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Abstract: This research studied the strategies that players use in sequential adversarial games. We
took the Rock-Paper-Scissors (RPS) game as an example and ran players in two experiments. The
first experiment involved two humans, who played the RPS together for 100 times. Importantly,
our payoff design in the RPS allowed us to differentiate between participants who used a random
strategy from those who used a Nash strategy. We found that participants did not play in agreement
with the Nash strategy, but rather, their behavior was closer to random. Moreover, the analyses of the
participants’ sequential actions indicated heterogeneous cycle-based behaviors: some participants’
actions were independent of their past outcomes, some followed a well-known win-stay/lose-change
strategy, and others exhibited the win-change/lose-stay behavior. To understand the sequential
patterns of outcome-dependent actions, we designed probabilistic computer algorithms involving
specific change actions (i.e., to downgrade or upgrade according to the immediate past outcome): the
Win-Downgrade/Lose-Stay (WDLS) or Win-Stay/Lose-Upgrade (WSLU) strategies. Experiment 2
used these strategies against a human player. Our findings show that participants followed a win-stay
strategy against the WDLS algorithm and a lose-change strategy against the WSLU algorithm, while
they had difficulty in using an upgrade/downgrade direction, suggesting humans’ limited ability
to detect and counter the actions of the algorithm. Taken together, our two experiments showed a
large diversity of sequential strategies, where the win-stay/lose-change strategy did not describe the
majority of human players’ dynamic behaviors in this adversarial situation.

Keywords: rock-paper-scissors; win-stay/lose-change; theory of mind

1. Introduction

Almost everyone has settled disputes by playing a simple game called Rock-Paper-
Scissors (RPS). The rule for winning a one-shot play of this game is simple: rock crushes
scissors; scissors cuts paper; and paper covers rock. In addition to being a fun game to
resolve disagreements, RPS is also used by game theorists and psychologists to study
competitive behavior strategies in situations such as security, terrorism, and war [1].
Because rock can beat paper, but, at the same time, rock can be beaten by scissors, none
of the selections (R, P, or S) is absolutely better than the other two. This feature makes
RPS a unique research paradigm to study sequential adversarial strategies in repeated
interactions.

Although the optimal strategy in this game is to play purely randomly, it is well known
that humans have difficulty generating random sequences of actions (e.g., [2]). Instead,
humans’ strategies have been categorized from a number of different perspectives (see [3],
for a recent review). Some research has focused on a frequency-based strategy (e.g., [4]), i.e.,
the (over)play of one selection (R, P, or S), while other research has focused on sequential
actions based on memories of past actions and outcomes (cycle-based and outcome-based
strategies). These strategies include the “Win-Stay/Lose-Change” (WSLC) strategy, i.e.,
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keep the same selection that resulted in a win in the previous trial and switch when the
previous selection resulted in a loss (e.g., [5–7]). Furthermore, if players are willing to
invest more cognitive resources to predict and even think “one-step-ahead”, players could
collect contenders’ historical choice information (e.g., [8,9]) and utilize recursive thinking
strategies (e.g., [10]). Together, players’ behavior might also reveal sequential dependence
patterns that are related to their contenders’ behavior.

To comprehensively explore the strategies that players use in sequential adversarial
games, we designed two experiments using the RPS game. In the first experiment, two
human participants played the RPS repeatedly for 100 trials, using a novel payoff matrix
to distinguish between playing randomly or in agreement with the Nash strategy and to
study the adherence to WSLC strategy. A second experiment was designed to control for
the strategy followed by one of the players by pairing a human with a bot that would use
different algorithms. This experiment will help elucidate the conditions when strategies
such as WSLC (or the reversed “win-change/lose-stay”) strategy is used.

1.1. Literature Review

The literature indicates that players in the RPS game are consistent with the Nash
strategy, at least some of the time (e.g., [9]). However, this literature has frequently used
a payoff matrix that cannot distinguish between Nash and random play, and strategies
other than random have often been reported (e.g., [4]). Research also demonstrates that
players have a preference for repeating specific sequential patterns. For example, Eyler et
al. [4] noted that players tended to repeat choices consecutively (e.g., rock-rock-rock) or to
cycle in a sequence (e.g., rock-paper-scissors). This “cycling” behavior includes attempts
to “upgrade” (i.e., each choice beat the previous one such as rock-paper-scissors) or to
downgrade (i.e., each choice was beaten by the previous one such as scissors-paper-rock)
their choices [6]. Importantly, results also indicate that players had a weak tendency to
stay with the previous selection following a win and to switch the selection following a
loss. Dyson et al. concluded that this strategy reflects the classic behavior principle that
reinforced responses are more likely to be used again (“win-stay”), whereas non-reinforced
responses are less likely to be picked immediately after (“lose-change”). This WSLC strategy
in RPS has been observed by others as well (e.g., [5]). Forder and Dyson [7] argued that
humans follow a WSLC strategy, but that “win-stay” relies more on System 2 (e.g., rational
and strategic planning) processes, while “lose-change” relies on System 1 (intuitive and
impulsive) processes (cf. [11]).

