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Abstract

Effective problem solving requires both exploration and ex-
ploitation. We analyze data from a group problem-solving task
to gain insight into how people use information from past expe-
riences and from others to achieve explore-exploit trade-offs in
complex environments. The behavior we observe is consistent
with the use of simple, reinforcement-based heuristics. Partic-
ipants increase exploration immediately after experiencing a
low payoff, and decrease exploration immediately after expe-
riencing a high or improved payoff. We suggest that whether
an outcome is perceived as “high” or “low” is a dynamic func-
tion of the outcome information available to participants. The
degree to which the distribution of observed information re-
flects the true range of possible outcomes plays an important
role in determining whether or not this heuristic is adaptive in
a given environment.
Keywords: exploration; exploitation; networks; social learn-
ing

Introduction
Search—a dynamic maximization problem where outcomes
depend on the agent’s location in the problem space—is a
fundamental part of our cognitive experience (Hills et al.,
2015). When in a new city, we sample from different restau-
rants in order to find the best places to eat (Mehlhorn et al.,
2015). When coming up with a new idea for a research
project, the amount of intellectual and social “reward” we ex-
pect to experience is a function of whether the point in con-
ceptual space we’re interested in is novel and appreciated by
others.

Effective search requires both exploration, or sampling
from the space of outcomes to gain information about what’s
available, and exploitation, or taking advantage of the infor-
mation available and resampling from places known to pro-
duce good outcomes. Should the traveller stick with the first
decent restaurant she finds, or keep exploring her options?
Should the scientist stick with her current line of work, or
branch out into unchartered intellectual territory?

We analyze data from a group problem-solving task to gain
insight into how participants use information from past ex-
periences and from others to achieve explore-exploit trade-
offs in rugged, networked environments. When the world is
uncertain, complex and interconnected, the optimal trade-off

between exploration and exploitation depends on the degree
of complexity, on the extent of interconnectedness—and on
the strategies individuals adopt to process and act on the in-
formation they encounter (Barkoczi, Analytis, & Wu, 2016;
Barkoczi & Galesic, 2016; Toyokawa, Whalen, & Laland,
2019). In some cases, we may adapt our exploration level
to the environment we’re in, even when the shape of the envi-
ronment is unknown to us (Mason & Watts, 2012).

We add to existing work that has looked at behavioral pat-
terns of exploration in different environments, and examine
the mechanisms that lead to the individual- and group-level
patterns we observe. Our contributions are both method-
ological and theoretical. From a methodological perspec-
tive, we specify a generalization gradient and propose it as a
useful measure of both individual- and group-level exploita-
tion in smooth search spaces. From a theoretical perspec-
tive, we document exploration patterns and systematic behav-
ioral responses to outcome information. We find that context-
dependent explore-exploit trade-offs emerge even when par-
ticipants are not told what kind of environment they’re in, and
speculate that differences in exploration patterns can be ex-
plained by differences in the outcome information available
to participants.

Methods
Experimental paradigm
We analyzed data from the group search task designed and
implemented by Mason, Jones, and Goldstone (2008). Each
participant guessed numbers between 0 and 100 and a com-
puter revealed to them how many points were obtained from
the guess by consulting a hidden fitness function1 that trans-
lates a guess into a number of points. Random noise was
added to these points so that repeated sampling was neces-
sary to accurately determine the underlying function relating
guesses to scores. On each trial, a group of participants was
assigned to one of several conditions (discussed below). Tri-
als consisted of 15 rounds, over which each member of the

1We will use the terms “fitness function” and “fitness landscape”
interchangeably.
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group tried to maximize their total number of earned points.
Importantly, on each round, participants got feedback not
only on how well their own guess fared, but also had access
to information about the actions and outcomes of their neigh-
bors.

Two aspects of the environment were experimentally ma-
nipulated: the social network (the network topology that de-
termines who counts as neighbors) and the complexity of the
task (the shape of the fitness function that converted guesses
to earned points). These are discussed in the sections below.

Figure 1: The network structures and fitness functions used
in Mason et al. (2008). Reproduced from Goldstone et al.
(2013) with permission of the authors.

