log-likelihood

(x∗)X−1
(
I − λXA+ λxtr xA

)−1
X (π − 1π̄) = 0. (17)
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We solved Equation (17) (together with (15)) for λ numerically using a variety of

values for the heterogeneous logit parameters and the payoff matrix. In slightly over

93% of our trials,8 we found λ to be less than the average of the heterogeneous logit

parameters. On average across all trials, the estimated homogeneous logit parameter

was 85% as large as the average of the heterogeneous parameters. Thus, it seems

our finding of downward bias in the rationality parameter of the homogeneous model

extends to choices between more than two pure strategies. 9

4 Discussion

In the presence of heterogeneity, a homogeneous logit equilibrium model is mis-

specified. In the case of heterogeneous parametric quantal responders playing a sym-

metric game with two pure strategies, we have obtained a formula (Equation 11)

relating a mis-specified homogeneous rationality parameter to the actual heteroge-

8We ran 8013 simulations and found λ to be less than the average of the heterogeneous logit

parameters in 7467 of the trials. The few exceptions arise because estimated choice probabilites

and payoffs are determined simultaneously with the estimated homogeneous logit parameter, and

deviations between the estimated behavior and the simulated equilibrium behavior can occasionally

have a greater impact on λ than the downward bias that results from ignoring heterogeneity. In

additional trials with fixed payoffs, λ was always less than the average of the heterogeneous logit

parameters.
9We reviewed estimates made by Rogers et al. (2009) with a uniform distribution of types,

and they too show the homogeneous logit parameter to always be less than the average of the

heterogeneous parameters.
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neous parameters in the population. Maximum likelihood estimation can be used

to fit a homogeneous parameter to the behavior of heterogeneous agents choosing

between any number of pure strategies, but a closed form solution is not generally

possible. Our formula provides insights in two directions. It tells us that the ho-

mogeneous model is biased towards less rationality, as a common convexity property

guarantees that the homogeneous rationality parameter is less than the average of the

heterogeneous ones. This bias gets worse when one action’s equilibrium payoff gets

much larger than the other’s. Conversely, the bias disappears as the payoff difference

tends to zero. The formula also allows us to bound the possible values of the true

rationality parameters if we have a mis-specified homogeneous model already in place.

This result is applicable to experimental work in which a homogeneous logit model

has been fit to data. However, if enough distinct types are allowed, the bounds are

very weak, possibly even non-existent. A mis-specified homogeneous model has no

predictive power across games.

Appendix

Completing the Proof of Theorem 1.

We will show that a) when ∆π is large, λ is monotonically decreasing in ∆π, and

b) in this limit, λ is bounded within the range
[
min{λµ},

∏
λµ

1
m

]
; and thus λ must

converge to some value in this range. The argument when ∆π is negative is completely

analogous.
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We begin by asserting that since q is monotonically increasing and bounded above

by 1, it must have a horizontal asymptote, and thus, for large enough $, the compo-

sition q (e$) is concave, and $q′($) is decreasing and concave. Take a derivative of

Equation (11) with respect to ∆π to obtain

dλ

d∆π
=

1

∆π

[
1

q′(λ∆π)

1

m

m∑
µ=1

λµ q
′(λµ∆π) − λ

]
.

By Jensen’s Inequality and the fact that $q′($) is concave for $ sufficiently large,

1

m

m∑
µ=1

λµ q
′(λµ∆π) ≤ λ̄ q′(λ̄∆π)

when ∆π is large enough. For large ∆π we also have

λ q′(λ∆π) ≥ λ̄ q′(λ̄∆π)

because λ ≤ λ̄ and $q′($) is decreasing on this domain. Together, these two inequal-

ities imply dλ
d∆π
≤ 0 for sufficiently large ∆π.

To establish the upper bound on lim∆π→∞ λ, we use Jensen’s inequality on q (e$)

with $ taking values of ln(λµ∆π). By the concavity of q (e$) for such values, when

∆π is large,

1

m

m∑
µ=1

q(λµ∆π) ≤ q
(
e

1
m

∑m
µ=1 ln(λµ∆π)

)
= q

(∏
λµ

1
m ∆π

)
.

Straightforward manipulation with Equation (11) produces the desired upper bound.

