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Abstract

How do people use information from others to solve complex problems? Prior work has addressed

this question by placing people in social learning situations where the problems they were asked to solve

required varying degrees of exploration. This past work uncovered important interactions between groups’

connectivity and the problem’s complexity : the advantage of less connected networks over more connected

networks increased as exploration was increasingly required for optimally solving the problem at hand. We

propose the Social Interpolation Model (SIM), an agent-based model to explore the cognitive mechanisms

that can underlie exploratory behavior in groups. Through results from simulation experiments, we

conclude that “exploration” may not be a single cognitive property, but rather the emergent result of

three distinct behavioral and cognitive mechanisms, namely 1) breadth of generalization, 2) quality of

prior expectation and 3) relative valuation of self-obtained information. We formalize these mechanisms

in the SIM, and explore their effects on group dynamics and success at solving different kinds of problems.

Our main finding is that broad generalization and high quality of prior expectation facilitate successful

search in environments where exploration is important, and hinder successful search in environments

where exploitation alone is sufficient.

1 Introduction

Imagine that you are in a new city, trying to choose a restaurant for dinner. Do you go back to the restaurant

you stumbled across last night, which you know will be pretty good, or do you take your chances by trying

something new, a decision which could result in a spectacular meal, a disastrous meal or anything in between?

This scenario is a canonical example of an explore-exploit dilemma (Mehlhorn et al., 2015; Schulz, Kon-

stantinidis, & Speekenbrink, 2018; Sloman, Goldstone, & Gonzalez, 2019). In the context of decisions

under uncertainty, decision-makers are typically understood to face an exploration–exploitation trade-off:

exploitation refers to the strategy of repeatedly taking an action already observed to yield relatively favor-

able outcomes, but potentially missing out on even better payoffs somewhere not yet looked. Exploration

refers to the strategy of taking actions whose outcomes are as yet unknown, forgoing the opportunity for

guaranteed payoffs.

However, odds are you are not making a decision about where to go to dinner in the total absence of

information from your past experiences or from others. The social accumulation of information is a large

component of our decision-making processes. When you consider how risky choosing a particular restaurant

is, you may consider experiences recounted by others or available reviews. If all travelers rely on online

reviews—in which everyone who posts can see what everyone else posted—they may all gravitate towards a

single good restaurant that gets increasingly many reviews. By contrast, relying on recommendations from

different local connections who don’t know each other may not converge on a ringing endorsement of a single

restaurant. In other words, social information can come in many forms, and these forms can matter. In

addition, we use social information to solve problems of varying degrees of complexity: is there a well-known
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best restaurant, or will your personal favorite be tucked away somewhere none of your connections may have

yet visited?

We examine how people navigate search tasks when both individual and social information are available.

Our work is a direct follow-up to a human experiment conducted by Mason, Jones, and Goldstone (2008), in

which participants navigated such a search task. We present a novel computational model of search in the

context of social information, the Social Interpolation Model (SIM), which specifies three points of possible

variation in individuals’ cognitive styles. We explore the effect of this variation on success in Mason et al.

(2008)’s task. While we are able to somewhat replicate the negative interaction between network connectivity

and problem complexity found by Mason et al. (2008), which we discuss further in section 2.3, we do not see

the demonstration that this replication is possible as our primary contribution. Rather, we see our primary

contribution as the exploration of how variations in cognitive style affect group-level dynamics in spatial

search tasks.

We first review extant literature on social learning. We then summarize Mason et al. (2008)’s experiment

and results before introducing the SIM.

1.1 Social learning

There is an extensive literature on social learning (Laland, 2004; Kendal et al., 2018). Perhaps some of the

most seminal work has been done by Boyd and Richerson, e.g., Boyd and Richerson (2005), whose early

work discusses the conditions under which social and individual learning will prove more or less effective.

More recent work has examined the subtleties of social learning strategies, e.g., establishing cognitive phe-

nomena like role differentiation (Roberts & Goldstone, 2011; Molleman, van den Berg, & Weissing, 2014),

sophisticated reasoning processes about the cognitive trajectories of others (Frey, Albino, & Williams, 2018;

Frey & Goldstone, 2018), sensitivity to perceived prestige (Brand, Heap, Morgan, & Mesoudi, 2020), and

dynamic adjustment of the weight of others’ outcomes (Gonzalez, Ben-Asher, Martin, & Dutt, 2015).

Other work more closely related to ours has discussed social learning strategies in networked spatial

search environments similar to the one studied here (Rogers, 1988; Enquist, Eriksson, & Ghirlanda, 2007;

Lazer & Friedman, 2007; Mason & Watts, 2012; Molleman et al., 2014; Toyokawa, Kim, & Kameda, 2014;

Barkoczi, Analytis, & Wu, 2016; Barkoczi & Galesic, 2016; Toyokawa, Whalen, & Laland, 2019). For

example, Toyokawa et al. (2014) construct a social learning environment in which participants have access to

both the frequency with which others selected a particular option and to others’ subjective evaluation of the

option. They find that providing participants with choice frequency information both reduces exploration

and enhances collective performance, while providing subjective evaluation information leads to a decline in

group performance. In other related work, Toyokawa et al. (2019) show how aspects of the environment,

namely uncertainty and group size, modulate the effectiveness of social learning strategies like imitation.

Unlike the papers cited above, we do not focus on discrete, identifiable social learning strategies. For

example, while many of the papers above consider copying or imitation discretely (for a given action, agents
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either copy another or they don’t), agents in our model do not make an explicit choice between individual and

social learning. Rather, agents use the information at their disposal to interpolate the shape of the fitness

landscape, and choose actions on the basis of this interpolation. Social learning strategies are thus represented

not as discrete choices, but as the weight an individual assigns to their own vs. others’ experienced outcomes

(see section 3.3). In this sense, our work aligns with recent work on social sampling (Galesic, Olsson, &

Rieskamp, 2018; Broomell, 2020; Krafft, Shmueli, Griffiths, Tenenbaum, & Pentland, 2021). Like us, this

literature posits that people sample from their social environments, and aggregate the sampled information

using simple, invariant heuristics. While Galesic et al. (2018) and Broomell (2020) focus on the judgment

biases this can introduce, Krafft et al. (2021) highlight the potential for certain aggregation rules to lead

to judgments that resemble perfect Bayesian inference. Like Krafft et al. (2021) and unlike Galesic et al.

(2018) and Broomell (2020), we do not model differences between agents other than those introduced by the

immediate informational environment. The version of the model we present therefore does not incorporate

notions like group homophily. Unlike Krafft et al. (2021), we do not examine potential normative properties

of our model. Rather, we report the results of empirical investigations of environments in which social

sampling and interpolation can be helpful, and environments in which it can lead to systematic failures.