Social network structure Neighborhoods of participants
were created to reflect random, regular lattice, small world,
or fully connected networks. Examples of the graph topolo-
gies for groups of 10 participants are shown in Figure 1. In
the random graph, connections are randomly created under
the constraint that the resulting graph is connected. Partic-
ipants in random graphs tend to be connected to others via
relatively short paths.

The regular lattice configures a group with an inherent spa-
tial ordering such that people are connected to each other if
and only if they are close to one other. The regular lattice
also captures the notion of social “cliques”: If there is no
short path from A to Z, then there will be no direct connec-
tion from any of A’s neighbors to any of Z’s neighbors. The
paths connecting people are much longer, on average, in lat-
tice than in random graphs.

“Small world networks” have both cliques and a short aver-
age path length (Watts & Strogatz, 1998). From an informa-
tion processing perspective, small-world networks are attrac-
tive because the spatial structure of the networks allows in-
formation search to proceed systematically, and the short-cut
paths allow the search to proceed quickly (Kleinberg, 2000).

A fourth network, a fully connected graph, allowed every
participant to see the guesses and outcomes of every other

Full Small Random Lattice Total
world

Unimodal 11 11 19 11 52
Trimodal 9 12 20 11 52
Needle 28 27 18 28 101

Total 48 50 57 50 205

Table 1: Number of trials of each condition in our data.

participant.

Environmental complexity Three hidden fitness functions
for converting guessed numbers to points were tested across
two experiments. The unimodal function has a single best
solution that can eventually be found with a hill-climbing
method. The trimodal function increased the difficulty of the
search by introducing local maxima. A local maximum is a
solution that is better than all of its immediate neighboring
solutions, yet is not the best solution possible. Thus, a simple
hill-climbing search might not find the best possible solution.
Finally, the needle function has one very broad local max-
imum, and one hard-to-find global maximum.2 The height
and variance of the global maximum in the unimodal condi-
tions, global maximum in the trimodal conditions, and local
maximum in the needle conditions are all equal (the height
of these peaks is 50, while the height of the needle’s global
maximum is 70).

After excluding some trials due to apparently incomplete
data, we used 205 trials in total for our analyses. The number
of trials in each conditions is reported in Table 1. The number
of players in each trial ranged from 5 to 19, with a mean of
11.89 (SD = 4.05).3

Measuring exploration
To measure the degree to which a sequence of guesses ex-
ploited a location of the search space (or, conversely, didn’t
explore the space), we developed a similarity metric (here-
after referred to as similarity) that captures the average degree
of closeness of all pairwise combinations of the elements of a
set of guesses along a generalization gradient4 adapted to the
specific problem space:

similarity(Gi,G j) = e−(
Gi−G j

c )2

2Mason et al. (2008) collected data on variations of the needle
function in two separate experiments. In our analyses, when refer-
ring to the needle conditions we pooled data from the two experi-
ments.

3Each group of participants was assigned to several conditions
in sequence (for more details on the experimental procedure, see
Mason et al. (2008)). We consider a “trial” to be uniquely specified
by a combination of a group and a condition. In other words, if a
group completed the task in n conditions, this is recorded in Table 1
as n distinct observations.

4A generalization gradient is a function that transforms distance
in some space to distance in another—usually more psychologically
interesting—space.
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where c = .07 was set to reflect the variance of the global
maxima on the unimodal and trimodal landscapes, and the
local maxima on the needle landscapes. The total average
similarity of a group of guesses G is

similarity(G) =
∑i, j similarity(Gi,G j)−n

n2−n

where n = |G|. We use 1− similarity(G) as our measure
of the degree to which G spans—or explores—the problem
space.

While other measures, such as variance or the average
volatility measure developed by Mason et al. (2008), capture
the average distance between guesses, they do not directly
capture the idea of the extent to which a set of guesses spans
the problem space. Consider a participant A who alternates
between guessing 0 and 100, and a participant B who guesses
a number at every multiple of 10. We’d like to say that B is
the better explorer, because their guesses are spread across
the landscape. However, the variance and average volatility
of participant A’s guesses are much higher than the variance
and volatility of B’s guesses. By taking the average of all
pairwise combinations of guesses, our similarity metric cap-
tures the spread of guesses, rather than simply the extent of
their range.