It is important to highlight that most research have employed experimental designs in
which the players were asked to play against a random computer algorithm (i.e., also a
Nash Equilibrium strategy) (e.g., [6,7]). These designs make it less probable that players
will win. Alternatively, if the opponent is not able to play according to the Nash Equilibrium
strategy, there must be a combination of actions to be exploited with which the other player
would win. Under this nonrandom behavior assumption, a winning strategy would require
that a player predict the opponent’s choices and to counteract them. To determine what
types of information players use in predicting their opponents’ behavior, West and Lebiere
[8] proposed a neural network model with inputs for the opponents’ last two moves. The
model outputs were thus determined by cumulatively activated connections from the input
nodes to the output nodes based on the opponent’s historical choices (see also [12], as
another model example). West and Lebiere demonstrated that the models produced highly
similar results to the behavior exhibited by human subjects, suggesting that players attend
to the opponent’s last two actions. Moreover, the players are also sensitive to game payoffs,
which can be modeled with associated play outcomes [13].

In a more applied scenario, Batzilis et al. [9] analyzed players’ actions from a large
online RPS game dataset. They reported that players strategically used the information
on their opponents’ previous play. As a result, players with more experience used infor-
mation about their opponents more effectively than less-experienced players and, thus,
were more likely to win. Cook et al. [14] observed another possibility of knowing the
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opponents’ throws—players tended to imitate their opponents. They found a higher fre-
quency of draws when one player could see the other, compared to when both players
were blindfolded.

The studies discussed above provide some evidence that people are capable of predict-
ing the opponent’s selection and acting to counter such predictions. This predictive ability
means that a player’s own strategy is also exposed to the opponent, and thus the player can
also be “predicted”. Imagine that Player 2 is temporarily choosing paper more often. Player
1 could choose scissors as a result, but Player 1 would also expect that Player 2 would
know that Player 1 is expected to choose scissors, and consequently Player 2 chooses rock
more often. Such recursive thinking and assumptions on knowing what Player 2 knows
about Player 1 are known in psychology as “theory of mind” (ToM) (cf. [15]). Generally
speaking, ToM refers to the ability to infer and interpret the beliefs, desires, and intentions
of others [16]. ToM is known to be an essential component of human learning of social
phenomena, including the acquisition of social norms and social beliefs [17]. For example,
predicting that the opponent Player 2 will select rock can lead Player 1 to choose paper,
which is named as the zero-order ToM. In addition, Player 1 can assume that Player 2 can
also deduce that Player 1 would play paper (since Player 1 knows that Player 2 will play
rock), thus Player 2 might switch to paper instead. In this scenario, Player 1’s assumptions
about Player 2’s knowledge about Player 1 could make Player 1 choose scissors instead
(i.e., first-order ToM). De Weerd et al. [10] implemented computational agents that use
simulated ToM play the RPS game and found that first-order and second-order agents
outperformed agents of the lower order of ToM. Although the results are based only on
computer simulations, it suggests that players who consider others’ intentions would have
a distinct advantage in the RPS game.

1.2. Current Study

The current study provides the following contributions. As previous noted, past
research that focused on players’ aggregated frequency strategy observed deviations from
the Nash Equilibrium strategies among players. However, playing randomly implies a
33% of each action (R, P, and S) is also the optimal Nash Equilibrium strategy. Thus, it is
not possible to know whether participants deviate from Nash or deviate from the random
behavior given that random and Nash strategies are confounded in the payoff matrix. In
the current research, we clarify this behavior by using a novel payoff matrix that allows
us to make such distinctions. Second, past research examining sequential choices has
shown that players play in agreement with the WSLC, or other types of complex strategical
patterns, to exploit the opponents’ actions. In this research, we look at the circumstances in
which these WSLC, and other sequential patterns, reflect human strategies.

In Experiment 1, we developed a two-player online RPS game and focused on whether
we would observe the Nash Equilibrium, random, or a generalized WSLC strategy among
players. Based on our results from Experiment 1, in Experiment 2, we tested the ability of
human players to predict the opponent’s actions by pairing them with strategic computer
probabilistic opponents. We hypothesized that players would display various strategies in
the RPS game, and that their selected strategies would be based on their understanding of
opponents’ behavior.

2. Experiment 1
2.1. Methods
2.1.1. Participants

A total of 111 participants from Amazon Mechanic Turk (MTurk) signed up for a
study about the RPS game. Among these players, 96 of them (Age: [18, 64], N f emale = 36))
completed the study. It took 14 min on average to finish the task. Participants received
a payment of 50 cents and a bonus based on their cumulative points (2 points equal to 1
cent). Participants who finished the study earned an average payment of $1.5 (SD = 0.08),
participants who did not finish received only 50 cents. Three dyads were excluded from
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data analysis because at least one player chose the same consecutive action in over 50% of
the trials. This left 45 dyads (90 participants) in the final data analysis.

