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Abstract and Keywords

This chapter overviews topics in judgment and decision making from a cognitive science 
perspective. It advocates a “closed-loop” view of decision making: an interactive and 
continuous dynamic process of exchanges between humans and their environment. The 
chapter first discusses the “open-loop” view of decision making that has dominated the 
field for many decades, beginning with a historical perspective on rationality and 
bounded rationality to distinguish the closed and open-loop views and the research from 
two major fields that study decision making: economics and psychology. It then presents 
foundational research for the closed-loop view that involves probability learning and 
dynamic decision making, adaptive decision making, and recent research on dynamic 
decision making and decisions from experience. The last section presents the naturalistic 
decision-making perspective and its connections to cognitive engineering and human 
factors. It concludes with a view on future research at individual, team, group, and 
societal levels.

Keywords: decision making, cognitive science, dynamic decision making, learning, adaptive decision making, 
naturalistic decision making

Decision making is a “high-level” cognitive process that is clearly distinguishable from 
other processes in at least two ways: it builds on more basic cognitive processes such as 
perception, memory, and attention, and it is uniquely identified by its essential element: 
the process of choice. Choice is the act of selecting among alternatives, whether they are 
present at the same time or they develop over time. The process of choice is highly 
influenced by the cognitive processes that occur before a choice is made (e.g., 
perception, recognition, and judgment) and those that occur after a choice is made (e.g., 
feedback and learning). Notably, the judgment process, which precedes choice, involves 
evaluating the merits of and preferences for different alternatives. These two processes, 
judgment and choice, have been the main focus of the study of decision making, a field 
often referred to as “judgment and decision making.” As it will become apparent 
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throughout this chapter, judgment and choice present only a partial view of all the 
cognitive processes involved in decision making, and most of the other processes, such as 
perception, recognition, feedback, and learning, have been relatively neglected in the 
literature of decision sciences.

The cognitive science perspective on decision making that I advocate is an interactive 
view, one highly influenced by roots in control engineering and ecological psychology 
(Flach, Hancock, Caird, & Vincente, 1995; Pew & Baron, 1978; Wickens & Kramer, 1985). 
Under this view, a human (the decision maker) collaborates with an environment in order 
to accomplish a task through repeated decisions. A decision maker perceives information 
from the environment and transforms that information to find and create alternatives, 
build preferences, and evaluate options that lead to a choice. An action is executed and it 
naturally results in changes in the environment. Then, feedback (i.e., the knowledge of 
outcomes from actions taken) must be processed in order to reinforce or not past 
decisions (i.e., learn from past choices). I refer to this process as a closed-loop view of 
decision making (Gonzalez, 2012), and it is the principal flow of events behind most 
models of dynamic decision making and models of decisions from experience in dynamic 
situations, which will be explained below.

Although this interactive 
perspective would seem 
intuitive and natural for 
most cognitive 
psychologists, this has not 
been the dominant model 
of information processing 
in decision sciences. 
Instead, an open-loop
linear model, such as that 
illustrated in Figure 13.1, 
has been the most common 
conceptualization of 
decision making in the 
past decades (Gonzalez, 
2012; Hastie, 2001). This 
conceptualization involves 
(1) the explicit 

presentation of choice options or alternatives, often represented as “branches” of a 
decision tree; (2) beliefs about objective events in the world, which represent uncertainty 
in the environment (often described as probabilities or likelihoods); and (3) desires or 

Click to view larger

Fig. 13.1  The open-loop, linear model of decision 
making.

(p. 250) 
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utilities that represent the consequences associated with the outcomes of each action–
event combination or subjective evaluative reactions associated with each outcome.

In what follows, I briefly discuss a historical view of decision-making research that should 
help readers understand the open-loop view, as well as encourage the closed-loop view 
that I take in the dynamic decision making perspective. The open-loop view has largely 
dominated decision-making research; thus, I discuss the most traditional approach—
heuristics and biases—before introducing dynamic decision making and cognitive models 
of decisions from experience in dynamic environments. In the final section, I discuss the 
naturalistic decision-making perspective and provide a personal view of the future of 
decision-making research.

Maximizing and Satisficing, Rational and 
Irrational, Economics and Psychology: The 
Open-Loop View of Decision Making
Theories that explain human decision making have traditionally involved principles and 
developments taken from economics and psychology. These two disciplines have proposed 
what appear to be conflicting mechanisms and explanations for decision making. On the 
one hand, economists have often assumed humans to be utility maximizers (i.e., 
“rational”), whereas psychologists have aimed at demonstrating the many different 
decision situations in which humans do not maximize utility (i.e., “irrational”). Given that 
most cognitive treatments of decision making depart from the concept of rationality, I 
discuss some of these ideas next. However, there have been many extensive discussions 
on this theme. Most are excellent accounts of the history of decision sciences that depart 
from theories of expected utility (which is considered to include theories of rational 
behavior) to more recent trends of cognitive decision-making research (e.g., Einhorn & 
Hogarth, 1981; Goldstein & Hogarth, 1997; Griffin, Gonzalez, Koehler, & Gilovich, 2012). 
Thus, I only discuss those relevant historical aspects that have contributed to the 
formation and prevalence of the open-loop view of decision making in order to contrast it 
to the cognitive science perspective that I emphasize—the closed-loop view.

Rationality is a central concept in the discipline of economics and to the principle of 
maximization of subjective expected utility (SEU). According to this principle, a decision 
maker evaluates the attractiveness of an option by combining the probability of each 
possible outcome and the subjective utility or personal value of each outcome. Since its 
initial proposal, the SEU theory’s value as a principle of human decision making has been 
heavily criticized. A notable example is the critique offered early on by Herbert Simon 

(p. 251) 



Decision-Making: A Cognitive Science Perspective

Page 4 of 27

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: Carnegie Mellon University; date: 08 April 2017

(1955, 1957), in which he described the discrepancies between the SEU model and the 
reality of human behavior and proposed an “approximate” rationality or satisficing
mechanism for decision making (i.e., “bounded rationality”). Under the bounded 
rationality mechanism, people can adapt to their environment by identifying actions that 
are only satisfactory to their goals and that could be applied without applying cognitively 
demanding and sophisticated rules that humans are unable to use.

Another major research breakthrough was gained from human behavioral experiments 
that questioned the fundamental assumptions of the SEU model. The work of Kahneman, 
Tversky, and their colleagues helped to shift attention from examples that merely dispute 
SEU theory to providing explanations of how people make decisions, as described by 

prospect theory (Kahneman & Tversky, 1979). This theory has been a prominent model 
used to explain and generalize deviations from expected utility theory.

When demonstrating the explanatory power of prospect theory, researchers have 
traditionally used monetary gambles (i.e., “prospects”) that explicitly state outcomes and 
associated probabilities. People are presented with a description of the alternatives, and 
they are asked to make a choice based on the conditions described. They are asked to 
make decisions from description. For example:

Which of the following would you prefer?

A: a .8 chance to get $4 and .2 chance to get $0

B: get $3 for sure

Using descriptive prospects, researchers have investigated a large number of situations 
in which people behave against utility maximization and in agreement with prospect 
theory, producing an impressive list of “heuristics and biases” (Kahneman, Slovic, & 
Tversky, 1982; Tversky & Kahneman, 1974). Through the years, these consistent 
deviations from rational behavior have been identified, replicated, and extended using 
laboratory experiments, to the extent that this type of research has dominated the field 
for the past six decades.