The primary contribution of our work is our examination of the effect of variation in the parameters

of one’s approach to informational sampling and aggregation—what we refer to as “cognitive mechanisms.”

Unlike prior work on social learning, our model is not specific to the social learning environment, but extends

naturally from work on generalization and interpolation. We embed representations of more general individ-

ual differences in information-processing, such as breadth of generalization or quality of prior expectation,

in a model of social learning. We explore the extent to which differences in behavior exhibited in a social

learning context can be explained by basic cognitive mechanisms, potentially facilitating the unification of

work on social learning with other areas of cognitive science.

2 Structure of Mason et al. (2008)’s experiment

Participants in Mason et al. (2008)’s experiment were brought into the lab, where they were told to guess

numbers between 0 and 100 over 15 rounds. Participants’ guesses were converted to payoffs via “fitness

functions” which were unknown to the participants. All of these functions were smooth and had a unique

global maximum. To maximize their cumulative payoffs, participants had to use the outcome information

to guess numbers they thought would translate into high payoffs, and to uncover high-paying parts of the

function landscape they did not yet have information about. Participants had access to not only their own

outcome information—their guesses and the payoffs they had received from these guesses—but also to the

outcome information of their “network neighbors.” Mason et al. (2008) varied both the complexity of the

fitness functions and the structure of the participants’ networks.
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(a) Unimodal landscape. (b) Trimodal landscape. (c) Needle landscape.

Figure 1: The fitness functions generating the payoffs in Mason et al. (2008)’s experiments.

2.1 Fitness functions

The fitness functions varied in terms of complexity, or difficulty of finding the global maximum using simple

heuristics such as hill-climbing—i.e., without exploration. The least complex function—the function that

required the least amount of exploration—was a unimodal function with a single, broad maximum. The

next most difficult function was a trimodal function. The trimodal function’s global maximum was as broad

at the unimodal function’s; however, in addition to the global maximum, the trimodal function had two

local maxima that were almost but not as tall as the global maximum. Hill-climbers would likely get stuck

on one of these two local maxima. Finally, the function that required the most exploration was a “needle”

function. The needle function has a local maximum of the same height and width as the unimodal and

trimodal functions’ global maxima. However, in addition, the needle had a very thin global maximum. The

fitness functions are shown in Figure 1.

2.2 Network structure

Participants were also assigned to different network structures which differed in terms of the efficiency of

information transmission. Participants in the most highly-connected network, a fully-connected network,

could see outcome information from everyone else in their group on every round.1 Participants in the least-

connected network, the lattice, could only see outcome information from their two immediate neighbors.

Participants could also be assigned to a “small-world” network, in which information travelled quickly but

not as quickly as in the fully-connected network, or a baseline network that randomly generated links between

participants. Figure 2 shows the four different network structures. For the sake of brevity, we omit details

of how the networks were generated, but interested readers can consult Mason et al. (2008) or Sloman et al.

(2019).

It should be noted that participants in the fully-connected network have, on average, many more neighbors

than participants in the other three networks. The result of this is that on each round, these participants

view much more information.

1Groups ranged in size from 5 to 19 players.
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(a) Fully-connected network. (b) Small-world network.

(c) Random network. (d) Lattice network.

Figure 2: Examples of each of the possible network structures in Mason et al. (2008)’s experiments. Nodes

represent participants, while edges link participants who could see each other’s outcome information (all

participants could see their own outcome information).

6



2.3 Experimental results

Here, we highlight Mason et al. (2008)’s three main findings about group behavior. In section 4, we discuss

the extent to which our proposed model can account for these findings.

1. On the unimodal landscape, groups arranged in a fully-connected network outperformed groups in the

more dispersed networks.

2. On the trimodal landscape, groups arranged in a small-world network outperformed other groups.

3. On the needle landscape, groups arranged in a lattice network outperformed groups in the more broadly

interconnected groups.

In other words, broadly interconnected groups—groups in which members could see and imitate the

actions and outcomes of other members—excelled at problems in which the solution was easy to find. Dis-

persed groups, in which individuals had little information about others’ actions and outcomes, excelled at

more complex problems.

2.3.1 cWSLS behavior

In a later reanalysis of Mason et al. (2008)’s data, we found that while participants in Mason et al. (2008)’s

experiment tended to move around the problem space, they would move less when they were relatively

successful, and more when they were relatively unsuccessful (Sloman et al., 2019). Win-stay, lose-shift

(WSLS) refers to the policy that when you experience a gain (“win”), you stay with your current strategy,

but when you experience a loss, you shift to another strategy (Robbins, 1952; Nowak & Sigmund, 1993;

Bonawitz, Denison, Gopnik, & Griffiths, 2014; Billinger, Stieglitz, & Schumacher, 2018; Zhang, Moisan, &

Gonzalez, 2021). While the traditional win-stay, lose-shift strategy operates over a small number of discrete

strategies, we found that participants in Mason et al. (2008)’s experiment behaved as if they were using a

graded, continuous version of win-stay, lose-shift (cWSLS, or continuous win-stay, lose-shift).

Guided by these observations, we developed the SIM, an agent-based model in which agents face the

same task as Mason et al. (2008)’s participants. The next section describes the SIM. The SIM specifies three

points of individual difference, encoded in the model as free parameters. Section 4 explores the effect of these

parameters on group performance. In Appendix A, we demonstrate that the SIM can replicate participants’

cWSLS behavior.

3 The Social Interpolation Model (SIM)

Agents in the SIM take actions, receive feedback from the environment on the outcomes of their actions and

the outcomes of the actions of those in their social vicinity, and use that information to inform subsequent

actions. In particular, they use this information to compute a valuation associated with each possible action,
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and then select an action with a probability proportional to its imputed valuation. In the context of the task

described above, agents in the SIM generalize from the outcome information they have observed to unseen

parts of the landscape.

To model perceptions of similarity, psychologists have used generalization gradients, or functions that

describe the relationship between inputs and how similar these inputs are perceived to be to each other

(Shepard, 1987). A central assumption embedded in most generalization gradients is that the perceived

similarity of two inputs decays with the distance between them. In our context, the application of a gener-

alization gradient implies that participants will think the number 0 is most similar to—i.e. has the closest

expected associated payoff to—the number 1, is slightly less similar to the number 2, and is the least similar

to the number 100. Generalization gradients typically also have the property that the rate of decay decreases

as the distance from the focal input increases. For participants, the similarity between 0 and 11 is perhaps

noticeably less than the similarity between 0 and 1, while the similarity between 0 and 100 is essentially the

same as the similarity between 0 and 90.