2.1.2. Design

To be able to distinguish players’ use of a random strategy versus a Nash strategy, we
designed a novel payoff matrix (Table 1), in which the Nash Equilibrium is a mix of 1/4,
1/2, 1/4 for rock, paper, and scissors, respectively (see [13], for a similar payoff design).
The random strategy used 1/3 for each action.

Table 1. The payoff (Player 1, Player 2) matrix table.

Player 1
Rock Paper Scissor

Player 2
Rock (2,2) (1,3) (4,0)
Paper (3,1) (2,2) (1,3)
Scissor (0,4) (3,1) (2,2)

Let i = {pR1, pP1, pS1} be the probabilities with which Player 1 chooses rock, paper,
and scissors and j = {pR2, pP2, pS2} be the probabilities for Player 2. In the Nash Equilib-
rium play, Player 1’s payoff ERock = EPaper = EScissors for Player 2’s combination of selec-
tions. Thus, in the payoff matrix design in Table 1, the expected payoff for Player 1 for play-
ing rock ERock = 2× pR2 + 1× pP2 + 4× pS2 equals the expected payoff of playing paper
EPaper = 3× pR2 + 2× pP2 + 1× pS2 and playing scissor EScissor = 0× pR2 + 3× pP2 +
2× pS2 when Player 2 chooses with probabilities j = {pR2 = 1/4, pP2 = 1/2, pS2 = 1/4}.
Because the payoff matrix is symmetrical, Player 1 should also have the same choice proba-
bility so that Player 2’s expected value for choosing each action is the same as well, which
gives the solution for the Nash Equilibrium.

To avoid the effect of real losses [7], we did not include negative points in this game.
A tie corresponded to 2 points for each player, a loss would be 1 point (Rock vs. Paper
or Paper vs. Scissors) or 0 points (Rock vs. Scissors), and a win corresponded to 3 points
(Paper vs. Rock or Scissors vs. Paper) or 4 points (Rock vs. Scissors).

2.1.3. Procedure

Participants consented to the study protocol approved by the Institutional Review
Board at Carnegie Mellon University. Next, participants completed a brief demographic
survey about their age, gender, residency, and education level.

All players received the same general task instructions for the RPS game. They were
informed that they would be matched with an anonymous MTurker to play the RPS game.
Participants were not given any specific information about the player they were matched
with. Participants entered a “waiting room” until they could be paired into dyads. After a
match was successful, pairs played the RPS for 100 trials.

In each trial, participants were asked to choose one of three buttons with the pictures
of a hand illustrating rock, paper, or scissors. A player could not change the selection after
clicking. Once both players made a choice, they were notified of the points obtained from
the outcome, as well as their total accumulated points. Participants were not informed
of the payoff matrix ahead of time, but rather they “discovered” the outcomes through
immediate feedback of the payoffs (Table 1). After receiving feedback, participants then
clicked on the “Next” button to proceed. Upon completion of 100 trials, participants
completed a short, general survey about their strategies during the game.

2.2. Results

Our dependent variable was the proportion of choices of each type (rock, paper, and
scissors) made by each player over the 100 trials, and the cycling behaviors (upgrade,
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downgrade, and stay; Figure 1) after each choice. We used JASP [18] for a repeated ANOVA
analysis (Greenhouse–Geisser Correction for Sphericity where appropriate).

Following Dyson [3], we described players’ strategies from two different perspectives.
We first calculated the proportion of choices to investigate whether players’ behavior is in
agreement with the Nash Equilibrium or the random strategy. Second, we explored the
serial dependency of actions, and specifically focused on whether these actions were in
agreement with the WSLC patterns. WSLC is an outcome-based strategy: players choose
to stay with the same action if winning and to switch actions if losing. For example, if
Player 1 wins with paper against a rock, Player 1 may choose paper again (win-stay). If
Player 2 decides to self-downgrade to scissors, this is a lose-change strategy. The choice of
Player 1 and Player 2 is also an other-upgrade strategy, i.e., Player 1 from rock to paper
and Player 2 from paper to scissors. In this way, the decision to win-stay (by Player 1)
and lose-downgrade (by Player 2) is not differentiated from the cycle-based other-upgrade
strategy 1. Without making strict assumptions on whether participants act based on the
opponent’s choice (cycle-based strategy), or whether they choose to focus on their wins
and loses (outcome-based), our Experiment 1 sorted players’ actions into two groups:
outcome-based and non-outcome-based.

Rock

Scissors Paper

upgrade

Rock

Scissors Paper

downgrade

Figure 1. The coded cyclic strategies of upgrade (left) and downgrade (right) that represent consecutive
choices. Upgrade refers to the subsequent t + 1th choice that beats the previous tth choice (e.g.,
rock-paper) and downgrade refers to the subsequent t + 1th choice that is beaten by the previous tth
choice (e.g., paper-rock), based on each player’s self choice.