In addition, our metric captures the intuition that similarity
drops off steeply with the distance between two nearby solu-
tions, but quickly flattens out (see Figure 2). The choices to
jump 99 or 100 units away from where one is are considered
effectively identical, while the choices to jump 0 or 1 unit
away are much less similar.5

Figure 2: The shape of the generalization gradient underlying
the similarity metric.

Some evidence suggests that a gradient of this form is a
good approximation of how people make inferences about un-

5The Gaussian shape of the fitness functions is compatible with
the Gaussian similarity drop-off gradient we used. While this cap-
tures many of the same intuitions, it differs from the well-known
exponential similarity function (Shepard, 1987). All our results are
robust to the use of an exponential similarity function.

seen locations in spatial search tasks (Wu, Schulz, Speeken-
brink, Nelson, & Meder, 2018). However, here we invoke
similarity only to operationalize the degree of “exploratory-
ness” of a set of guesses, not to model participants’ infer-
ences.

Exploration patterns
Individual exploration
Figure 3 shows the heterogeneity in the amount of exploration
between participants. Higher density on the right side of the
histograms indicates that participants in that condition tended
to distribute their guesses more evenly across the problem
space.

Figure 3: Histogram of participant-level exploration levels.
A participant i who makes a sequence of guesses Gi has an
exploration level equal to 1− similarity(Gi). The green lines
indicate the global mean and standard error of exploration
levels across participants in all conditions (.408 (SE = .004)).
The red lines indicate the mean and standard error of explo-
ration levels across all participants within the respective con-
dition. If a person participated in several conditions, they are
treated as a separate participant in each condition.

Individuals tend to explore less than average on the uni-
modal landscapes, which were explicitly constructed so that
their global maxima were easy to find. When the best solu-
tion can be found with very little exploration, more extensive
search may just lead to foregone payoffs rather than valuable
information. We tested this intuition by looking at the corre-
lation between participants’ exploration levels and their av-
erage payoffs. As expected, this correlation is much lower
on the unimodal landscapes than on the more complex land-
scapes.
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Exploration levels tend to be lower than average in one
other condition: the fully-connected network on the needle
landscape. Mason et al. (2008) found that when confronted
with the difficulty of the needle landscape, participants tended
to do better when in the sparsely-connected lattice network
(see Figure 1). They speculated that this was because dis-
tributing social information hindered bandwagoning, or col-
lective convergence on the tempting local maximum. Our re-
sults corroborate this speculation: While participants in the
fully-connected networks explore the needle landscape less
than average, the mean exploration level in the lattice net-
works is higher than the global average.

Collective exploration
The similarity metric allows us to calculate the “exploratory-
ness” of an arbitrary sequence of guesses. In particular, we
can also use it to measure group-level, or collective, explo-
ration.

Figure 4 shows the evolution of collective exploration over
rounds, alongside the proportion of participants who were
within one standard deviation of the global maximum on each
round. Collective exploration declines quickly on the uni-
modal and needle landscapes. While this coincides with more
participants finding the global maximum on the unimodal
landscape, the proportion of participants who find the global
maximum in the needle condition remains relatively low.
These patterns reflect dynamics analogous to the individual-
level patterns we discussed in the previous section: The group
explores less when there is a salient local maximum, and es-
pecially so when outcome information is rapidly broadcast
throughout the network.

The consequences of early exploration
Our explanations for many of the results in the previous sec-
tions depend on our assumption that exploration is more im-
portant in some cases than in others. In some environments,
low exploration may cause high payoffs; quick convergence
on promising areas of the landscape may cause the average
payoff to rise. In others, maintaining a high amount of explo-
ration and broadly surveying the problem space could lead to
subsequently higher payoffs. This section further unpacks the
sequentially contingent relationship between exploration and
expected reward in the different conditions.

Figure 5 plots the cross-correlations between average pay-
offs and the collective exploration level within a round. It’s
unsurprising that all the correlations are below zero; as shown
Figure 4, collective exploration subsides while payoffs in-
crease over time. More informative for our purposes is the
difference between the correlation of early exploration with
later payoffs, and the correlation of early payoffs with later
exploration. An interpretation that exploration causes higher
downstream payoffs would require that the former be higher
than the latter. The insets of the plots shows this difference
for each condition. When the blue line is above zero, this in-
dicates that exploration now is more highly correlated with
payoffs later, than payoffs now are with exploration later.