One of the first cognitive models of function learning posits that people apply a generalization gradient to

observed inputs to interpolate unseen parts of a function landscape (Busemeyer, Byun, Delosh, & McDaniel,

1997). More recently, the basic idea of similarity-based generalization has been applied to other models of

function learning (Lucas, Griffiths, Williams, & Kalish, 2015), spatial search (Wu, Schulz, Speekenbrink,

Nelson, & Meder, 2018) and other exploration-exploitation tasks (Schulz, Speekenbrink, & Krause, 2018)

in the form of Gaussian process regression. Gaussian process regression is a powerful form of regression

that models the relationship between independent and dependent variables as a distribution over possible

functions. One critical simplifying assumption that makes this approach computationally feasible is that

the covariance between points is specified by a known function called a kernel function. Perhaps the most

common kernel function is a radial basis function (RBF) kernel. Wu et al. (2018) show that the RBF kernel

is a good approximation to human generalization in a spatial search task. The functional form of the RBF

kernel, shown Equation 1, has been used as a generalization gradient in a number of psychological studies

(Nosofsky, 1986; Busemeyer et al., 1997). Following this work, we also adopt the functional form shown in

Equation 1 to model the generalization gradient, or similarity function, participants use to infer the expected

payoffs at unseen parts of the fitness landscape.

S(i, j, c) = e−( i−j
c )

2

(1)

c is a free parameter of the SIM which sets the degree of generalization (see section 3.1 for more detail).

(For conciseness, we omit notation indicating dependence on c where c is specified by context.)

SIM agents combine their existing beliefs with the similarity function to form updated beliefs about the

payoff P̂i associated with each guess i:

P̂i =

∑
j∈{0...100} wjS(i, j)P̃ (j)∑

j∈{0...100} wjS(i, j)
(2)
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where P̃ (j) is the agent’s expectation about the payoff corresponding to guess j. wj is the weight the

agents assigns to the information from observation j. We discuss this further in section 3.3.

All agents incorporate a subset of the outcome information they directly observed, either because they or

one of their network neighbors guessed the number, by adopting the observed payoff as their expectation. For

example, for an agent who observes a guess of 50 yield a payoff of 20, P̃ (50) = 20.2 The probability with which

directly observed outcome information is incorporated is a function of how recently that information was

observed: observations from the most recent round are incorporated with probability 1, while observations

from previous rounds are incorporated with some probability p(t) = e−bt, where t is the number of rounds

that have passed since the observation occurred and b is a parameter that can be set at the discretion of the

modeller. This function is a special case of the exponential function of memory decay (Wixted & Ebbesen,

1991; Rubin & Wenzel, 1996) where the probability of recalling an observation one just experienced is 1.

While this element of the SIM allows for agents characterized by varying degrees of myopia, the agents in the

simulations explored in the following section incorporate outcome information from only the previous round.

This is equivalent to setting b to an extremely high value, resulting in agents who forget all the information

they received in prior rounds. We made this choice for model tractability, and in order to better isolate the

effects of the free parameters highlighted in the following subsections, all of which represent psychological

constructs we found of more theoretical interest to understanding the dynamics of the task described above.

However, the more general model in which b is allowed to vary facilitates both future exploration of the effect

of memory decay, and application of our model to contexts in which decision-makers are more likely to rely

on a history of outcomes (e.g., experimental contexts in which participants have the opportunity to record

previously observed outcome information).

The SIM allows for individual-level variation in agents’ beliefs about unobserved guesses; see section 3.2

for more detail.

Once they have computed these estimated payoffs, agents select probabilistically between all possible

guesses. Probabilistic choice is one of the core foundations of decision-making research (Thurstone, 1927;

Luce, 1963; Rieskamp, 2008; Busemeyer & Rieskamp, 2014). In particular, the probability that an agent

selects a particular number i is proportional to its estimated payoff P̂i:

πi =
P̂ 2
i∑

j∈{0,...,100} P̂
2
j

(3)

The form of the decision function is taken from the decision stage of the Generalized Context Model

(GCM) of category choice (Nosofsky, 1986; Ashby & Maddox, 1993; Nosofsky & Zaki, 2002). Like our

model, the GCM posits that decisions are made probabilistically using weights computed on the basis of a

generalization and inference process.

2If the agent observes outcome information for a number j twice, e.g., because two of their neighbors made the same guess,

the agent forms two separate “expectations” P̃ (j1) and P̃ (j2). Note that P̃ (j1) and P̃ (j2) will not usually be equal because of

the random noise added to payoffs.
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The SIM incorporates three points of individual difference: the breadth of an agent’s generalization, the

nature of their beliefs about unobserved numbers, and the degree to which they rely on their own outcome

information vs. information from others.

See section 3.4 for a worked example of how an agent evaluates and decides between possible actions.

3.1 Breadth of generalization

Agents’ generalization gradient, shown in Equation 1, includes a free parameter c. The higher the value of

c, the more observations that are distant from a number i influence the estimated payoff of i. (Agents whose

degree of generalization corresponds exactly to the slope of the fitness function would have a c = 14.29.3)

Agents with a high value of c can be thought of as more willing to generalize a good (or bad) experience in

one place to other places that may appear dissimilar to others. To return to the restaurant goer we met in the

introduction, a high c might imply that they are willing to generalize a good experience from one vegetarian

restaurant to all other vegetarian restaurants, while other travelers may require the two restaurants to be

more similar before they are willing to make such a generalization.

3.2 Quality of prior expectation

Equation 2 shows that agents rely on observed outcome information to compute the payoff they expect each

number to yield. But what about numbers for which the agent doesn’t directly observe payoffs? For these

numbers, agents effectively pretend they have observed that number yield a payoff Λ. Λ is a free parameter

that can vary at the discretion of the modeller. Using the terminology in Equation 2, P̃ (j) = Λ for all j for

which the agent has not observed or not recalled any outcome information.

We believe that Λ is most naturally interpreted in terms of agents’ uninformed expectations about the

payoff they will receive from an arbitrary selection. Under this interpretation, agents with a high Λ are more

optimistic: in the absence of other information, they assume actions yield positive rewards. Such optimism

could stem from a generally positive disposition, the influence of an unobservable anchor (Epley & Gilovich,

2006), motivated reasoning derived from a particular aspiration level (Kunda, 1990), or any other factor that

systematically influences the agent’s uninformed priors.

Alternatively, Λ could be construed as the agent’s valuation of novelty itself. Perhaps the traveller does

not believe the food at an unexplored restaurant will be particularly good, but derives pleasure simply from

having tried something new. This construal is related to curiosity, the drive to reduce uncertainty and seek

new information, an important construct in understanding human behavior (Loewenstein, 1994; Mikulincer,

1997; Wojtowicz & Loewenstein, 2020) and designing artificial reinforcement learning systems (Bellemare et

al., 2016; Pathak, Agrawal, Efros, & Darrell, 2017).