The lower bound follows immediately from the monotonicity of q and q−1 in Equa-

tion (11) when we consider λµ ≥ λmin for all µ.
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To obtain the limit as ∆π approaches 0, we apply l’Hospital’s Rule to the expres-

sion for λ given in Equation (11). We have

d

d∆π

[
q−1

(
1

m

m∑
µ=1

q(λµ∆π)

)]
=

1

q′
(
q−1

(
1
m

∑m
µ=1 q(λµ∆π)

)) 1

m

m∑
µ=1

q′(λµ∆π)λµ.

Evaluating this derivative at ∆π = 0 is possible when q′(0) is finite. (We know

q(0) = 1
2

by the monotonicity property of quantal response functions, and q′(0) > 0

by the responsiveness property.) In this case, we can cancel q′(0) from the numerator

and the denominator to obtain

d

d∆π

[
q−1

(
1

m

m∑
µ=1

q(λµ∆π)

)]
∆π=0

=
1

m

m∑
µ=1

λµ

=λ̄.

The denominator in (11) is ∆π, so its derivative is 1. Thus,

lim
∆π→0

λ = λ̄.

Proof of Proposition 1.

To obtain

lim
∆π→±∞

λ = min{λµ},

we take the limit as ∆π goes to ∞. By symmetry, the result then holds when ∆π

goes to −∞ as well. First, we use algebra to derive from Equations (1) and (11) the

following expression for λ:

λ =
1

∆π
ln

(∑m
µ=1 e

λµ∆π
∏

ω 6=µ
(
eλω∆π + 1

)∑m
µ=1

∏
ω 6=µ (eλω∆π + 1)

)
.

29



In the limit of ∆π going to ∞,

eλµ∆π
∏
ω 6=µ

(
eλω∆π + 1

)
→ eλµ∆π

∏
ω 6=µ

eλω∆π

=
∏
ω

eλω∆π

and
m∑
µ=1

∏
ω 6=µ

(
eλω∆π + 1

)
→

∏
ω 6=arg min{λµ}

eλω∆π.

Thus,

lim
∆π→∞

λ = lim
∆π→∞

1

∆π
ln

( ∑m
µ=1

∏
ω e

λω∆π∏
ω 6=arg min{λµ} e

λω∆π

)

= lim
∆π→∞

1

∆π
ln
(
memin{λµ}∆π

)
= lim

∆π→∞

min{λµ}∆π + ln (m)

∆π

= min{λµ}.

Proof of Proposition 2.

Without loss of generality, assume ∆π > 0. For the homogeneous model to match

the mixed parametric quantal response equilibrium, we require

q(λ∆π) =
1

m

m∑
µ=1

q(λµ∆π),

in accordance with Equation (11). To obtain the lower bound on min{λµ}, we recog-

nize that q(λµ∆π) ≤ 1 for all µ 6= arg min{λω}. Applying these inequalities with some

straightforward algebra gives us the desired lower bound. Note that this bound is

meaningful only if mq(λ∆π)−(m−1) > 1
2
. To obtain the upper bound on max{λµ},

30



we recognize that q(λµ∆π) ≥ 1
2

for all µ 6= arg max{λω} (given that ∆π > 0). Once

again, straightforward algebra leads to the desired bound, which in this case is mean-

ingful only if mq(λ∆π)−
(
m−1

2

)
< 1.

Proof of Theorem 2.

Without loss of generality, assume ∆π∗ > 0. Choose m ∈ N such that m >

1
2(1−q(λ∗∆π∗)) and m > 1

2q(λ∗∆π∗)−1
. This ensures that neither of the bounds in Propo-

sition 2 apply. Thus, we can choose λm ≡ max{λµ} such that

λm >
1

∆π∗
q−1

(
mq(λ∗∆π∗)− 1

2

m− 1

)

and λm > mλ′, and then we can choose λ1 <
λ′m

λm
m−1 and the remaining {λµ}, for

µ = 2 . . .m − 1, such that Equation (13) holds. That means these heterogeneous

rationality parameters will be consistent with the homogeneous parametric quantal

response equilibrium with rationality parameter λ∗ and equilibrium payoff difference

∆π∗. We have specifically chosen λm and λ1 so that
∏
λµ

1
m < λ′ < λ. Thus,

noting the limits we take in Theorem 1, we establish that λ ({λµ},∆π) is above λ′

when ∆π ≈ 0 and is below λ′ when ∆π is large. Because λ ({λµ},∆π) is continuous

in ∆π, according to the intermediate value theorem there is some ∆π′ for which

λ ({λµ},∆π′) = λ′.
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