Heuristics and Biases

The strength of the heuristics and biases approach is that each of the demonstrations of 
“irrationality” has a clear baseline for comparison (a normative model or a description of 
optimal human behavior, being either utility maximization or optimality in other forms, 
such as expert behavior). Heuristics are the “shortcuts” that humans use to reduce task 
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complexity in judgment and choice, and biases are the resulting gaps between normative 
behavior and the heuristically determined behavior (Kahneman et al., 1982).

The list of heuristics and biases keeps growing. A summary of the cognitive biases that 
arise from reliance on judgment heuristics is presented in Table 13.1. This is a partial list 
of well-known heuristics and biases described in Kahneman et al.’s (1982) book, that 
highlight three heuristics that are employed in making judgments under uncertainty: 
representativeness, availability, and anchoring and adjustment. These three heuristics 
result in at least 13 biases or errors in situations of uncertainty.

Using a similar and related set of demonstrations, Gigerenzer and Todd (1999) presented 
human use of heuristics as inference mechanisms that can be simple and successful to 
the degree that they are ecologically rational (adapted to the environment in which 
decisions are made). Thus, rather than conceptualizing heuristics as the source of 
“errors” or biases, Gigerenzer and Todd explored the world of human and environment 
adaptation and argued for the “rationality” of these heuristics. This research program has 
been quite successful, particularly in highlighting the value of adaptation to the 
environment. Their concept of “ecological rationality” aims at understanding 
environmental structures and how heuristics may succeed or fail in particular situations. 
For an updated view of this perspective, see Gigerenzer, Hertwig, and Pachur (2011).

Information Processing and Process-Tracing Methods

Despite many years of effort investigating heuristics and biases in decision making, we 
still have only limited answers to the question of how people actually go about 
making decisions. Rather, most research under these programs has been aimed at 
demonstrating how people don’t make decisions. The large collection of cognitive biases 
cannot all be explained by one comprehensive theory, and, most importantly, we do not 
know how the biases develop and how they emerge in the first place. As a result, little is 
known of how to prevent them. Most empirical studies to date focus on observable 
processes, such as choice selection, and ignore cognitive processes that lead to choice, 
such as recognizing alternatives, deciding when to search for information, evaluating and 
integrating possible outcomes, and learning from good and bad decisions.

(p. 252) 
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Table 13.1 A Summary of Cognitive Heuristics and Biases

Heuristic Biases

Representativeness: probabilities are assessed 
by the degree of representativeness (similarity)

1. Insensitivity to prior 
probability of outcomes
2. Insensitivity to sample 
size
3. Misconceptions of 
chance
4. Insensitivity to 
predictability
5. The illusion of validity
6. Misconceptions of 
regression

Availability: probabilities are assessed by the 
ease with which instances or occurrences are 
brought to mind

1. Biases due to the 
retrievability of instances
2. Biases due to the 
effectiveness of a search 
set
3. Biases of imaginability
4. Illusory correlation

Adjustment and Anchoring: estimates are made 
by starting from an initial value that is adjusted to 
yield the final answer.

1. Insufficient adjustment
2. Biases in the evaluation 
of conjunctive and 
disjunctive events
3. Anchoring in the 
assessment of subjective 
probability distributions

In decision sciences, attention to the processes that precede choice has been rare but 
productive. Most of the work in this area has been devoted to the methods involved in the 
study of the decision process, relying on process-tracing measures and think-aloud 
protocols (Crozier & Ranyard, 1997). A notable example is mouse-lab studies that 
emerged from adaptive decision maker studies (Payne, Bentmann, & Johnson, 1993). With 
a process-tracing tool, “mouse-lab,” researchers monitored the information acquisition 
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process by hiding information behind boxes and requesting that a decision maker 
explicitly select a box to reveal the information behind it. This method has been 
successful in providing some insights into the process behind decision making that would 
otherwise stay eclipsed by a focus on the outcomes of explicitly selected choices. 
Regardless of the success of these methods, there is still much more to investigate about 
cognitive processes that precede and follow choice when people make decisions.

The interactive and closed-loop view of decision making is now an influential model in 
cognitive psychology that addresses what takes place between the presentation of a 
stimulus and the feedback received from the execution of a choice. This has been 
illuminated by research on human learning and dynamic decision-making research that 
started in the 1950s. More recently, research on decisions from experience has been 
explicitly and successfully contrasted with findings from traditional decisions from 
description. This perspective is discussed next, under the umbrella of dynamic decision 
making.

Dynamic Decision Making: A Closed-Loop View 
of Decision Making
The open-loop view of decision making just described makes a set of assumptions 
regarding information availability and a decision maker’s ability to process such 
information. It assumes that the alternatives, presented at the same time, are explicitly 
described and include the probabilities assigned to each possible outcome. Simon (1955)
observed that these conditions would rarely be representative of actual choice situations 
and that human abilities may not meet the processing demands. The heuristics and biases 
approach is incomplete and does not provide a full account of the decision-making 
processes. Simon (1955) highlighted the importance of learning also in the choice 
process, and decision theory in the 1950s only addressed gambles and simple choice 
involving skill. For example, probability learning was extensively studied in the 
1950s and 1960s (Estes, 1964, 1976; Lee, 1971; Shanks, Tunney, & McCarthy, 2002) in 
paradigms involving the prediction of the occurrence of two mutually exclusive events in 
which the decision maker receives feedback about which event took place. These learning 
experiments were the origin of dynamic decision research (Edwards, 1962).

(p. 253) 
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Dynamic decision making 
(DDM) may be 
conceptualized as a control 
process: a closed-loop 
learning process in which 
decisions are influenced by 
goals and external events 
and are the result of 
previous decisions and 
previous outcomes. Under 

this view, decision making is a learning process in which decisions are made based on 
experience and are feedback-dependent (see Figure 13.2). Alternatives are not presented 
at the same time, but rather they unfold over time. Decision making is a learning loop: 
decisions depend on previous choices and also on external events and conditions.

A recent development in decision sciences has expanded on the initial view of choice as a 
learning process. It has great potential to expand our understanding and provide insights 
into the dynamic decision making process. The development involves a shift of attention 
to how decisions are made based on experience (i.e., decisions from experience), rather 
than based on explicit descriptions of options. Researchers use experimental paradigms 
that involve repeated decisions rather than one-shot decisions, the estimation of possible 
outcomes and probabilities based on the observed outcomes rather than from a written 
description, and learning from feedback. All these are natural processes for making 
decisions in many real-world situations where alternatives, outcomes, and probabilities 
are unknown. The experimental paradigm often involves two alternatives, represented as 
two unlabeled buttons, each representing a probability distribution of outcomes unknown 
to participants. Clicking a button yields an outcome as a result of a random draw from the 
alternative’s distribution. Although there are multiple paradigms for the study of 
decisions from experience (Gonzalez & Dutt, 2011; Hertwig & Erev, 2009), a common 
paradigm is the “sampling” paradigm (see Figure 13.3), in which people are able to 
explore the outcomes of the options without real consequences before they decide to 
make a final choice.