2.2.1. Random or Nash Strategies

Figure 2 presents the averaged proportion of R, P, and S choices for all participants.
We observed that players appear to choose randomly, rather than in agreement with the
Nash strategy (50%, 25%, and 25% for choosing rock, paper, and scissors). A one-way
ANOVA indicated that there was no statistical difference between the proportions of the
three types of actions (F(2, 267) = 1.88, p = 0.16), suggesting that the participant’s behavior
was consistent with the random strategy.
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Figure 2. The proportion of choices selected by each player. The dot in the center represents the
mean with the line represents one ± standard deviation.

1 We refer readers to the review by Dyson [3] for a more detailed explanation of the isomorphism between the cyclic strategies and the self-outcome
strategies. Generally, the win-downgrade/lose-upgrade strategy can be viewed as the other-stay strategy and the win-upgrade/lose-stay can be
viewed as the other-downgrade strategy.



Games 2021, 12, 52 6 of 16

2.2.2. Win-Stay/Lose-Change

To analyze the WSLC strategy, we first determined whether participants’ actions were
related to the outcomes. We performed a chi-square test for players’ cycling actions by
the outcomes. The null hypothesis for a chi-square test is that the outcomes and their
subsequent actions are independent—the proportions of selected actions are the same
regardless of the outcome in the previous trial. This independence would suggest that
participants’ selections are not outcome-based. The chi-square test results reveal that, at the
individual level, 36 out of 90 participants violated the independence hypothesis, indicating
that their actions were related to the previous trial’s outcome. For the other 54 participants,
we found that their actions are not related to the outcomes in the previous trial, indicating
that their actions are not outcome-based.

To further describe the individual strategy variability, we use hierarchical clustering
on the outcome-based group and non-outcome-based group. For the outcome-based group,
we explored whether there are change/stay patterns embedded in the average group
behavior such as WSLC. Additionally, we also checked if participants who do not act
based on outcomes have a preference for a specific cycling action instead, e.g., keep using
“upgrading” or “downgrading” strategies.

2.2.3. Cluster Analysis

Cluster analysis allows us to systematically capture the similarities and dissimilarities
in strategies adopted by individual participants. We employed a basic Ward agglomerate
clustering method. We present the results of the cluster analysis as dendrograms, in which
each data point is a cluster in the first level initially. Then, for each step, the clusters
are merged based on their proximity to larger dyads of clusters. The merging procedure
ends when all clusters form a last single cluster. In the current analysis, we check the
last one or two steps of merging and cut the dendrogram into three representative levels.
This provides an informative description and visualization of the underlying clustering
structures of players’ behavior. We refer readers who are interested in knowing more about
hierarchical clustering to the related literature (e.g., [19,20]).

Figure 3 shows the proportion of change/stay strategies for participants in the “inde-
pendence” group, i.e., their acts were not based on previous outcomes. Each dot represents
a participant’s actions averaged across different outcomes. The colors represent groups
categorized by the cluster analysis based on players’ action proximity. Instead of strictly
following an upgrade or downgrade strategy (e.g., paper-rock-scissor or scissor-rock-paper;
[6]), our cluster analysis indicated that there was no absolute tendency in the group. Many
participants were located in the middle of the ternary plot who did not have a clear prefer-
ence (Yellow cluster) while others chose to stay more (Blue cluster) or less (Grey cluster).
We infer that, although participants chose strategies while ignoring the associated outcome,
they still adopted a mix of change/stay strategies.
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Figure 3. The ternary figure describes participants’ proportion of different strategies in the non
outcome-based group. Each color represents a cluster group based on players’ action proximity. S, stay;
D, downgrade; U upgrade.

We explored the exploratory descriptive information for the outcome-based group
separately by the type of outcome (win, tie, or lose; Figure 4). Participants seemed to have
a specific strategy following a win and a loss. Participants in the Blue cluster and part of
the Grey cluster seem to follow a win-stay strategy more than switching strategies. The
other group (i.e., Yellow cluster and some in the Grey cluster) resembled win-change that
may either win-upgrade or win-downgrade. In addition, participants’ behavior resembled
lose-stay strategies (i.e., Yellow clusters) and lose-change strategies (i.e., Blue and Yellow
clusters). On the other hand, there is no clear grouped strategy for participants following a
tie—most participants seem to adopt a mix of change/stay strategies. Together, the descrip-
tive data analysis of hierarchical clustering suggested a large heterogeneity in individuals’
strategies. Participants who followed a win-stay strategy often (although not always)
demonstrate a lose-change strategy. Similarly, those who follow a win-change strategy are
often those who also follow a lose-stay strategy. These exploratory results suggest two
prominent strategies followed by individuals: a “win-stay/lose-change” strategy and a
“win-change/lose-stay” strategy.
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Figure 4. The ternary figure describes participants proportion of different strategies in the outcome-
based group separately by the outcome: win (left); tie (middle); and lose (right). Each color represents
a cluster group based on players’ action proximity. S, stay; D, downgrade; U, upgrade.
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2.2.4. Dyad-Level Payoffs

Our analyses indicated that only actions of about 1/3 of all participants were depen-
dent on the previously experienced outcome and fell into the outcome-based group while
about 2/3 acted independently. It is likely that, within each dyad, one player’s action
depended on the outcome, whereas the other player acted independently. Given such a mix
of behaviors within a dyad, it might be less meaningful to further analyze the dyad-level
strategy.