3This gradient captures the variance of the unimodal and trimodal functions’ global maxima, and the needle function’s local

maximum.
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We favor the previous interpretation because of Λ’s direct relationship to P̃ (·) in Equation 2, which

represents the agent’s prior valuation of a particular guess (see also the worked example in section 3.4). More

specifically, P̃ (j) = Λ in case the agent does not have any outcome information about j. Like expectations

based on the accrual of outcome information, Λ is generalized to other nearby guesses. While its role in the

generalization process is a natural property of an expectation, it seems less natural to generalize novelty to

other actions merely on the basis of spatial similarity, some of which one may have much information about.

To reflect this, we refer to the cognitive property associated with Λ as the quality of an agent’s uninformed

prior or quality of prior expectation, but note that other interpretations are possible.

3.3 Reliance on information from own experiences

One of the main contributions of the present work is embedding existing work on generalization and inter-

polation in a context where participants are learning not only from their own actions and outcomes, but

from the actions and outcomes of others. One of the important findings of the literature on social learning

has been that people often do not treat equally information collected by others and information they col-

lected themselves: we often overweight our own outcome information (Yaniv & Milyavsky, 2007; Weizsäcker,

2010; Yaniv & Choshen-Hillel, 2012; Goldstone, Wisdom, Roberts, & Frey, 2013; Puskaric, von Helversen,

& Rieskamp, 2017; Grimm & Mengel, 2020).

Equation 2, which shows how agents form expectations for the payoff a particular number will yield,

contains a sum taken over all observations (both actual observations and observations imputed to reflect

the degree of prior expectation). If agents privilege their own outcome information, we would expect some

observations to “loom larger” in these computations than others. This is captured by wj , which always

equals 1 unless the observation resulted from the agent’s own action, in which case it is β. In other words,

β represents the factor by which the agent weights their own outcome information more highly than other

observations. A perfectly unbiased agent has β = 1. If the traveller in the introduction has a high value of

β, they are more likely to rely on their own experiences rather than online reviews or recommendations from

friends when making guesses about the quality of new restaurants.

3.4 An example decision

This section provides a worked example of how a hypothetical agent Al would compute their updated

valuation of guessing 40, P̂40, after receiving one round of outcome information. Al guessed 32 on the last

round and received a payoff of 66. Al has two network neighbors, one of whom guessed 20 on the last round

and received a payoff of -3, and one of whom guessed 80 and received a payoff of 45. Al’s internal parameter

values are c = 10, Λ = 10 and β = 5. The steps below compute Al’s updated valuation of 40.

1. Set W to an empty vector

2. Set P̃ to an empty vector

11



3. For all integers j ∈ {0, . . . , 100}

(a) Set wj = β = 5 if j = 32 else 1

(b) Append wj × S(40, j, c = 10) to W

(c) If j ∈ [32, 20, 80]

i. Append observed corresponding payoff to P̃

(d) Else

i. Append Λ = 40 to P̃

4. Return W ·P̃∑
W

The vector P̃ contains Al’s prior valuations of each possible action, i.e., each integer between 0 and

100. Their prior valuation is equal to the observed information for 20, 32 and 80 (the actions for which they

directly observed outcome information) and Λ = 10 for all other actions. The vector W contains the weighted

similarity between the target action, 40, and all possible actions (wjS(40, j) for all j ∈ {0, . . . , 100}). P̂40 is

the normalized vector product of W and P̃ , 17.43.

Al similarly updates their valuations of all possible actions, 0 through 100. Figure 3 shows the resulting

valuation surface. Also shown are the effects of toggling each of the individual parameter values. For

example, the red curve shows the valuation surface of an agent identical to Al, but who generalizes slightly

more broadly.

Al then selects an action probabilistically according to Equation 3.

4 Model behavior

In this section, we use the SIM to explore how group success in the task designed by Mason et al. (2008)

is affected by players’ breadth of generalization, quality of prior expectation and reliance on their own

experiences. In the sections below, we show how the percentage of participants who arrived within one unit

of variance of the landscape’s global maximum (pctmax) is the result of interaction effects between not only

the fitness landscape and the network structure, but also between the network structures and agents’ values

of c, Λ and β.

For each combination of landscape, network structure and parameter values, we simulated 100 games,

each composed of 15 agents endowed with the respective parameter values interacting over 15 rounds. This

analysis shows that the direction of the parameters’ effects is not consistent across the three landscapes.

In the remainder of this section, we unpack the marginal effects of each of the three free parameters on

performance in the different conditions—in other words, the effect of each parameter when the other two are

held at baseline values. This allows us to isolate the effect of the three distinct cognitive mechanisms, and

does not rely on additional researcher degrees of freedom in the choice of ranges and intervals at which to
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Figure 3: Al’s updated valuations of every possible action (see main text for parameterization of this specific

example). Also shown are the valuation surfaces created by altering each parameter to its baseline value

(and keeping all other parameters unchanged).

explore the other parameter settings. However, we also find important parameter interactions. Appendix B

specifies a full regression model to capture the parameter effects and presents each parameter’s main effects,

collapsed across all other values of the other two parameters.

Here, we refer to Figure 4, which shows how pctmax changes with variation in each cognitive mechanism

for each combination of landscape and network structure. Our main findings are as follows:

1. High c and high Λ help the most on the needle landscape, where exploration is important.

2. High c and high Λ are especially detrimental to performance on the unimodal landscape, where ex-

ploiting known high-yielding options is usually sufficient.

3. High β does not help performance on the more complex landscapes. While in general it is helpful on

the unimodal landscapes, this benefit disappears in the absence of a mechanism for exploration.
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(a)

(b)

(c)

Figure 4: Percentage of simulated agents’ guesses that were within one unit of variance of the corresponding

landscape’s global maximum (pctmax) as a function of the agents’ value of c (left), Λ (center) and β (right).

The lines show the means across 100 trials (each consisting of 15 rounds of interaction between 15 agents,

all endowed with the same parameter values). Error bars show one standard error of that mean. For plots

on the left, Λ is fixed to 0 (a prior expectation of no payoff) and β is fixed to 1 (no overweighting of own

information). For plots in the center, c is fixed to 14.29 (corresponding to the gradient of the unimodal and

trimodal functions’ global maxima) and β is again fixed to 1. For plots on the right, c is fixed to 14.29 and

Λ is fixed to 0.
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Effect of c (breadth of generalization). In general, the effects of c are consistent with broad gener-

alization functioning as a mechanism for more exploration: higher c leads to higher pctmax in contexts

where exploration is important (i.e., on the needle landscape), and hinders performance in contexts where

exploiting small amounts of information is usually sufficient (i.e., on the unimodal landscape).