Figure 4: Collective exploration levels (blue) and propor-
tion of players within one standard deviation of the global
maximum (red) over rounds. Each dot represents one trial.
On round t, group k has an exploration level equal to 1−
similarity(Gk,t) where Gk,t is the set of all guesses the mem-
bers of group k made on that round. The blue line plots the
mean exploration level across trials, and the red line plots the
proportion of all players across trials who were within one
standard deviation of the fitness function’s global maximum.

The positive trend in the inset is most consistent across
the needle and regular lattice conditions. When connectiv-
ity is low and finding the global maximum is especially diffi-
cult, group-level exploration leads to higher downstream pay-
offs. While this pattern is also consistent with an account that
higher payoffs cause quicker collective convergence, the “ex-
ploration leads to downstream payoffs” account has the ad-
vantage that it predicts the particularly strong positive trend
for the needle landscape, which is explicitly designed so that
the global maximum is hard to find without considerable ex-
ploration.

WSLS: Win-shift-less, lose-shift-more
Win-stay, lose-shift (WSLS) is a heuristic applicable to
search tasks by adaptive biological and artificial systems. The
rule is simple: When you’re successful, stay close to where
you currently are. When you’re unsuccessful, move further
away (Bonawitz, Denison, Gopnik, & Griffiths, 2014; Nowak
& Sigmund, 1993; Robbins, 1952).

WSLS is usually applied in contexts with discrete binary
outcomes that can be easily dichotomized into wins and
losses. However, the problem space facing the currently con-
sidered participants, like many real-world problem spaces,
is both smooth—similarity of actions predicts similarity of
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Figure 5: Cross-correlations between group exploration level
and payoffs. On round t, group k has an exploration level
equal to 1 − similarity(Gk,t) where Gk,t is the set of all
guesses the members of group k made on that round. Payoff
observations are the average payoff participants experienced
on round t. A lag of i on the x-axis indicates the correla-
tion between group exploration level at time t and average
payoffs at time t + i. Each dot corresponds to the correlation
using the data from one trial. The red lines plot the corre-
lations across trials. Insets show the difference between the
cross-correlation coefficients at lag i and lag−i for 0≤ i≤ 7.

outcomes—and continuous. In this section, we show that par-
ticipant behavior is consistent with a generalization of WSLS:
The degree to which participants stray from promising loca-
tions varies with both the absolute and relative amount of re-
ward they’ve experienced there. Participants shift less when
they win, and shift more when they lose.

In many situations, WSLS or close variants can lead to ap-
proximately optimal search behavior on intractable problem
spaces (Bonawitz et al., 2014; Robbins, 1952). To the par-
ticipants facing the task at hand, the range of possible out-
comes is unknown. We suggest that they dynamically in-
corporate outcome information into their understanding of
what’s a “win” and what’s a “loss”. When good outcomes
are easy to find, the outcome information participants accu-
mulate accurately reflects the range of attainable payoffs. In
these cases, the application of WSLS-like rules may lead to
adaptive explore-exploit trade-offs. But when the best out-
comes are difficult to find, participants do not get full out-
come information about the range of possible payoffs. They
fail to appropriately calibrate their “shift-more” and “shift-
less” responses. On the needle landscape, WSLS-like rules
may lead participants to prematurely converge on the local

maximum. In short, when good outcomes are hard to find,
information flow is reduced, and individuals cannot appropri-
ately tune their behavior to the relevant search space, result-
ing in suboptimal individual- and group-level outcomes.

Absolute “wins”: Responses to high payoffs

Figure 6 shows how the similarities between participants’
preceding guesses (blue) and subsequent guesses (red) co-
vary with the payoffs they experience. Recall that the sim-
ilarity of two guesses is a measure of the closeness of the
guesses. If a participant’s guesses on round t and round t +1
are more similar than their guesses on round t and round t−1,
we say they are exploiting more on round t +1 than on round
t.

In all conditions, there is some payoff value above which
participants tend to exploit more than explore. The blue ver-
tical lines mark the normalized payoff values where the trend
in participants’ future level of convergence dips below their
past level of convergence—participants begin to shift more
(explore). The red vertical lines indicate payoff values where
the reverse switch occurs—participants begin to shift less (ex-
ploit). In general, participants shift more when payoffs are
low, and shift less when payoffs are high.