Nevertheless, we present data on the extent to which players may have exploited
(or were exploited by) their opponents. Figure 5 shows the distribution of the win count
differentials within a dyad and Figure 6 presents the resulting payoff difference. Many
of the dyads’ win count differences are centered around 10 points (M = 7.51, SD =
6.36, Median = 8.00), indicating the members were equally likely to win over 100 trials,
resulting a payoff difference centered around 20 points (M = 21.16, SD = 17.09, Median =
18.00). Given that few individuals within a pair seem to exploit their opponents, and
that individuals within a pair are largely equivalent in terms of win counts and payoff
differentials, we explore the dyad-level strategies more directly in Experiment 2.
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0 10 20
Win Count Differential
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un

t

Figure 5. Win differential: The distribution of the win count differentials within a dyad.
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Figure 6. Payoff differential: The distribution of the payoff differentials within a dyad.

2.3. Discussion

In Experiment 1, we collected data in an online two-player RPS game while employing
a payoff matrix that allowed the distinction between the Nash strategy and random strategy.
Our first observation was that participants’ behavior was close to the random strategy,
and it was not well represented by the Nash strategy. Additionally, individuals selected
paper, rock, or scissors, depending on their experienced outcomes (outcome-based group)
or independently from the outcomes (non-outcome-based group). Using the hierarchical
clustering analysis, we found that participants in the non-outcome-based group had no
distinctive change/stay preference, and participants in the outcome-based group seemed
to prefer two main strategies: Win-Stay, Lose-Change (WSLC) or Win-Change, Lose-Stay
(WCLS).

As discussed above in the Results Section, many strategies are simply redescriptions
of the same mechanics (cf. [3]), e.g., if players decide to upgrade based on the players’
selections, it is not differentiated from a WSLC strategy. Furthermore, the LC and WC
strategies do not say much about how participants change their behavior after they lose or
win. Players may focus on changing by upgrading or downgrading, and more concretely
they could make those decisions based on the opponents’ choices rather than their own.
Instead, there seemed to be a weak trend that players who choose WSLC strategy present
the win-stay/lose-downgrade behavior, and players who choose WCLS strategies follow
the win-upgrade/lose-stay pattern (Figure 4).

Therefore, in Experiment 1, we are only able to conclude that a majority of players’
behaviors appear to be consistent with the WSLC and WCLS patterns, but not whether
they are upgrading or downgrading when they decide to change, and not whether they are
making those changes based on the opponent’s actions.

In Experiment 2, we designed a RPS game to let human participants play with com-
puter algorithms that exhibit specific probabilistic outcome-based upgrade or downgrade
strategies. By introducing computer algorithms as RPS players, we aimed to analyze
within-dyad human behavior accordingly.

3. Experiment 2

As discussed in the Introduction, making assumptions of the opponents’ actions
involves “theory of mind” (ToM) ability. The RPS game is not only about predicting the
state of mind of the other player but also about using that information to avoid being
exploited. We suspect that only a subset of players’ behavior is similar to the WSLC
or WCLS strategies in Experiment 1 because players realize that such simple heuristic
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strategies would be exploited by their paired opponents (i.e., the paired opponent knows
what I know). If humans play with probabilistic computer opponents, we suspect that
such ToM reasoning would not be possible, and humans might exhibit the WSLC or WCLS
behavior more clearly. Additionally, if human players “believe” that computer opponents
play randomly, the heuristic strategy of WSLC makes it an easy way to randomize choices.

In a previous study, Eyler et al. [4] found that human players lost the RPS game more
often when playing with adaptive computer algorithms than when playing with humans.
However, they failed to further investigate the human strategy; as a result, it is unknown to
us whether players adopted different strategies when playing with the adaptive algorithm
compared to when playing with random opponents. The goal of Experiment 2 was to test
the interaction between human players and computer opponents—whether participants
can adapt their strategies based on the type of opponent they encounter. Specifically, based
on players who fall into the outcome-based group in Experiment 1, we designed two types
of nonrandom behaviors that computer opponents play: WSLC and WCLS.

When playing with a computer opponent, it would be possible to determine whether
the human player exploits the computer’s heuristic strategy. Figure 7 gives an illustration
of a trial in which the human plays rock (and loses) and the computer plays paper (and
wins). If the computer plays the heuristic strategy of “win-stay/lose-change”, then it would
choose paper again, and the best action for the human player is to choose to downgrade to
scissors (i.e., lose-downgrade). In this way, we can determine whether humans are able to
stay or to change (upgrade or downgrade) based on their learning of the computer strategy.