A key observation that contributed to the initial success of decisions from experience’s 
theoretical development was the “description-experience gap” (Hertwig, Barron, Weber, 
& Erev, 2004): that the choice an individual makes depends on how information about the 
problem is acquired (from description or experience), particularly in problems involving 
outcomes with low probabilities (less than .2; i.e., “rare events”). A robust finding across 
a range of paradigms for decisions from experience is that people behave as if rare events 
have less impact than they deserve according to their objective probabilities. More 
importantly, this finding contradicts the prediction from prospect theory that people 

Click to view larger

Fig. 13.2  Closed-loop view of decision making.
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behave as if rare events have more impact than they deserve. However, this theory only 
applies to “simple prospects with monetary values and stated probabilities” (Kahneman & 
Tversky, 1979, p. 274). Thus, although prospect theory seems to provide good 
explanations for decisions from description, findings from experiments about decisions 
from experience may contradict those predictions in many cases (Hertwig, 2012).

Prospect theory (Kahneman & Tversky, 1979) has been a prominent model to explain 
human choice behavior in descriptive choices, but a comprehensive model that can 
explain decisions from experience has not yet been found. In fact, a challenge in 
understanding the cognitive processes involved in making decisions from experience is 
the proliferation of highly task-specific models that often predict behavior in a particular 
task but fail to also explain behavior in other closely related tasks (see discussions in 

Gonzalez & Dutt, 2011; Lejarraga, Dutt, & Gonzalez, 2012). Gonzalez and colleagues have 
attempted to address this challenge by providing multiple demonstrations of how 
cognitive computational models based on one theory, instance-based learning theory
(IBLT; Gonzalez, Lerch, & Lebiere, 2003), can account for human behavior in a large 
diversity of tasks in which decisions are made from experience. Recently, they have 
demonstrated that the same computational model based on IBLT, without modifications, is 
able to account for multiple variations of the dual-choice paradigms commonly used to 
study decisions from experience (e.g., Gonzalez & Dutt, 2011; Lejarraga et al., 2012). In 
what follows, I present a general view of theories of learning in dynamic tasks. Then I 
expand on the IBLT as a general theory of decision making in dynamic tasks and on the 
cognitive models based on IBLT proposed to study decisions from experience in simple 
repeated-choice paradigms like those described earlier (e.g., Figure 13.3).

Click to view larger

Fig. 13.3  The sampling paradigm of decisions from 
experience.

(p. 254) 
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Learning in DDM

Research on learning in and about dynamic systems indicates that humans remain 
suboptimal decision makers even after extended practice and after being given unlimited 
time and performance incentives (Diehl & Sterman, 1995; Sterman, 1994). That is, 
humans do not always improve their decision making from experience (Brehmer, 1980). 
One main impediment to learning in dynamic tasks is difficulty in processing feedback, 
particularly delayed feedback (Brehmer, 1992; Sterman, 1989a, 1989b). However, many 
other difficulties have also been documented, including our inabilities to deal with time 
constraints, high workload, and the limitations in our inherent cognitive abilities 
(Gonzalez, 2004, 2005a; Gonzalez, Thomas, & Vanyukov, 2005).

Various accounts have been proposed regarding how a human learns in dynamic systems 
(for summaries of these, see Busemeyer, 2002; Gonzalez, 2005b). One theory is that 
specific instances are used to control dynamic systems (Dienes & Fahey, 1995). This 
learning model was based on two cognitive mechanisms that compete every time 
someone encounters a decision-making situation: an algorithm and a set of context–action 
exemplars. The algorithm is a general heuristic or rule used in a novel situation, whereas 
the context–action exemplars are discrete representations of knowledge called 
“instances,” a name derived from Logan’s instance theory of automatization (1988). In 
this model, an implicit assumption is that a decision maker stores actions and their 
outcomes together in memory and retrieves them on the basis of their similarity to 
subsequently encountered situations.

Another theory of learning is proposed by the connectionist approach, in which decision 
making is built from interconnected units (Gibson, Fichman, & Plaut, 1997). This model is 
based on the control theory approach proposed by Brehmer (1990) and was 
implemented computationally via neural networks. It assumes that decision makers use 
outcome feedback to form two submodels: the judgment submodel that represents how 
the decision maker’s actions affect outcomes and the choice submodel that represents 
which actions are taken to achieve desired outcomes. The judgment submodel learns by 
minimizing the differences between the outcomes it predicts and the outcomes received 
from feedback, whereas the choice submodel learns by minimizing the differences 
between the alternatives predicted by the judgment model and the alternatives actually 
selected. This model provides a good account of individuals’ learning in dynamic 
situations and knowledge transfer to novel situations (Gibson, 2000).

IBLT, a third theory (Gonzalez et al., 2003; Gonzalez & Lebiere, 2005), was developed to 
reproduce decision-making behavior in dynamic tasks. It characterizes learning by 
storing in memory a sequence of action–outcome links produced by experienced events 

(p. 255) 
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through a feedback loop process of human and environment interactions. Because of this 
theory’s current relevance, not only for DDM but also for explaining decisions from 
experience (Gonzalez & Dutt, 2011), we expand on this theory and the cognitive model 
implementations of its mechanisms in the next section.

Generically speaking, the three learning models just summarized incorporate at least two 
common characteristics: all three models take into account the need for two forms of 
learning: explicit (i.e., decision making based on rules of action) and implicit (i.e., decision 
making based on context-based knowledge and recognition). There is some evidence that 
individuals who have completed a dynamic task are not always aware of its structure (i.e., 
their knowledge is implicit), which suggests that the knowledge acquired was not in the 
form of rules about how the system works (Dienes & Fahey, 1995). Often, individuals 
performing DDM tasks are unable to describe the key elements of the task or verbalize 
the ways in which they made decisions (Berry & Broadbent, 1987, 1988). Second, these 
models rely on a similarity process that determines the applicability of accumulated 
experiences to familiar situations. Research in analogical reasoning has demonstrated the 
increased relevance of analogy to learning and decision-making processes (Kurtz, Miao, 
& Gentner, 2001; Medin, Goldstone, & Markman, 1995). Decisions from experience are, 
very likely, the only method by which decisions are made in dynamic conditions. In fact, a 
recent study demonstrates that as a problem’s complexity increases, people prefer to 
make decisions from experience rather than interpreting the given probabilities and 
outcomes of a one-shot decision (Lejarraga, 2010).

In summary, there are well-documented difficulties when humans make decisions in 
dynamic systems. Humans remain suboptimal or learn very slowly, often due to feedback 
delays, time constraints, and the cognitive workload required by these environments. To 
be able to understand and improve training protocols and guidelines, one needs to first 
understand how humans make decisions in these tasks. Fortunately, the similarities 
across the most prominent theories of learning in DDM converge on several issues. All 
models agree that humans learn facts—cause-and-effect knowledge related to the context
—and none of the models presents the main form of learning as being structural 
knowledge or rules. Also, all of the models agree on the relevance of some form of 
recognition of familiar patterns from past experience; that is, that decisions are made 
from experience by retrieving a solution from similar past situations we’ve experienced.

IBLT
IBLT was developed to explain human decision-making behavior in dynamic tasks 
(Gonzalez et al., 2003). Dynamic decision making has been characterized by the process 
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of making multiple, repeated, or sequential choices in conditions that evolve over time 
either as a result of previous decisions, with inaction, or spontaneously from the change 
occurring in the environment as time passes (Edwards, 1962).