On the unimodal landscape, low c leads to better outcomes (top panel of Figure 4). Recall that the

unimodal landscape was designed so that players could find the global maximum using simple heuristics such

as hill-climbing or noisy imitation of others. Broad generalization of one’s findings can lead the searcher

to venture into unexplored parts of the landscape, and neglect to reap benefits right under their nose.

Interestingly, agents with c near zero perform better than agents whose c is appropriately calibrated to the

landscape. By “appropriately calibrated” we mean cases in which the generalization gradient matches the

gradient of the landscape’s mode—i.e., cases in which the degree to which agents’ payoffs provide information

about payoffs obtainable in other parts of the landscape matches agents’ “beliefs” about the nature of this

information. Agents on the unimodal landscape who think their findings apply more narrowly than they

actually do perform better, at least in the aggregate. By not over-generalizing, these agents do not risk

occasionally over-stepping the bounds of the global maximum, and are sure to remain comfortably within

the region of highest payoffs.

Figure 4 shows a non-monotonic effect of c in the trimodal and needle landscapes. We interpret this result

as elucidating a tension between appropriately calibrated generalization and generalization as a mechanism

for exploration. As discussed just above, narrow generalization prevents agents from jumping from the

global maximum once they’ve found it. On the other side of the same coin, broad generalization helps push

agents out of local maxima. We suspect the difference in location in the inflection points in the effect of

c on the trimodal and needle landscapes reflects the difference in the gradient of the local maxima in the

two landscapes: since the global maximum on the needle landscape is so much narrower than the global

maximum on the trimodal landscape (see Figure 1), even mild generalization can be sufficient to push agents

out of it.

While throughout this paper we adopt the interpretation of c consistent with the rich psychological

literature on generalization, it is worth noting that c can also be interpreted more directly as the value of

sampling in a new location. For agents with low c, sampling somewhere new will only update their valuation

of a narrow range of values. For agents with high c, sampling somewhere new will update their valuation

around a much broader range of values. This interpretation provides additional intuition for c as a mechanism

for exploration.

Effect of Λ (quality of prior expectation). As explained in section 3.2, agents with higher Λ look

more favorably on unseen parts of the landscape. Like broad generalization, high prior expectations induce

exploration: agents with high Λ are more likely to visit unseen areas because they attribute high payoffs to

those areas.
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The top panel of Figure 4 shows that low Λ leads to better outcomes on the unimodal landscape. Because

this landscape has a single peak, players who jump around too much are likely to forsake the successful

solutions they have already found.

On the other hand, the bottom panel of Figure 4 shows that higher Λ leads to better outcomes on the

needle landscape. We speculate that high expectations lead to better performance on the needle landscape for

the same reason they hinder performance on the unimodal landscape: high expectations induce exploration,

which is important to find the needle’s thin global maximum.

Interpreting both c and Λ as mechanisms for exploration is consistent with the strong negative interaction

effect between c and Λ (Table 1 in Appendix B). For agents who generalize broadly, the effect of high

expectations will be muted by the spillover of observed payoff information across the landscape. Put another

way, in cases where the nature of one’s expectations do not induce one to try new things, broad generalization

is an important alternative mechanism for exploration. Agents must strike a balance between exploration

and exploitation, and are most successful in the presence of counterbalancing mechanisms to search broadly

on the one hand and to take certain gains on the other.

Effect of β (relative weight on personal experience). The rightmost plots in Figure 4 show that the

marginal effect of β is difficult to detect in the trimodal and needle landscapes. In other words, when the

other parameters are held at their baseline values, overweighting of one’s own information does not have a

noticeable effect in the more complex landscapes. Interestingly, the least complex landscape, the unimodal

landscape, is the only one which exhibits a detectable, negative, marginal effect of β.

This was surprising to us: unlike the unimodal landscape, the trimodal and needle landscapes were

constructed such that social information would be important to help participants avoid getting stuck on

local maxima. The results presented in Appendix B are consistent with this intuition: the main effect of β

(i.e., the average effect of β across all values of c and Λ we simulated) is distinctly negative on the trimodal

and needle landscapes, and positive on the unimodal landscape. This suggested to us that there is something

important about low prior expectations and/or relatively narrow generalization driving the counterintuitive

marginal effects of β.

Further investigation showed that all instances where this qualitative pattern occurred—i.e., the effect of

β was negative in the unimodal landscape and flat in the trimodal and needle landscapes at constant values of

c and Λ—were characterized by Λ = 0. When Λ = 0, agents have little incentive to visit unexplored options.

A high β would lead agents to stay in the neighborhood of their initial guess. On the unimodal landscape,

this would be detrimental: chances are, one of an agents’ neighbors would have stumbled on, or close to, the

global maximum, and blindness to that information would lead agents to do especially poorly. On the other

two landscapes, where exploration is needed to find the global maximum, circling around one’s own guess

may lead one to do no worse than looking to neighbors who themselves will get trapped in local maxima

due to their own lack of exploration. According to this account, the observed pattern on the trimodal and
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needle landscapes is an artifact of the homogeneity of the simulated groups. We predict that the marginal

effect of β would be negative for any individual with Λ = 0 in cases where the individual’s social network

contained agents with Λ > 0. We leave this more complex analysis to future work.

Effect of network structure. Among our simulated groups, the fully-connected network outperformed

the other network structures on the unimodal landscape and underperformed compared to the other networks

on the needle landscape. There was no clear best-performing network on the trimodal landscape, and

performance between the other three networks did not appear to differ much on the other two landscapes.

These patterns can somewhat be seen in Figure 4: the line corresponding to the fully-connected network

is clearly above the other lines in Figure 4a and below the other lines in the middle panel of Figure 4c. In

Appendix B, we present more evidence supporting this general trend.

This pattern somewhat replicates the findings of Mason et al. (2008) listed in section 2.3. While the

overall trends among the ranges of parameter values we chose to explore do not replicate the exact ordering

of the networks in each condition, we also find that more connected networks do well on the least complex

landscape, and comparatively worse on the more complex landscapes.

Later work by Mason and colleagues similarly complicates the straightforward negative interaction be-

tween connectivity and complexity found by Mason et al. (2008): Mason and Watts (2012) found that

participants in more connected networks tended to outperform those in less connected networks even on

complex, multimodal fitness functions. Intriguingly, they find that the mechanism for this is that partici-

pants were more likely to copy their neighbors if two or more neighbors guessed in the same place. In the

inefficient networks, participants’ neighbors were more likely to be neighbors with each other and thus there

was substantial correlation between the information a participant’s neighbors had access to, leading them

more often to the same guesses. The SIM implicitly encodes this mechanism since each time the same—or

similar—guess is made, it augments the valuation surface at that location (as long as the observed payoff is

greater than Λ). One noteworthy feature of Mason and Watts (2012)’s work is that they keep the number of

neighbors each participant has constant in each network, while in Mason et al. (2008)’s study, participants

in the lattice networks had substantially fewer neighbors than participants in the fully-connected networks.