In Experiment 2, we tested whether participants were able to detect and exploit the
computer strategies. If humans’ behavior appears to emulate the WSLC strategy, then
we could conclude that the WSLC human behavior results from playing with computer
opponents. If humans adapt their strategies according to the computer strategy, then we
can conclude that humans actively exploit opponents in the RPS game and whether they
can be successful—at least when playing with computers.

3.1. Methods
3.1.1. Participants

A total of 343 participants signed up for the study using MTurk. Out of this total, 129
participants failed an attention check (explained below), and 18 participants did not finish
the task. A total of 196 participants (Age: [19, 72], NFemale = 73, NNot Revealing = 3) completed
the experiment in full, and they were included in the analyses. Participants received $1.5
as the base payment for completing the experiment. In addition, participants received a
bonus payment based on their performance (2 points equal to 1 cent), and they received an
average payoff of $2.61 (SD = 0.18). The average time to complete the study was 15 min.

3.1.2. Design

When playing with a computer opponent, it was possible to determine whether the
human player exploits the computer’s heuristic strategy. Figure 7 gives an illustration
of a trial in which the human plays rock (and loses) and the computer plays paper (and
wins). If the computer plays the heuristic strategy of “win-stay/lose-change”, then it would
choose paper again, and the best action for the human player is to choose to downgrade
to scissors. In this way, we can determine whether the human is following the best action
while learning the strategy of the computer opponent.
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Paper Paper
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Rock

Scissors

Scissors

Paper

Rock

Upgrade

Stay

Downgrade

Player Computer

(win) (lose)

Player Human

Figure 7. The example of change/stay strategy of Player Human against Player Computer that has a
preferable change/stay action: if the Player Computer uses a “win-stay” pattern, then the best action
for Player Human is “lose-downgrade”.

To further determine the type of “change” action (e.g., win-upgrade or win-downgrade)
that the algorithm performs, we included all the expected algorithmic reactions (Table 2),
assuming a human would want to beat the algorithm. The left two columns present the
case in which the computer wins (i.e., the human loses) and the right two columns present
the case that the computer loses (i.e., the human wins). Similarly, the top two rows present
the computer’s algorithm strategy of “win-stay/lose-change” and the bottom two rows
present the computer’s algorithm strategy of “win-change/lose-stay”. We describe above
that the best action for a “win-stay” opponent is to go with “lose-downgrade”. When the
computer loses, the human player simply needs to follow the action that the computer
chooses (Figure 7). The same applies to the “win-change/lose-stay” strategy (the bottom
two rows); the human player needs to stay if they win and change the strategy based on
computers’ actions.

Table 2. Best actions of human players to beat computer opponents that play stay/change strategies.

Player
Strategy

Computer Human Computer Human

Outcome Win Lose Lose Win

WSLC Stay Downgrade Upgrade Upgrade
Downgrade Downgrade

WCLS Upgrade Stay Stay StayDowngrade Upgrade
Note. WSLC, Win-Stay/Lose-Change; WCLS, Win-Change/Lose-Stay.

Summarizing Table 2, the best action for human players when playing against a
“win-stay/lose-downgrade” opponent is always to downgrade; the strategy for human
players against a “win-upgrade/lose-stay” opponent is always to stay. It is notable that
the two strategies also correspond to other-upgrade and other-downgrade strategies. To
examine whether participants are able to selectively choose the strategy based on opponents’
behavior and adopt the outcome-based behavior, we removed the computer strategies that
may result in consistent cycle-based strategies (i.e., always “downgrade” or “stay”). This
left us with two strategies for designing computer algorithms: “Win-Stay/Lose-Upgrade
(WSLU)” and “Win-Downgrade/Lose-Stay (WDLS)” (i.e., representing “win-stay/lose-
change” and “win-change/lose-stay” strategies, respectively).

We designed probabilistic algorithms that would follow WSLU or WDLS strategies, as
shown in Table 3. The WSLU algorithm chooses to stay after a win and chooses to upgrade
from its previous action after a loss (with a probability of 0.8). The WDLS algorithm
chooses to downgrade from its previous action after a win and chooses to stay after a loss
(with a probability of 0.8). Each of the other actions after a win or loss are selected with a
probability of 0.1. After a tie, both algorithms choose to stay, upgrade, or downgrade with
equal probability (1/3). Given that the dominated strategy selection of change/stay, we
expect that players would secure the best actions depicted in Table 2.

Each algorithm started with a random selection (paper, rock, or scissors) in the first
trial. The following actions were determined by the probabilities associated with each
outcome, as shown Table 3.
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Table 3. Two algorithms used to play against human participants in the Experiment 2.