Based on evidence from studies in naturalistic environments (Dreyfus & Dreyfus, 1986; 
Klein, Orasanu, Calderwood, & Zsambok, 1993; Pew & Mavor, 1998; Zsambok & Klein, 
1997), laboratory studies with dynamic computer simulations (Microworlds) (Brehmer, 
1990, 1992; Gonzalez, 2004, 2005b; Kerstholt & Raaijmakers, 1997), theoretical studies of 
decisions under uncertainty (Gilboa & Schmeidler, 1995, 2000), and other theories of 
learning in dynamic decision making (Dienes & Fahey, 1995; Gibson et al., 1997), IBLT 
proposed that decisions in dynamic tasks were made possible by referencing experiences 
from past similar situations and applying those decisions that worked in the past. IBLT’s 
most important development was the description of the learning process and mechanisms 
by which experiences may be built, retrieved, evaluated, and reinforced during 
interactions with a dynamic environment.

IBLT characterizes 
learning in dynamic tasks 
by storing “instances” in 
memory as a result of 
having experienced 
decision-making events. 
These instances are 
representations of three 
elements: a situation (S), 
which is defined by a set of 
attributes or cues; a 
decision (D), which 

corresponds to the action taken in situation S; and a utility or value (U), which is 
expected or received for making a decision D in situation S. IBLT proposes a generic 
decision-making process through which SDU instances are built, retrieved, evaluated, 
and reinforced (see a detailed description of this process in Gonzalez et al., 2003), with 
the steps consisting of recognition (similarity-based retrieval of past instances), judgment 
(evaluation of the expected utility of a decision in a situation through experience or 
heuristics), choice (decision on when to stop information search and select the optimal 
current alternative), execution (implementation of the decision selected), and feedback 
(update the utility of decision instances according to feedback) (see Figure 13.4).

When faced with a particular decision situation, people are likely to retrieve similar SDUs 
(SDUs with similar situations) from memory (Recognition step). In a typical situation 
(situation similar to past SDUs), the expected utility of an action is calculated by 

Click to view larger

Fig. 13.4  The IBLT process.

(p. 256) 
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combining the utility of similar instances retrieved from memory (a procedure called 

Blending). In atypical situations, however, people fall back on heuristics in their 
evaluation of the expected utility of an action. Evaluation of a decision’s expected utility 
in a given situation is done in the Judgment step. Alternative actions are evaluated 
sequentially, and, after each evaluation, the decision of whether more alternatives should 
be evaluated is determined by a necessity mechanism. Necessity may be subjectively 
determined by the decision maker’s own preferences or by exogenous factors such as a 
lack of time or changes in the environmental conditions. The alternative with the highest 
utility among the evaluated alternatives is then selected (the Choice step) and executed 
(the Execution step), thus changing the environment and noting which SDU was executed 
in memory. Once a decision has been made, the decision’s outcome is used as feedback to 
modify the utility value of the original SDUs (Feedback step).

The decision process of IBLT is determined by a set of learning mechanisms needed at 
different stages, including Blending (the aggregated weighted value of alternatives 
involving the instance’s utility weighted by its probability of retrieval), Necessity (the 
decision to continue or stop exploring the environment), and Feedback (the selection of 
instances to be reinforced and the proportion by which the utility of these instances is 
reinforced).

In general, descriptive theories of behavior postulate processes and mechanisms that 
govern human behavior. IBLT proposed constructs and processes that rationalized the 
general phenomena of decision making in dynamic tasks and provided general 
explanations. These concepts and processes are generic and are motivated independently 
of a specific dynamic decision-making task or decision context. But it is the quantitative 
nature of a theory that can make it precise and testable. To test theories of human 
behavior, we use computational models: representations of some or all aspects of 
a theory as it applies to a particular task or context. Thus, the value of models is that they 
can solve concrete problems and provide explicit mathematical and computational 
representations of a theory, which can then be used to make predictions about behavior.

IBL Models

IBLT constructs and processes were implemented into a computational model that helped 
make the theory more explicit, transparent, and precise (Gonzalez et al., 2003). The first 
computational model based on IBLT (called Cog-IBLT) demonstrated the overall 
mechanisms and learning process in a dynamic and complex resource allocation task 
(reported in Gonzalez et al., 2003). Cog-IBLT was constructed within the ACT-R cognitive 
architecture (Anderson & Lebiere, 1998), using the cognitive mechanisms existing in 
ACT-R. Specifically, Cog-IBLT used the architecture’s experimentally derived 

(p. 257) 
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mathematical representations of Activation (a value that determines the usefulness of an 
instance from memory and experience and the relevance of the instance to the current 
context), Partial Matching (a value that determines the similarity of instances and the 
retrieval of instances that may be only similar to a current environmental situation), and 

Retrieval Probability (a value representing the probability of retrieving an instance as a 
function of Activation and Partial Matching). This model also used a modified version of 
the Blending concept proposed in Lebiere’s dissertation (1998): an aggregate or 
combination of the values of multiple instances in memory. Through a series of 
“simulation experiments,” Cog-IBLT demonstrated the explanatory and predictive 
potential of IBLT as it closely approximated the learning process from human data in a 
complex dynamic resource allocation task.

After the conceptualization of IBLT, many IBL models have been developed for a wide 
variety of tasks, including dynamically complex tasks (Gonzalez & Lebiere, 2005; Martin, 
Gonzalez, & Lebiere, 2004), training paradigms of simple and complex tasks (Gonzalez, 
Best, Healy, Kole, & Bourne, 2011; Gonzalez & Dutt, 2010), simple stimulus–response 
practice and skill acquisition tasks (Dutt, Yamaguchi, Gonzalez, & Proctor, 2009), and 
repeated binary-choice tasks (Lebiere, Gonzalez, & Martin, 2007; Lejarraga et al., 2012).

A recent IBL model has shown generalization across multiple tasks that share structural 
similarity with the paradigms used to study decisions from experience. Motivated by the 
work of Erev and Barron (2005), we built a model of repeated binary choice based on 
IBLT but within the ACT-R architecture (Lebiere et al., 2007). Erev and Barron (2005)
demonstrated robust deviations from maximization in repeated binary choice and 
proposed the reinforcement learning among cognitive strategies (RELACS) model, which 
closely captures human data and outperforms other models. We argued for a simpler 
model, the IBL model, which was able to fit the data as well as RELACS (Lebiere et al., 
2007).

The IBL model’s development took an important turn when it was submitted to the 
Technion Prediction Tournament (TPT; Erev et al., 2010), a modeling competition that 
involved fitting and prediction phases in which the model authors were given a dataset to 
fit their models to and were evaluated in a novel dataset. The IBL model was developed 
independently and outside of ACT-R, and its mechanisms were isolated from all other 
ACT-R mechanisms (see Gonzalez, Dutt, & Lebiere, 2013, for a validation of this model 
within ACT-R and outside of ACT-R). Although this model did not win the TPT, its 
transparency, simplicity, and flexibility outside of ACT-R have been advantageous to 
recent theoretical developments. The model predicts performance better than the winner 
models of the TPT (Gonzalez & Dutt, 2011; Lejarraga et al., 2012) and predicts 
performance in a variety of repeated binary-choice tasks, probability-learning tasks, and 
dynamic-choice tasks across the multiple paradigms of decisions from experience and at 
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the individual and team levels (Gonzalez & Dutt, 2011; Gonzalez, Dutt, & Lejarraga, 2011;
Lejarraga et al., 2012). The discussions from this point on refer to this particular IBL 
model for repeated binary choice, which is explained in detail next.