Indeed, all participants in the fully-connected networks shared a neighborhood, since all participants were

connected to all other participants. Combined with the higher average degree overall, we suspect that par-

ticipants in the fully-connected networks actually observed more duplicate observations than participants

in the lattice networks. Thus, we see the fact that both the empirical and simulation results suggest that

the lattice networks offer an advantage over the fully-connected networks on the more rugged landscapes as

supporting evidence for, rather than as inconsistent with, Mason and Watts (2012)’s findings.
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5 Discussion

The SIM offers a novel characterization of problem-solving that postulates differences in 1) how broadly

agents generalize information to unseen areas of a problem space, 2) the quality of their prior expectations,

and 3) how much they value information about their own vs. others’ outcomes. We laid out testable

predictions of these cognitive mechanisms at work.

We show that broad generalization and high prior expectations can lead agents to succeed in environments

where exploration is important—and fail in environments where exploitation alone is sufficient. In other

words, individual differences in the basic cognitive process of similarity perception can have dramatic effects

on a seemingly unrelated process: trading off between exploration and exploitation. This suggests to us that

differences in explore–exploit trade-offs may stem from individual differences in breadth of generalization, in

addition to or instead of from differences in preference for new information.

The SIM replicates Mason et al. (2008)’s finding that the fully-connected network has a distinct compara-

tive advantage on the unimodal landscape, and performs comparatively worse in the more complex networks.

However, as we stress in the introduction, our investigation of the SIM’s behavior was not a replication at-

tempt. In line with the intent of the present investigation, our findings introduce nuance into their results.

For example, while Mason et al. (2008) found that participants in the lattice network outperformed partici-

pants in the fully-connected network on the needle landscape, in our simulations groups composed of agents

with sufficiently high prior expectations did as well in the fully-connected network as in the lattice network.

This suggests that different network structures may be optimal not only for different problem structures, but

also for different cognitive styles. For example, if agents are highly connected to one another, then they may

be able to find solutions to complex problems (e.g., the global maximum on the needle landscape) if they

tend to view unseen options optimistically. It also suggests that for many complex problems, there may be

multiple interventions or strategies that could lead to the same desired outcome. Armed with multiple struc-

tural and behavioral interventions that achieve a desired outcome, decision-makers and team leaders could

adopt strategies that satisfy other constraints. For example, while reducing information exchange and social

interaction can prevent bandwagoning, it can have other, likely obvious, detrimental effects. Rather than

relying on reducing opportunities for social interaction, team leaders could consider ways to provide their

teams with information or incentives that would change their valuation of unseen options—i.e., interventions

that would mimic adjusting the Λ parameter—rather than change the network structure.

5.1 Areas for future work

Our work is not intended as definitive support for the SIM. While we have synthesized previous work into a

possible model, we have not conducted a formal model comparison. In addition, our analyses are post-hoc.

Future work could test the adequacy of the model via, e.g., selective influence tests, and compare the model

to plausible competitors, e.g., models that posit forms of Bayesian inference (Krafft et al., 2021) or models
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that explicitly incorporate the trade-off between exploitation and uncertainty reduction via decision rules

like Upper Confidence Bound sampling (Schulz, Speekenbrink, & Krause, 2018; Wu et al., 2018). Further

development of the SIM could incorporate additional components to represent features of human cognition

such as a ceiling on the number of observations that can be retained and used for inference (Miller, 1956).

Another immediate avenue for future work is to explore the effects of group size4 or agent heterogeneity.

Our results are based on the extremely unrealistic assumption that all agents in a group share the same

cognitive style. Previous work has shown substantial heterogeneity in individual behavior in networked

search and problem-solving tasks (Roberts & Goldstone, 2011; Toyokawa et al., 2014, 2019; Sloman et

al., 2019). Incorporating agent heterogeneity into future work could reveal novel and important synergies

between different cognitive styles.

Additional future directions could involve applying or extending our model to other spatial search contexts

from available literature. For example, one extension we mentioned in the introduction, which is especially

reminiscent of our motivating example of restaurant reviews, would be to model social information as subjec-

tive valuations made by other agents, rather than as objective outcome information (Toyokawa et al., 2014).

Other immediate extensions could involve the complexity of the options themselves: while we examine a

static search context in which the payoff distribution remains fixed, Toyokawa et al. (2019) demonstrate

how to construct a dynamic context in which payoffs distributions change over time. In addition, while we

study options characterized by only a single numerical dimension, in most ecological search contexts, options

are multi-dimensional. Like us, Mason and Watts (2012) and Wu et al. (2018) study environments with

spatially-correlated rewards, but extend the search space to two dimensions. Our model could naturally be

extended to incorporate multiple dimensions by a simple modification of the similarity function (Equation 1)

to account for distances across multiple dimensions. If i and j in Equation 1 referred to vector rather than

scalar values, the usual approach in the psychological literature would be to replace the scalar difference i−j

with the city-block distance (a special case of the Minkowski distance) between the vectors i and j (Shepard,

1964; Nosofsky, 1986; Shepard, 1987).

In a paradigm known as the “NK landscape” paradigm, researchers can systematically vary both the

dimensionality of the search space and the number of local maxima (Kauffman, 1995; Gavetti & Levinthal,

2000; Lazer & Friedman, 2007; Billinger et al., 2018). Future work could use existing experimental results

in this paradigm mentioned in the introduction (Billinger et al., 2018) to constrain the parameter values of

our model.

A final paradigm to which our model could be extended is search contexts in which the environment is

characterized by time-varying features which define a context the learner can use to condition their predic-

tions, so called “contextual multi-armed bandit” (CMAB) problems (Stojic, Analytis, & Speekenbrink, 2015;

Schulz, Konstantinidis, & Speekenbrink, 2018). This effectively requires learning several payoff functions:

4Preliminary results suggest group size may interact with the SIM’s parameter values in interesting and counter-intuitive

ways.
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one for each possible context. The mechanism of similarity-based interpolation can be extended to a problem

with a hierarchical structure like CMABs: in the same way similarity between actions can be used to predict

similarity of outcomes, similarity of context may also be a predictor of similarity of payoff function. While in

the context focused on in this paper an observation was defined by an action (numerical guess) and payoff,

in a CMAB problem, an observation is defined by an action, a set of contextual features and a payoff. Our

model could incorporate this by combining both the similarity between actions and the similarity between

contexts into a scalar similarity function that operates over observations, either by averaging the two simi-

larity scores together or by treating the context as an additional dimension and aggregating similarity across

dimensions as explained above.