Algorithm Outcome
Strategy

Stay Upgrade Downgrade

(1) Win-Stay/Lose-Upgrade (WSLU)
Lose 0.1 0.8 0.1

Tie 0.33 0.33 0.33
Win 0.8 0.1 0.1

(2) Win-Downgrade/Lose-Stay (WDLS)
Lose 0.8 0.1 0.1

Tie 0.33 0.33 0.33
Win 0.1 0.1 0.8

3.2. Procedure

The procedure was the same as in Experiment 1 except that participants were matched
to an experimental algorithm instead of another MTurk worker. The instructions were
changed so that participants knew they would play the RPS game with a computer algo-
rithm. Participants were not given information regarding the exact behavior patterns of the
computer algorithm. Participants were randomly assigned to one of the two experimental
conditions. In addition, we inserted an attention check trial that was randomly located
between the first trial and the 20th trial. Participants were aware that there would be
attention check(s) but had no idea when the attention check would appear. The attention
check trial was the same as a regular trial except that they were asked to make the same
choice as their opponents made in the previous trial.

3.3. Results

Out of the total of 196 participants, 99 (Age range: [20, 72]; NFemale = 45, NNot Revealing = 1)
participated in WSLU condition and 97 participants (Age range: [18, 70]; NFemale = 28,
NNot Revealing = 2) in the WDLS condition.

We first investigated whether players were able to exploit computer opponents.
Figure 8 (left) shows the win count differentials between human players and computer
algorithms (WinHuman −WinComputer). Here, the positive win count refers to humans suc-
cessfully exploiting their assigned computer algorithm. The negative win count indicates
that computer exploited the human players. In both conditions, WSLU (M = 4.72, t(98) =
4.01, p < 0.001, d = 0.81) and WDLS (M = 19.10, t(96) = 7.89, p < 0.001, d = 1.60) human
players exploited their computer opponents. We also noted that human players in the
WDLS condition win more compared to those in the WSLU condition (t(139.01) = 5.34, p <
0.001, d = 0.54). Correspondingly, players in both WLDS (M = 69.26, t(96) = 7.79, p <
0.001, d = 1.58) and WSLU (M = 15.49, t(98) = 4.68, p < 0.001, d = 0.94) conditions
earned more points than their paired computer opponents (Payo f fHuman − Payo f fComputer;
Figure 8, right). In addition to the relative gains within each dyad, players in the WDLS
condition generally won more points than players in the WSLU condition (t(122.19) = 5.67,
p < 0.001, d = 0.57).
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Figure 8. The empirical distribution of win count differentials (left) and payoff count differentials
(right). The differentials are computed as performance difference between human players and
computer algorithms. The dash lines indicate the average differentials within each group.

Is the human players’ success due to their ability to detect and take advantage of the
computer strategy? We hypothesized that participants playing with the WSLU algorithm
would learn to upgrade when they win (win-upgrade) and to downgrade when they lose
(lose-downgrade), WULD. Participants who played with the WDLS algorithm would learn
the Win-Stay/Lose-Upgrade (WSLU) strategy.

Figure 9 describes the proportion of actions followed by different outcomes in the
WDLS and WSLU conditions. A repeated ANOVA indicated that there was a main effect
of strategy on proportions of choices (F(1.22, 234, 41) = 16.08, p < 0.001, η2

p = 0.08) and
an interaction between the strategy and condition (F(1.22, 234, 41 = 37.79, p < 0.001,
η2

p = 0.16). In addition, there was an interaction between the outcome and strategy
(F(2.91, 565.26) = 51.90, p < 0.001, η2

p = 0.21) and an interaction among the three main
effects (F(2.91, 565.26) = 6.05, p < 0.001, η2

p = 0.03). Since the sum of outcomes equals 1 in
both conditions, there is no main effect of outcome or the interaction between the outcome
and condition.

To further interpret the three-way interaction, separate analyses of strategies and out-
comes were conducted on WDLS and WSLU using a repeated ANOVA. In the WDLS condi-
tion, there was a main effect of strategy (F(1.08, 104.07) = 46.64, p < 0.001,
η2

p = 0.33) and an interaction with the outcome (F(4.49, 13.65) = 31.59, p < 0.001,
η2

p = 0.25). Players chose to stay more after a win compared to downgrade (t = 11.93,
p < 0.001) or upgrade (t = 12.55, p < 0.001). After a tie, the differences between stay
and downgrade (t = 5.67, p < 0.001) and stay and upgrade (t = 5.16, p < 0.001) were
also significant. The preference of choosing strategies after a loss is not significant. In
the WSLU condition, there was only an interaction between the strategy and outcome
(F(3.25, 318.10) = 25.21, p < 0.001, η2

p = 0.21): after a loss, players chose to stay compared
to downgrade (t = 7.07, p < 0.001) or upgrade (t = 5.80, p < 0.001).
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Figure 9. The proportion of each strategy following different outcomes in the WDLS and WSLU
conditions. Error bar represents one standard error.