The IBL Model of Repeated Binary Choice

Instances in a model of decision from experience paradigms (e.g., that shown in Figure 

13.1) have a much simpler representation compared to instances in Cog-IBLT or in other 
IBL models. The instance structure is simple because the task structure is also simple. 
Each instance consists of a label that identifies a decision option in the task and the 
outcome obtained. For example, (Left, $4) is an instance in which the decision was to 
click the button on the left side, and the outcome obtained was $4. The details of this IBL 
model and its relevance were fully explained in Gonzalez and Dutt (2011), but its 
main aspects are summarized here.

The IBL model of repeated binary choice (“IBL model” hereafter) assumes that choices 
from experience are based on either repetition of past choices (i.e., “inertia”) or on the 
aggregation of past experiences (i.e., “instances”) of payoffs in memory that have been 
observed as a result of past choices (i.e., “blending”). At trial t = 1, the model starts with 
a random choice between the two options. Then, in each trial t > 1, the model first applies 
a probabilistic rule (based on a free parameter called pInertia) to determine whether or 
not to repeat its choice from the previous trial. If this probabilistic rule fails, then inertia 
does not determine the choice, and the model chooses the option with the highest 
blended value. An option’s blended value is a weighted average of all observed payoffs on 
that option in previous trials. These observed payoffs are stored as instances in memory 
and are weighted such that the payoffs observed more frequently and recently receive a 
greater weight compared to infrequent and distant payoffs. This weight is a function of 
the recency and frequency of the instances’ use, where the instance contains the 
observed payoffs. Formally, the model works as follows:

 (1)

For each trial t > 1,

   If the draw of a random value in the uniform distribution U (0, 1) < pInertia,

Then

   Repeat the choice as made in the previous trial

Else

   Select an option with the highest blended value as per Equation 2.

(p. 258) 
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The blended value V of option j is:

 (2)

where x  is the observed payoff in instance i for the option j, and p  is the probability of 
retrieving that instance for blending from memory (Gonzalez & Dutt, 2011; Lejarraga et 
al., 2012). Because the sampling paradigm involves a binary choice with two options, the 
values of j can be either 1 or 2 (i.e., right or left choice options). Thus, the blended value 
of an option j is the sum of all x  stored in instances in memory, weighted by their 
retrieval probability p . The n value is the number of different instances containing the 
observed payoffs of option j up to the last trial. For example, if by trial t = 2, option j
revealed 2 different payoffs stored in two instances, then n = 2 for option j. If the two 
observed payoffs on option j are the same in the previous two trials, then only one 
instance is created in memory and n = 1.

In any trial, the probability of retrieving an instance i containing a payoff observed for 
option j from memory is a function of that instance’s activation relative to the activation of 
all other instances that contain observed payoffs l occurring within the same option. This 
probability is given by:

 (3)

where l refers to the total number of payoffs observed for option j up to the last trial, and 

τ is a noise value defined as  (Lebiere, 1998). The σ variable is a free noise parameter 
expected to capture the imprecision of recalling instances from memory from one trial to 
the next.

The activation of each instance in memory depends on the activation mechanism 
originally proposed in the ACT-R architecture (Anderson & Lebiere, 1998). The IBL model 
uses a simplified version of that activation mechanism. In each trial t, activation A of an 
instance i is

 (4)

where d is a free decay parameter, and t  refers to previous trials when the payoff 
contained in the instance i was observed (if a payoff occurs for the first time in a trial, a 
new instance containing this payoff is created in memory). The summation will include a 
number of terms that coincides with the number of times that a payoff has been observed 
after it was created (the time of creation of the instance itself is the first timestamp). 
Therefore, an instance’s activation increases with the frequency of observing that payoff 
(i.e., by increasing the number of terms in the summation) and with the recency of 
observing that payoff (i.e., by small differences in (t – t )). The decay parameter d affects 

ij ij

ij

ij

i
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the activation of the instances directly because it captures the rate of forgetting. The 
higher the value of the d parameter, the faster the decay of instances’ activations in 
memory.

The γ  term is a random draw from a uniform distribution defined between 0 and 1, and 

 represents the Gaussian noise that is important for capturing variability 
in behavior from one trial to the next. The σ variable is the same noise parameter defined 
in Equation (3) above. A high σ implies greater noise in activation.

What the IBL Model Explains

The most recent developments of the IBL model are important given its simplicity and the 
broad predictions that it can make (e.g., Gonzalez & Dutt, 2011; Gonzalez et al., 2011; 
Lejarraga et al., 2012). Existing demonstrations from IBL models suggest the theory’s 
generality and not only its descriptive power, but also its explanatory one. That is, the 
theory not only describes the kind of constructs and processes used in dynamic decision 
making, but it also helps explain why decision making in dynamic tasks occurs in the way 
described and not in other ways.

Two comprehensive and important demonstrations of the IBL model’s robustness are the 
fitting and predicting of obtained results against a large and publicly available dataset, 
the TPT (Erev et al., 2010). TPT involved two types of experimental paradigms of 
decisions from experience—Sampling and Repeated choice—and all the problems in the 
TPT involved a choice between two options:

Safe: M with certainty

Risky: H with probability Ph; L otherwise (with probability 1−Ph)

A safe option offered a medium (M) payoff with certainty, and a risky option that offered a 
high (H) payoff with some probability (pH) and a low (L) payoff with the complementary 
probability. M, H, pH, and L were generated randomly, and a selection algorithm assured 
that the problems in each set differed in domain (positive, negative, and mixed payoffs) 
and probability (high, medium, and low pH).

The IBL model is able to predict the learning curves for most of the problems in the test 
set (see detailed tests in Lejarraga et al., 2012). The problems represent a large diversity 
of behavioral effects, and, in creating this diversity of problems, the TPT organizers (Erev 
et al., 2010) aimed at extending the traditional view of using counterexamples of 
particular behavioral effects by demonstrating the robustness of general learning effects. 
This demonstration and the additional ones found in Lejarraga et al. (2010) and in 

i
(p. 259) 
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Gonzalez and Dutt (2011) indicate the IBL model’s ability to capture these general 
learning effects, too. Gonzalez (2012) discusses other effects that this model is able to 
capture and some phenomena that pose a challenge for the model. For example, IBL 
models explain payoff variability effect, underweighting of rare events, loss rate effect, 
individual differences, probability matching, and adaptation to nonstationary 
environments. But, in their current form, they are unable to capture the pure risk 
aversion effect; more risk seeking in losses compared to in gains domains; and emotions, 
social, and noncognitive effects. As we discuss in the last section of this chapter, future 
research is expected to address these and many other challenges that IBL models face.