6 Conclusion

We constructed a model from basic cognitive operations, and demonstrated that differences in exploratory

behavior and group success can emerge from individual- and group-level differences in information-processing

mechanisms. We hope that future work on how humans navigate the explore-exploit dilemma takes steps to

identify which of the several cognitive processes could account for the observed results in new tasks.
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Weizsäcker, G. (2010). Do We Follow Others when We Should? a Simple Test of Rational Expectations.

American Economic Review , 100 (5), 2340–2360. doi: 10.1257/aer.100.5.2340

Wixted, J. T., & Ebbesen, E. B. (1991). On the Form of Forgetting. Psychological Science, 2 (6), 409–415.

doi: 10.1111/j.1467-9280.1991.tb00175.x

Wojtowicz, Z., & Loewenstein, G. (2020). Curiosity and the economics of attention. Current Opinion in

Behavioral Sciences, 35 , 135–140. doi: 10.1016/j.cobeha.2020.09.002

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., & Meder, B. (2018). Generalization guides

human exploration in vast decision spaces. Nature Human Behaviour , 2 (12), 915–924. doi: 10.1038/

s41562-018-0467-4

Yaniv, I., & Choshen-Hillel, S. (2012). Exploiting the Wisdom of Others to Make Better Decisions: Sus-

pending Judgment Reduces Egocentrism and Increases Accuracy: Exploiting the Wisdom of Others.

Journal of Behavioral Decision Making , 25 (5), 427–434. doi: 10.1002/bdm.740

Yaniv, I., & Milyavsky, M. (2007). Using advice from multiple sources to revise and improve judgments.

Organizational Behavior and Human Decision Processes, 103 (1), 104–120. doi: 10.1016/j.obhdp.2006

.05.006

Zhang, H., Moisan, F., & Gonzalez, C. (2021). Rock-Paper-Scissors Play: Beyond the Win-Stay/Lose-Change

Strategy. Games, 12 (3).

24



Appendices

A Replicating cWSLS behavior

We hypothesized that the SIM would exhibit cWSLS behavior, because by design agents in the SIM gravitate

towards higher payoffs. To examine whether the SIM did indeed exhibit cWSLS behavior, we simulated the

game described in section 2 for each combination of a “low” and a “high” value of each of the three free

parameters of the SIM: c ∈ {.1, 100.1}, Λ ∈ {0, 20} and β ∈ {1, 10}. For each parameter combination,

we simulated 100 games, each with 15 rounds and 15 “players,” in each of the 12 combinations of fitness

landscapes and network structures ({unimodal, trimodal, needle} × {fully-connected, small world, random,

lattice}).

Figure 5 shows how agents’ jump size—the distance between subsequent guesses—varies as a function of

the difference in payoffs between these guesses, for each of these simulations. The thick black line shows the

behavioral trend reported in Sloman et al. (2019): when participants in the experiment experienced relative

gains (wins), their jump size decreased. By contrast, participants who experienced relative losses did not

temper their movement.

Figure 5 also shows that the SIM is able to replicate this pattern. Each of the thinner colored lines

shows the same trend for simulations of groups of SIM agents using a particular combination of parameter

values. In general, the simulations exhibit the same qualitative trend as the empirical data for all parameter

values. Readers may notice that the dashed lines tend to fall above the others for payoff differences greater

than 0: when these agents experience gains, they are more hesitant to converge towards the high-yielding

guess. These lines represent groups composed of agents with extremely high values of c, i.e., agents who

generalize extremely broadly. When these agents experience or observe a high payoff, they are more willing

to believe this payoff will generalize to other guesses further away, and thus do not reduce their jump size

much. This is consistent with our finding, discussed further in section 4, that broad generalization functions

as a mechanism for exploration.

B Further exploration of parameter effects

Section 4 explores the marginal effects of each of the SIM’s three parameter values—i.e., the effect of each

when the other two were held at their baseline values. This appendix presents the results of a complete

regression model of the parameters’ effects on pctmax, and an exploration of the parameters’ effects when

taking into account interactions with other parameter values.

As we stated in section 4, we simulated 100 games for each combination of landscape, network structure

and parameter values, each composed of 15 agents endowed with the respective parameter values interacting

over 15 rounds. Table 1 shows the effects of the properties of these simulated trials on each trial’s corre-
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Figure 5: Jump size as a function of relative payoffs, broken down by fitness landscape (rows) and network

structure (columns). Each line shows the relationship between the experienced difference in payoffs (p(t)−

p(t−1)) (x-axis) and the difference in jump size (|g(t+1)−g(t)|− |g(t)−g(t−1)|) (y-axis), where p(t) is the

payoff experienced at time t, and g(t) is the corresponding guess made at time t. Each colored line shows a

local linear regression over all observations with a single set of parameter values (all eight combinations of

c ∈ {.1, 100.1}, Λ ∈ {0, 20} and β ∈ {1, 10}). Each regression line is estimated using all observations from

100 simulated games, each with 15 agents and 15 consecutive rounds (n = 100× 15× 13; observations from

the first and last rounds of each game are omitted as there is no data either at time t− 1 or at time t+ 1).

The thick black line shows the same regression over the behavioral data collected by Mason et al. (2008).

We used a bandwidth of 16 for all regressions, but other bandwidths show the same qualitative result.
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sponding pctmax, estimated using OLS linear regression. To meet the linear model’s assumption that the

dependent variable is continuous and unbounded, we converted the pctmax value corresponding to each

trial into a logodds(max) = log( pctmax
1−pctmax ) value, and regressed this against each group’s endowed values

of c, Λ and β, as well as indicators that specified the group’s network structure.5 We transformed the

parameter values so they could be interpreted as deviations from baseline values: 14.29 is subtracted from c

(the gradient of the global maximum in the unimodal and trimodal conditions) and 1 is subtracted from β

(corresponding to no additional weighting on own information; Λ remains unchanged and can be interpreted

as the difference from a baseline of a prior expectation of no payoff). We also divided the values of c, Λ

and β by the distance between their respective minimum and maximum values.6 Under this transformation,

a unit change in the independent variables representing the parameter values corresponds to the effect of

toggling the parameter between its minimum and maximum values.

The intercepts correspond to the predicted logodds(max) value for a fully-connected network composed

of agents with perfectly calibrated generalization gradients, a prior expectation of no payoff and no over-

weighting of own information. Baseline performance was highest on the unimodal landscape and lowest on

the needle landscape, which is consistent with the behavioral patterns found by Mason et al. (2008).