Where this switch occurs varies by landscape. We spec-
ulate that these differences are a direct effect of differences
in the outcome information available to participants, and how
they adjust their beliefs about the range of possible payoffs
based on their observations (Parducci, 1965). In the trimodal
conditions, the “switch point” is shifted to the right (partic-
ipants wait for relatively high payoffs before they begin to
settle down), but so is the density of payoff observations. As
shown in Figure 1, payoffs on the trimodal landscape remain
relatively high even when participants stray from the global
maximum. When they observe that locations that lead to
“wins” are distributed widely across the landscape, partici-
pants are more reluctant to settle down.

By contrast, in the needle conditions, both the switch point
and the bulk of the density is shifted towards the left side of
the plot. Few participants stumble upon the narrow global
maximum, and most experienced payoffs are a smaller pro-
portion of the highest possible payoff. The emergent patterns
resemble those in the unimodal conditions because most par-
ticipants do not have outcome information to suggest that they
are not on a well-behaved landscape with a similar payoff dis-
tribution.

Relative “wins”: Responses to improving payoffs

Figure 7 shows how the similarity of participants’ guesses
changes as a function of the difference between their most re-
cently experienced payoffs. Points to the right of the y-axis
correspond to instances where a player had just experienced
an immediate increase in payoff. Points above the x-axis cor-
respond to instances where the player’s round-to-round ex-
ploration level decreased. In general, immediate gains lead to
convergence, and losses lead to continued exploration.
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Figure 6: Experienced payoffs against similarity of guesses.
p(t) denotes the payoff a player experienced at time t (nor-
malized by the height of the global maximum in each con-
dition), and similarity(g(t),g(t ′)) denotes the similarity be-
tween a guess made at time t and a guess made at time t ′.
Each dash corresponds to one experienced outcome. Solid
lines show the estimated Gaussian kernel regressions. Ver-
tical lines mark shifts between exploitation and exploration
(see text).

Note the inverted U-shaped trend recovered by the kernel
regression across the needle landscapes. Participants who
have just experienced an exceptionally large improvement
tend to shift more than those who have just experienced a
moderate improvement. This is consistent with our under-
standing of WSLS as a dynamic process: Participants who
stumble upon the global maximum dynamically adjust their
understanding of the range of possible payoffs, and are less
willing than before to settle with what they have.

Discussion
We argued that the behavioral patterns we observe are con-
sistent with the application of a dynamic, continuous vari-
ant of win-stay, lose-shift. While participants tend to “stay”
in areas where they’ve experienced both high and improving
payoffs, they use information from themselves and others to
adapt their willingness to “stay” and “shift” to their environ-
ment.

One phenomenon we have only briefly addressed is Mason
et al. (2008)’s finding that participants in the lattice network
were more likely than participants on other networks to find
the needle landscapes’ global maxima. Our central claim is
that reduced information flow can lead to suboptimal out-
comes when participants do not have full information about

Figure 7: Differences in experienced payoffs against differ-
ences in similarity of guesses. Notation is the same as in Fig-
ure 6. Each dash corresponds to one experienced outcome.
Solid lines show the estimated Gaussian kernel regressions.

the range of possible payoff values. Why would the net-
work that restricted information flow the most perform the
best when the search task is especially hard?

Visual inspection of Figure 6 suggests that the payoff val-
ues at which participants switch from exploration to exploita-
tion do not vary much as a function of the network structure,
but depend more on the underlying fitness function. The lat-
tice network’s structural restriction of information flow could
mean that it takes participants even longer to reach their
threshold value or “switch point”. Participants may search
longer for “wins”, resulting in more exploration where it mat-
ters the most.

While our analyses were motivated by our desire to under-
stand the relationship between individual- and group-level ex-
ploration dynamics, we did not assume that participants make
this trade-off explicitly. Rather, we suggested that partici-
pants may be using simple heuristics from which an appar-
ent trade-off emerges. We adopted an information processing
framework (Oppenheimer & Kelso, 2015): The environment
affects behavior and outcomes via its effect on the informa-
tion group members receive and broadcast to others. By an-
alyzing participant behavior through the lens of information
flow, we can come closer to understanding what determines
the search conditions under which we do well, and the condi-
tions under which we could do much better.
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