Naturalistic Decision Making
In contrast to the traditional open-loop view and to the closed-loop view of decision 
making presented earlier, naturalistic decision making (NDM) is a field concerned with 
studying decision making in the “wild,” in contexts where proficient decision makers 
draw conclusions from realistic cases and scenarios that are relevant to their experience 
and knowledge (Lipshitz, Klein, Orasanu, & Salas, 2001). Those who study naturalistic 
decision making are confronted with serious challenges. They often study large groups 
and real-life decision makers in complex decision situations. Real-world decision makers 
typically confront many uncertainties about the available options: they have inadequate 
information about their options, and they rarely know the likely costs and benefits or the 
value tradeoffs entailed. Although one could expect decision makers in the real world to 
have clear goals and to promote those goals with their decisions, the reality is that they 
are seldom rational, and, in fact, it is often hard to understand what constitutes rational 
choice under such conditions. Thus, these studies also have multiple limitations. Realistic 
studies demonstrate only particular examples of decision-making situations from which 
general predictions and inferences are hard to derive.

NDM is distinguishable from other views of decision making in two aspects: the research 
methods used (e.g., field observations rather than laboratory experimentation) and their 
focus on the study of experts in a particular context (e.g., firefighter professionals rather 
than university students). Methodologies used to gather information from experts are 
often based on observations and interviews, used in cognitive task analysis and in the 
detection of critical incidents or decisions (Lipshitz et al., 2001). These interviews 
and observations are conducted with people regarded as “experts” in a particular 
context. The most representative example of the NDM approach and findings is Gary 
Klein’s work (1998). Through interviews and observations, Klein presents a study of 
firefighters. As a result of these studies, Klein proposed a model of decision making 

(p. 260) 
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named recognition-primed decision making (RPD), which describes some of the processes 
involved in how experts make decisions in highly stressful and realistic conditions. This 
model includes the recognition of a situation as prototypical by the identification of 
relevant cues, the development of expectancies and suitable goals, and the identification 
of a typical course of action that can then be “played out” toward the future to be able to 
implement a course of action or generate further alternatives.

Although the NDM and the heuristics and biases traditions in decision-making research 
sharply contrast each other in their approaches and methods, leading researchers in both 
claim to have “failed to disagree” regarding the need to consider intuitive skill in every 
cognitive research effort (Kahneman & Klein, 2009; Kahneman, 2011). However, they also 
recognize that Daniel Kahneman “is still fascinated by persistent errors,” whereas Gary 
Klein “still recoils when biases are mentioned” (Kahneman & Klein, 2009, p. 525). We 
believe the DDM and closed-loop view of decision making presented in this chapter is one 
option pointing toward true reconciliation between these two extremes in decision-
making research.

Conclusion
The field of behavioral decision research is broad and expanding, and it has a long and 
interesting history. This chapter attempted to provide a broad view of different topics and 
traditions in decision-making research where cognitive science in particular has been of 
the essence. The topics reviewed may be incomplete, but readers are encouraged to 
investigate the sources of the different themes to obtain a deeper understanding. The 
cognitive science perspective presented in this chapter is focused on the individual 
decision maker, and it attempts to highlight the importance of a closed-loop view in which 
cognitive processes and learning are critical. Given my interests and background in 
dynamic decision making and cognitive models of learning, this chapter provides slightly 
more weight to these themes. However, I expect that, in the future, more attention will be 
paid to the individual’s decision-making processes and to learning from the individual to 
the group and society levels. I also expect increased emphasis in complex, dynamic, and 
realistic environments. These contexts challenge many of the assumptions of current 
cognitive theories. A summary of these future directions is presented next.
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Future Directions
I expect that, in the coming years, many questions and answers will emerge with respect 
to at least two aspects of decision making: decisions in dynamic environments and the 
connections from individual to small- and large-group decision making.

A lot of findings are accumulating with respect to simple, binary choice and monetary 
tasks, but I expect the current findings will expand to address more complex and dynamic 
decision situations. As the complexity of the tasks increases, so, too, will the need for 
additional cognitive mechanisms, such as those proposed by the ACT-R theory (Anderson 
& Lebiere, 1998) and those described in IBLT (Gonzalez et al., 2003). Complexity in 
dynamic tasks is defined not only by an increased number of options and more attributes, 
but also and most importantly by the interactions of these elements over time, a situation 
called dynamic complexity. Researchers have found that decision makers remain 
suboptimal even in the simplest dynamic system (with few options and attributes) after 
repeated practice, unlimited time, and performance incentives (Diehl & Sterman, 1995; 
Paich & Sterman, 1993; Sterman, 1989a, 1989b). Common causes include the multiple 
feedback processes, time delays, and nonlinearities involved in these systems and the 
“inability” to deal with such complexity (Cronin & Gonzalez, 2007; Cronin, Gonzalez, & 
Sterman, 2009). However, we need to understand and explain the underlying cognitive 
mechanisms leading to the learning difficulties in dynamic tasks (Gonzalez et al., 2003). 
The development of complex simulations for training purposes (e.g., for training the 
coordination of shipboard firefighting) opens up the possibility of bridging the gap 
separating laboratory studies of dynamic decision making from naturalistic studies of 
decision making.

Second, network science and complexity economics studies focus on the interactions 
among actors, decision makers, and their emergent social and economic phenomena, but 
they often oversimplify the cognitive aspects of the individuals involved. For example, to 
explain the complex dynamics seen in large economic systems like financial 
markets, researchers have often relied on agent-based models but rarely on cognitive
models. On the other hand, cognitive modelers often focus on explaining individual 
behavior, relying on detailed cognitive models/architectures that formalize invariant 
cognitive representations and mechanisms (ACT-R, Anderson & Lebiere, 1998; Laird, 
Newell, & Rosenbloom, 1987), but they rarely model the behavior of a group of 
individuals (see Reitter & Lebiere, 2012, and Gonzalez, Dutt, & Lejarraga, 2011, for some 
exceptions). I expect that future research will bridge this gap by investigating the impact 
of individual cognitive characteristics on large groups and societies.

(p. 261) 
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Many models of individual decisions from experience are incapable of representing 
human behavior in social contexts. For example, Erev and Roth (2001) noted that simple 
reinforcement learning models predicted the effect of experience in two-person games 
like the Iterated Prisoner’s Dilemma (IPD) only in situations where players could not 
punish or reciprocate. A simple model predicts a decrease in cooperation over time, even 
though most behavioral experiments demonstrate an increase in mutual cooperation due 
to the possibility of reciprocation (Rapoport & Chammah, 1965; Rapoport & Mowshowitz, 
1966). The IBL model appears to account for these reciprocity effects without the need 
for explicit and situation-specific rules (Gonzalez, Ben-Asher, Martin, & Dutt, 2015; 
Gonzalez et al., 2011). However, much work is needed to understand how the IBL model 
can be extended to account for effects at the levels of large groups and societies.

Acknowledgments
This chapter provides a broad overview of the cognitive perspective on decision making 
that I have built through years of research thanks to the support of a number of 
organizations including the Army Research Laboratory, the Office of Naval Research, the 
National Science Foundation, Defense Threat Reduction Agency, and the Army Research 
Office, among others; and thanks to my interactions with a number of doctoral students, 
postdoctoral fellows, and other research staff in the dynamic decision-making laboratory.

References

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Hillsdale, NJ: 
Lawrence Erlbaum.