3.4. Discussion

In Experiment 2, we designed two probabilistic computer algorithms that would
choose win-downgrade and lose-stay or win-stay and lose-upgrade to explore whether
players are able to employ outcome-based strategies to counteract their opponents. We
hypothesized that players would outperform their computer opponents by successfully
exploiting the patterns embedded in algorithms. Our results generally suggest that par-
ticipants did performed better than the computer algorithms, but not by following the
hypothesized strategies. Rather, we observed that players tended to keep the same choice
(i.e., stay) after a win in the WDLS condition. It is probably given that the algorithm stays
most after losing. In the WSLU condition, players were more likely to adopt the “lose-
change” strategy but were unable to oppose the computer’s action change (i.e., upgrade or
downgrade). Although we set computers to upgrade after losing (WSLU) or downgrade
after winning (WDLS) with a probability of 80%, players failed to act according to the
winning strategy.

Our results were in agreement with the argument by Dyson et al. [6] that reinforced
responses were more likely to be used again (win-stay in the WDLS condition) while
the non-reinforced responses were used less (lose-change in the WSLU condition). In
contrast to the findings of Eyler et al. [4] that computer algorithms won more trials against
the human player, humans in our study were more successful when playing against
nonrandom computer opponents, particularly in the WDLS condition. It is likely humans
master the win-stay strategy to counteract algorithms’ lose-stay behavior whereas in the
WSLU condition, algorithms’ upgrade and downgrade behaviors were more difficulty for
humans to exploit.

4. General Discussion

In the current research, we explored players’ sequential strategies in the RPS game
with a payoff matrix that distinguishes between the Nash Equilibrium strategy and the
random strategy. In Experiment 1, players were paired with another human player in an
online two-player RPS game. Our results indicate that participants did not follow the Nash
Equilibrium strategy. Instead, their behavior was similar to the random strategy. Moreover,
participants’ sequential actions indicated a heterogeneous cycle-based behavior. Some
participants’ actions were independent of the past outcome, whereas other participants’
actions depended on the outcome (outcome-based cycling)—win-stay, lose-change or win-
change, lose-stay. In Experiment 2, participants played with computer algorithms that
followed the probabilistic strategies win-stay/lose-upgrade and win-downgrade/lose-stay.
Our results suggest that participants chose simple and heuristic reactive strategies using
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the information of computer opponents’ actions to decide whether to stay sub-sequentially.
In the WDLS condition, players were likely to choose win-stay, and, in the WSLU condition,
players tended to lose-change. The pattern suggested that players were more sensitive
to the computer’s repeated actions (WS or LS) rather than a specific cycle direction (e.g.,
downgrade or upgrade).

Although we did not observe a conclusive WSLC strategy for players to follow in
Experiment 1, Experiment 2 suggested that the separation of the two (WS in WDLS and
LC in WSLU) is still more easily adopted than other outcome-based strategies. While we
expected players would detect computer algorithms’ update/downgrade patterns, we did
not find evidence suggesting that human players precisely master the cycle directions, e.g.,
lose-upgrade to counteract win-downgrade or win-upgrade to counteract lose-upgrade.
Therefore, our research suggests that opponents’ upgrade/downgrade patterns are hard
to follow. Instead, the WDLS and WSLU strategies can be simplified as self-repeat and
other-repeat strategies separated by outcomes. For the computer that performed the win-
downgrade strategy, winning with paper means that it is likely to choose rock next time.
Thus, the computer repeats human’s last action. The same applies to the “lose-upgrade”
computer algorithm: losing with rock means it is likely to choose paper next time, which is
the human’s last winning action. Believing that a computer opponent “tried to” repeat a
player’s previous choice (I think you think like me) or itself (stay) would also lead players
to beat algorithms. Our results indicate that players had difficulty to use their ToM abilities
to compete with others [21,22].

Due to a limited number of choices in the RPS game, it is hard for us to conclude that
paper follows from that player believing the opponent is going to play rock (zero-order
ToM) or from believing the opponent believes she would choose the scissors (first-order
ToM). Thus, we did not give too much emphasis on recursive strategies in designing
Experiment 2 and interpreting the results. As De Weerd et al. [10] also noted, there may be
a limit to the effectiveness of the application of higher orders of ToM; the low performance
of the third-order and fourth-order ToM may be caused by the special characteristic that
there are only three unique predictions of the opponent’s next action (see also [3]). For
future research that is interested in further discussing recursive strategies in adversarial
behavior (cf. [23]), we wish to point out that there are other research paradigms that can
be used to test recursive thinking directly (e.g., [24,25]). Those games involve multiple
choices, making it easier to directly understand whether the layers of recursive thinking are
involved. Future research can also investigate whether players’ recursive thinking ability
can be trained into their play in the RPS game.

5. Conclusions

Our research evaluated the behavior of human players against other human opponents
as well as computer probabilistic opponents in the RPS game. We found that, regardless of
playing with another human or an algorithm, participants did not play the optimal strategy.
In general, we did not observe a conclusive win-stay/lose-change strategy for players,
but, when humans played with an algorithm, we observed that the win-stay strategy was
common against the WDLS computer strategy, and lose-change was also common against
the WSLU computer strategy. This suggests that participants are capable of learning simple
strategies when these can result in a clear advantage against their opponent.
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