Table 1 also shows that the values of the free parameters accounted for the least amount of variance in the

simulated pctmax value on the trimodal landscape. In other words, manipulating the SIM’s free parameters

did not affect its predictions when operating on the trimodal landscape as much as when operating on the

other two landscapes. We speculate that this is because the trimodal landscape yields more uniform payoffs

than the other two landscapes (see Figure 1): guesses on different parts of the landscape do not result in

dramatically different payoffs, and payoffs from other parts of the landscape may be sufficient in and of

themselves to induce exploration. Stochasticity in initial conditions and payoffs thus likely plays a larger

role in a group’s outcomes than it does on the unimodal and needle landscapes.

Figure 6 plots the main effects of each of the three parameters in the different landscapes. It can be

interpreted in exactly the same way as Figure 4, with the important exception that rather than fixing the

other parameters, we calculate means and standard errors across all simulated trials. For example, points

corresponding to a particular value of c show the means of 100 × 11 values of Λ × 10 values of β = 11,000

trials.

Figure 6 gives a richer picture of the main effects shown in Table 1: in Figure 6a, which plots the effects

of the parameters on the unimodal landscape, the lines slope downwards for c and Λ and upwards for β. This

is consistent with the negative coefficients associated with c and Λ and positive coefficient associated with

β in Table 1.7 Section 4 discusses our interpretation of these directional effects. The sign of the coefficients

5To avoid discontinuities that arise at pctmax values of 0, we added 2 × 10−16 to each pctmax value.
6Before the previous transformation, this was .1 and 100.1 for c, 0 and 20 for Λ and 1 and 10 for β.
7Readers may note that the negative marginal effect of β shown in Figure 4a contrasts with the positive main effect of β

shown in Table 1 and Figure 6a. In other words, for agents with c and Λ fixed at their baseline values (14.29 and 0, respectively),

β has a negative effect. However, when the overall effect of β is averaged across all agents with values of c and Λ within the

considered range, it is positive, indicating that β only benefits agents with values of c or Λ that deviate from their baseline
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Table 1: Estimated coefficients on a linear regression of the logodds(max) of our simulations.a

Unimodal Trimodal Needle

Intercept .65 -.89 -12.30

Network structure

Small world -.21 .01 .99

Random -.22 .01 1.04

Lattice -.21 .01 1.02

c -2.21 -.23 10.63

Λ -1.59 .02 11.00

β .08 -.01 -.33

c× Λ 2.51 .18 -14.84

c× β -.13 -.02 (n.s.) .48

Λ× β .04 .01 (n.s.) .15 (n.s.)

c× Λ× β -.03 (n.s.) .00 (n.s.) -.34 (n.s.)

Adjusted R2 .56 .02 .18

a Observations are trials of 15 players interacting over 15 rounds (100 trials per combination of network

structure and parameter values; n = 100 × 4 network structures × 11 values of c × 11 values of Λ × 10

values of β = 484,000). A higher logodds(max) indicates agents in that trial performed better. With six

exceptions, all coefficients are significant at at least the p = .05 level. The exceptions are indicated in the

table by (n.s.).
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(a)

(b)

(c)

Figure 6: Interpretation is the same as Figure 4. Unlike in Figure 4, means and standard errors are computed

across simulations with varying levels of the other parameter values. For example, plots on the left show the

means of 100 × 11 levels of Λ × 10 levels of β simulated trials.
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also generally match the shape of the curves shown in Figures 6b and 6c.

One notable difference between the results presented in Table 1 and Figure 6 is the effect of network

structure: the coefficients on the small world, random and lattice indicators are negative in the models of

the unimodal landscape, indicating that the fully-connected network outperforms the other networks on

these landscapes. On the other hand, the coefficients on these indicators are positive in the models of the

trimodal and needle landscapes, indicating that the fully-connected network underperforms relative to the

other networks on the more complex landscape (although relative performance differs only very slightly on

the trimodal landscape).

However, this pattern is not immediately apparent in Figure 6: for many parameter settings, the line

corresponding to the fully-connected network is above the lines corresponding to the other networks, even

on the needle landscape.

Readers may notice that the points in the leftmost plots of Figure 6 corresponding to very small c are

extreme outliers, especially on the needle landscape. On this landscape, groups composed of agents with

a very small c perform almost an order of magnitude better than other groups. Figure 7 shows the same

analysis but with trials where c < 14.29 (the baseline value) removed. Once these outlying trials no longer

obscure the prevalent effect, the visualized network ordering corresponds to what is suggested by the analysis

in Table 1 and what we discuss in section 4: the fully-connected network outperforms the other networks on

the unimodal landscape, and underperforms relative to the other networks on the needle landscape.

Section 4 discusses why agents who generalize extremely narrowly may perform well on all landscapes,

regardless of complexity. But why is the effect so much more dramatic for agents in the fully-connected

network? One possibility is that this is a function of the difference in the number of connections each

individual has: while the other three networks have on average the same number of edges along which

information can travel between agents, the fully-connected network has many more edges—namely, an edge

for every possible pair of nodes. By virtue of having access to so many more pieces of outcome information,

agents in these networks may both be more likely to stumble across the global maximum and, due to their

narrow internal generalization gradient, unwilling to leave the global maximum once they’ve found it.

Finally, we stress the magnitude of the parameter interactions shown in Table 1. The parameters of the

SIM, largely due to interdependencies imposed by the structure of the model, interact in both synergystic

and counteracting ways in determining group success. Figures 8–10 show how pctmax varies as a function

of two of the SIM’s free parameters simultaneously. In plots of c vs. Λ, β is fixed to 1. In plots of c vs. β,

Λ is fixed to 0. In plots of Λ vs. β, c is fixed to 14.29.

values.
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(a)

(b)

(c)

Figure 7: Interpretation is the same as Figure 6. Unlike in Figure 6, we omit trials where c < 14.29.
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Figure 8: pctmax values on the unimodal landscape for different pairwise combinations of parameter values.

Rows correspond to performance by groups in different network configurations, and columns correspond

to sweeps across combinations of different pairs of parameters (e.g., the leftmost column shows variation in

pctmax when c and Λ are varied). For plots on the left, β is fixed to 1 (no overweighting of own information).

For plots in the center, Λ is fixed to 0 (a prior expectation of no payoff). For plots on the right, c is fixed to

14.29 (corresponding to the gradient of the unimodal and trimodal functions’ global maxima).
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Figure 9: pctmax values on the trimodal landscape for different pairwise combinations of parameter values.

Interpretation is the same as for Figure 8.
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Figure 10: pctmax values on the needle landscape for different pairwise combinations of parameter values.

Interpretation is the same as for Figure 8.
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