Berry, D. C., & Broadbent, D. E. (1987). The combination of explicit and implicit learning 
processes in task control. Psychological Research, 49(1), 7–15.

Berry, D. C., & Broadbent, D. E. (1988). Interactive tasks and the implicit-explicit 
distinction. British Journal of Psychology, 79(2), 251–272.

Brehmer, B. (1980). In one word: Not from experience. Acta Psychologica, 45(1–3), 223–
241.

Brehmer, B. (1990). Strategies in real-time, dynamic decision making. In R. M. Hogarth 
(Ed.), Insights in decision making (pp. 262–279). Chicago: University of Chicago Press.

Brehmer, B. (1992). Dynamic decision making: Human control of complex systems. Acta 
Psychologica, 81(3), 211–241.



Decision-Making: A Cognitive Science Perspective

Page 22 of 27

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: Carnegie Mellon University; date: 08 April 2017

Busemeyer, J. R. (2002). Dynamic decision making. In N. J. Smelser & P. B. Baltes (Eds.), 
International encyclopedia of the social and behavioral sciences (Vol. 6, pp. 3903–3908). 
Oxford, UK: Elsevier Press.

Cronin, M., & Gonzalez, C. (2007). Understanding the building blocks of system 
dynamics. System Dynamics Review, 23(1), 1–17.

Cronin, M., Gonzalez, C., & Sterman, J. D. (2009). Why don’t well-educated adults 
understand accumulation? A challenge to researchers, educators and citizens. 
Organizational Behavior and Human Decision Processes, 108(1), 116–130.

Crozier, R., & Ranyard, R. (1997). Cognitive process models and explanations of decision 
making. In R. Ranyard, W. R. Crozier, & O. Svenson (Eds.), Decision making: Cognitive 
models and explanations (pp. 5–20). New York: Routledge.

Diehl, E., & Sterman, J. D. (1995). Effects of feedback complexity on dynamic decision 
making. Organizational Behavior and Human Decision Processes, 62(2), 198–215.

Dienes, Z., & Fahey, R. (1995). Role of specific instances in controlling a dynamic system. 
Journal of Experimental Psychology: Learning, Memory and Cognition, 21(4), 848–862.

Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind over machine: The power of human intuition 
and expertise in the era of the computer. New York: The Free Press.

Dutt, V., Yamaguchi, M., Gonzalez, C., & Proctor, R. W. (2009). An instance-based learning 
model of stimulus-response compatibility effects in mixed location-relevant and location-
irrelevant tasks. In A. Howes, D. Peebles, & R. Cooper (Eds.), Proceedings of the 9th 
International Conference on Cognitive Modeling—ICCM2009. Manchester, UK.

Edwards, W. (1962). Dynamic decision theory and probabilistic information processing. 
Human Factors, 4(2), 59–73.

Einhorn, H. J., & Hogarth, R. M. (1981). Behavioral decision theory: Processes of 
judgment and choice. Annual Review of Psychology, 32, 53–88.

Erev, I., & Barron, G. (2005). On adaptation, maximization, and reinforcement learning 
among cognitive strategies. Psychological Review, 112(4), 912–931.

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S., Hau, R., et al. (2010). A choice 
prediction competition for choices from experience and from description. Journal of 
Behavioral Decision Making, 23(1), 15–47.

Erev, I., & Roth, A. E. (2001). Simple reinforcement learning models and reciprocation in 
the Prisoner’s Dilemma game. In G. Gigerenzer & R. Selten (Eds.), Bounded rationality: 
The adaptive toolbox (pp. 215–231). Cambridge, MA: MIT Press.



Decision-Making: A Cognitive Science Perspective

Page 23 of 27

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: Carnegie Mellon University; date: 08 April 2017

Estes, W. K. (1964). Probability learning. In A. W. Melton (Ed.), Categories of human 
learning (pp. 182–189). New York: Academic Press.

Estes, W. K. (1976). The cognitive side of probability learning. Psychological Review, 
83(1), 37–64.

Flach, J. M., Hancock, P. A., Caird, J., & Vicente, K. J. (Eds.). (1995). Global perspectives 
on the ecology of human-machine systems (Vol. 1). Mahwah, NJ: Lawrence Erlbaum.

Gibson, F. P. (2000). Feedback delays: How can decision makers learn not to buy 
a new car every time the garage is empty?Organizational Behavior & Human Decision 
Processes, 83(1), 141–166.

Gibson, F. P., Fichman, M., & Plaut, D. C. (1997). Learning in dynamic decision tasks: 
Computational model and empirical evidence. Organizational Behavior and Human 
Decision Processes, 71(1), 1–35.

Gigerenzer, G., Hertwig, R., & Pachur, T. (2011). Heuristics: The foundation of adaptive 
behavior. New York: Oxford University Press.

Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart. New York: 
Oxford University Press.

Gilboa, I., & Schmeidler, D. (1995). Case-based decision theory. Quarterly Journal of 
Economics, 110(3), 605–639.

Gilboa, I., & Schmeidler, D. (2000). Case-based knowledge and induction. IEEE 
Transactions on Systems, Man, and Cybernetics-PART A: Systems and Humans, 30(2), 85–
95.

Goldstein, W. M., & Hogarth, R. M. (1997). Judgment and decision research: Some 
historical context. In W. M. Goldstein & R. M. Hogarth (Eds.), Research on judgment and 
decision making (pp. 3–65). New York: Cambridge University Press.

Gonzalez, C. (2004). Learning to make decisions in dynamic environments: Effects of time 
constraints and cognitive abilities. Human Factors, 46(3), 449–460.

Gonzalez, C. (2005a). The relationship between task workload and cognitive abilities in 
dynamic decision making. Human Factors, 47(1), 92–101.

Gonzalez, C. (2005b). Decision support for real-time dynamic decision making tasks. 
Organizational Behavior & Human Decision Processes, 96(2), 142–154.

(p. 262) 



Decision-Making: A Cognitive Science Perspective

Page 24 of 27

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: Carnegie Mellon University; date: 08 April 2017

Gonzalez, C. (2012). Training decisions from experience with decision making games. In 
P. Durlach & A. M. Lesgold (Eds.), Adaptive technologies for training and education (pp. 
167–178). New York: Cambridge University Press.

Gonzalez, C., Ben-Asher, N., Martin, J. & Dutt, V. (2015). A Cognitive Model of Dynamic 
Cooperation with Varied Interdependency Information. Cognitive Science, 39, 457–495.

Gonzalez, C., Best, B. J., Healy, A. F., Kole, J. A., & Bourne, L. E., Jr. (2011). A cognitive 
modeling account of simultaneous learning and fatigue effects. Journal of Cognitive 
Systems Research, 12(1), 19–32.

Gonzalez, C., & Dutt, V. (2010). Instance-based learning models of training. Proceedings 
of the Human Factors and Ergonomics Society Annual Meeting, 54(27), 2319–2323.

Gonzalez, C., & Dutt, V. (2011). Instance-based learning: Integrating decisions from 
experience in sampling and repeated choice paradigms. Psychological Review, 118(4), 
523–551.

Gonzalez, C., Dutt, V., & Lebiere, C. (2013). Validating Instance-Based Learning 
Mechanisms Outside of ACT-R. Journal of Computational Science, 4, pp. 262–268. DOI 
information: 10.1016/j.jocs.2011.12.001.

Gonzalez, C., Dutt, V., & Lejarraga, T. (2011). A loser can be a winner: Comparison of two 
instance-based learning models in a market entry competition. Games, 2(1), 136–162.

Gonzalez, C., & Lebiere, C. (2005). Instance-based cognitive models of decision making. 
In D. Zizzo & A. Courakis (Eds.), Transfer of knowledge in economic decision-making (pp. 
148–165). New York: Macmillan (Palgrave Macmillan).

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-based learning in dynamic 
decision making. Cognitive Science, 27(4), 591–635.

Gonzalez, C., Thomas, R. P., & Vanyukov, P. (2005). The relationships between cognitive 
ability and dynamic decision making. Intelligence, 33(2), 169–186.

Griffin, D. W., Gonzalez, R., Koehler, D. J., & Gilovich, T. (2012). Judgmental heuristics: A 
historical overview. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford handbook of 
thinking and reasoning (pp. 322–345). New York: Oxford University Press.

Hastie, R. (2001). Problems for judgment and decision making. Annual Review of 
Psychology, 52, 653–683.

Hertwig, R. (2012). Tapping into the wisdom of the crowd—with confidence. Science, 336, 
303–304.



Decision-Making: A Cognitive Science Perspective

Page 25 of 27

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: Carnegie Mellon University; date: 08 April 2017

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the 
effect of rare events in risky choice. Psychological Science, 15(8), 534–539.

Hertwig, R., & Erev, I. (2009). The description-experience gap in risky choice. Trends in 
Cognitive Sciences, 13(12), 517–523.

Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux.

Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A failure to disagree.
American Psychologist, 64(6), 515–526.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. 
Econometrica, 47(2), 263–291.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics 
and biases. Cambridge: Cambridge University Press.

Kerstholt, J. H., & Raaijmakers, J. G. W. (1997). Decision making in dynamic task 
environments. In R. Ranyard, W. R. Crozier, & O. Svenson (Eds.), Decision making: 
Cognitive models and explanations (pp. 205–217). London: Routledge.

Klein, G. A. (1998). Sources of power: How people make decisions. Cambridge, MA: MIT 
Press.

Klein, G. A., Orasanu, J., Calderwood, R., & Zsambok, C. E. (Eds.). (1993). Decision 
making in action: Models and methods. Norwood, NJ: Ablex.

Kurtz, K. J., Miao, C., & Gentner, D. (2001). Learning by analogical bootstrapping. Journal 
of Learning Sciences, 10(4), 417–446.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general 
intelligence. Artificial Intelligence, 33(1), 1–64.

Lebiere, C. (1998). The dynamics of cognition: An ACT-R model of cognitive arithmetic
(Doctoral dissertation). Retrieved from http://reports-archive.adm.cs.cmu.edu/. 
(Technical Report CMU-CS-98-186)

Lebiere, C., Gonzalez, C., & Martin, M. (2007). Instance-based decision making model of 
repeated binary choice. In R. L. Lewis, T. A. Polk, & J. E. Laird (Eds.), Proceedings of the 
8th International Conference on Cognitive Modeling (pp. 67–72). Oxford, UK: Psychology 
Press.

Lee, W. (1971). Decision theory and human behavior. Oxford, UK: John Wiley & Sons.



Decision-Making: A Cognitive Science Perspective

Page 26 of 27

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: Carnegie Mellon University; date: 08 April 2017

Lejarraga, T. (2010). When experience is better than description: Time delays and 
complexity. Journal of Behavioral Decision Making, 23(1), 100–116.

Lejarraga, T., Dutt, V., & Gonzalez, C. (2012). Instance-based learning: A general model of 
repeated binary choice. Journal of Behavioral Decision Making, 25(2), 143–153.

Lipshitz, R., Klein, G., Orasanu, J., & Salas, E. (2001). Focus article: Taking stock 
of naturalistic decision making. Journal of Behavioral Decision Making, 14(5), 331–352.

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 
95(4), 492–527.

Martin, M. K., Gonzalez, C., & Lebiere, C. (2004). Learning to make decisions in dynamic 
environments: ACT-R plays the beer game. In M. C. Lovett, C. D. Schunn, C. Lebiere, & P. 
Munro (Eds.), Proceedings of the Sixth International Conference on Cognitive Modeling
(Vol. 420, pp. 178–183). Pittsburgh, PA: Lawrence Erlbaum.

Medin, D. L., Goldstone, R. L., & Markman, A. B. (1995). Comparison and choice: 
Relations between similarity processing and decision processing. Psychonomic Bulletin 
and Review, 2(1), 1–19.

Paich, M., & Sterman, J. D. (1993). Boom, bust and failures to learn in experimental 
markets. Management Science, 39(12), 1439–1458.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. New 
York: Cambridge University Press.

Pew, R. W., & Baron, S. (1978). The components of an information processing theory of 
skilled performance based on optimal control perspective. In G. E. Stelmach (Ed.), 
Information processing in motor control and learning (pp. 71–78). New York: Academic 
Press.

Pew, R. W., & Mavor, A. S. (1998). Modeling human and organizational behavior. 
Washington, DC: National City Press.

Rapoport, A., & Chammah, A. M. (1965). Prisoner’s dilemma: A study in conflict and 
cooperation. Ann Arbor: University of Michigan Press.

Rapoport, A., & Mowshowitz, A. (1966). Experimental studies of stochastic models for the 
Prisoner’s dilemma. System Research and Behavioral Science, 11(6), 444–458.

Reitter, D., & Lebiere, C. (2012). Social cognition: Memory decay and adaptive 
information filtering for robust information maintenance. In Proceedings of the Twenty-
Sixth Conference on Artificial Intelligence (pp. 242–248). Toronto, Canada: AAAI.

(p. 263) 



Decision-Making: A Cognitive Science Perspective

Page 27 of 27

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: Carnegie Mellon University; date: 08 April 2017

Shanks, D. R., Tunney, R. J., & McCarthy, J. D. (2002). A re-examination of probability 
matching and rational choice. Journal of Behavioral Decision Making, 15(3), 233–250.

Simon, H. A. (1955). A behavioral model of rational choice. Quarterly Journal of 
Economics, 69(1), 99–118.

Simon, H. A. (1957). Models of man: Social and rational. New York: Wiley.

Sterman, J. D. (1989a). Misperceptions of feedback in dynamic decision making. 
Organizational Behavior and Human Decision Processes, 43(3), 301–335.

Sterman, J. D. (1989b). Modeling managerial behavior: Misperceptions of feedback in a 
dynamic decision making experiment. Management Science, 35(3), 321–339.

Sterman, J. D. (1994). Learning in and about complex systems. System Dynamics Review, 
10(2–3), 291–330.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. 
Science, 185(4157), 1124–1131.

Wickens, C. D., & Kramer, A. (1985). Engineering psychology. Annual Review of 
Psychology, 36, 307–348.

Zsambok, C. E., & Klein, G. A. (Eds.). (1997). Naturalistic decision making. Mahwah, NJ: 
Lawrence Erlbaum.

Cleotilde Gonzalez

Cleotilde Gonzalez, Dynamic Decision Making Laboratory, Social and Decision 
Sciences Department, Carnegie Mellon University

(p. 264) 


