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Abstract
A major challenge for research in Artificial Intelligence (AI)
is to develop systems that can infer humans’ goals and beliefs
when observing their behavior alone (i.e., systems that have
Theory of Mind, ToM). In this research we use a theoretically-
grounded, pre-existent cognitive model to demonstrate the de-
velopment of ToM from observation of other agents’ behavior.
The cognitive model relies on Instance-Based Learning The-
ory (IBLT) of experiential decision making, that distinguishes
it from previous models that are hand-crafted for particular set-
tings, complex, or unable to explain a cognitive development
of ToM. An IBL model was designed to be an observer of
agents’ navigation in gridworld environments and was queried
afterwards to predict the actions of new agents in new (not
experienced before) gridworlds. The IBL observer can infer
and predict potential behaviors from just a few samples of
agents’ past behavior of random and goal-directed reinforce-
ment learning agents. Furthermore the IBL observer is able to
infer the agent’s false belief and pass a classic ToM test com-
monly used in humans. We discuss the advantages of using
IBLT to develop models of ToM, and the potential to predict
human ToM.
Keywords: cognitive model; machine theory of mind;
instance-based learning theory.

Introduction
Theory of mind (ToM) refers to the ability of humans to in-
fer and understand the beliefs, desires, and intentions of oth-
ers (Premack & Woodruff, 1978). ToM is known to develop
very early in life (Wimmer & Perner, 1983; Keysar, Lin, &
Barr, 2003) and it is one of the most important social skills
used to predict others’ behavior and intentions, and to theo-
rize about others’ beliefs and desires in future situations.

Since its origins, Artificial Intelligence (AI) attempted to
“replicate” various human behaviors in computational form,
aiming at passing an imitation game (i.e., Turing Test) (Lake,
Ullman, Tenenbaum, & Gershman, 2017; Turing, 1950):
where a machine behavior would be indistinguishable from
that of a human. AI work on ToM has investigated how hu-
mans “mentalize” robots (machines more generally) and how
human ToM develops when interacting with machines rather
than other humans (Banks, 2019). While this work is ex-
tremely relevant for developing machine representations of
ToM, it does not address the major problem of how to build
an algorithm that can develop ToM from the limited observa-
tion of other agents’ actions; a capability that humans excel
at (Lake et al., 2017; Botvinick et al., 2017).

Recently, researchers built computational architectures of
ToM. A notable example is the work of Baker and colleagues

(Baker, Saxe, & Tenenbaum, 2011; Baker, Jara-Ettinger,
Saxe, & Tenenbaum, 2017). In this work, researchers devel-
oped a Bayesian ToM (BToM) model that is able to predict
and attribute beliefs and desires of other agents, given the ob-
servation of their actions. The BToM uses Bayes’ probabil-
ities and an assumption of utility maximization (i.e., human
rationality) to determine the posterior probability of “mental
states”. Another recent example is the work of Rabinowitz
et al. (2018), who developed a Machine ToM (MToM) archi-
tecture involving three modules: a character net that parses
agents’ past trajectories of navigation in gridworlds; a mental
state net, which parses agents’ trajectories in recent episodes,
that are then used by the prediction net which is queried re-
garding future behaviors of new agents. These authors offer
a set of tests of the observer’s predictions regarding various
types of agents, and a test of recognition of false beliefs, the
Sally-Anne test (Wimmer & Perner, 1983).

Our research builds on these efforts, making the follow-
ing contributions. First, we present a Cognitive Machine
Theory of Mind (CogToM) framework that relies on a gen-
eral cognitive theory of decisions from experience, Instance-
Based Learning Theory (IBLT) (Gonzalez, Lerch, & Lebiere,
2003). Our approach is different from the standard compu-
tational models of ToM, summarized above, in that it uses
the IBL process and the formulations of the ACT-R archi-
tecture (Anderson & Lebiere, 2014) for memory-based in-
ference to demonstrate how ToM develops from observation
of other agents’ actions. Second, we demonstrate that an
IBL model of an observer (i.e, IBL observer) is able to ex-
plain the inferences made by three types of acting agents in
gridworlds: Random, Reinforcement Learning (RL), and IBL
agents. Third, we find that the IBL observer predicts beliefs
and actions of IBL acting agents more accurately than it pre-
dicts the beliefs and actions of RL or Random agents.

Instance-Based Learning Theory
IBLT is a theory of decisions from experience, developed
to explain human learning in dynamic decision environ-
ments (Gonzalez et al., 2003). IBLT provides a decision mak-
ing algorithm and a set of cognitive mechanisms used to im-
plement computational models. The algorithm involves the
recognition and retrieval of past experiences (i.e., instances)
according to their similarity to a current decision situation.

An “instance” in IBLT is a memory unit, that results from
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the potential alternatives evaluated. These are memory rep-
resentations consisting of three elements: a situation (S) (set
of attributes that give a context to the decision, or state s); a
decision (D) (the action taken corresponding to an alternative
in state s, or action a); and a utility (U) (expected utility u or
experienced outcome x of the action taken in a state).

IBLT relies on sub-symbolic mechanisms that have been
discussed extensively (e.g. (Gonzalez et al., 2003; Gonzalez
& Dutt, 2011; Gonzalez, 2013)), but we summarize here for
completeness. Each instance i in memory has a value of Acti-
vation, which represents how readily available that informa-
tion is in memory (Anderson & Lebiere, 2014). A simplified
version of the Activation equation captures how recently and
frequently the considered instances are activated:

Ai = ln

(
∑

t ′∈{1..t−1}
(t− t ′)−d

)
+σ ln

1− γi

γi
, (1)

where d and σ are respectively the decay and noise parame-
ters; t ′ refers to the previous timestamp in which the outcome
of instance i was observed resulting from choosing an action
a at state s. The rightmost term represents the Gaussian noise
for capturing individual variation in activation, and γi is a ran-
dom number drawn from a uniform distribution U(0,1).

Activation of an instance i is used to determine its memory
retrieval probability:

pi =
eAi/τ

∑l eAl/τ
, (2)

where τ = σ
√

2 representing the variability in recalling in-
stances from memory, and l refers to the index of all stored
instances to normalize pi.

The expected utility of taking action a at state s is calcu-
lated through a mechanism in IBLT called Blending:

V (s,a) =
n

∑
i=1

pixi. (3)

Essentially, the blended value is the sum of all the out-
comes weighted by their probability of retrieval, where xi is
the outcome stored in an instance i associated with taking ac-
tion a at state s; pi is the probability of retrieving the instance
i from memory; and n is the number of instances containing
the different outcomes for taking action a at state s up to the
last time.

The choice rule in the model is to select the action a that
has the maximum blended value.

CogToM: A Cognitive Machine Theory of Mind
Framework

In the Cognitive Machine Theory of Mind (CogToM) (Fig 1),
an observer is a cognitive model that builds ToM by observ-
ing the actions of agents that play in a gridworld. The ob-
server makes predictions regarding the agent’s future behav-
ior, such as a next-step action or the agent’s goal in a new

gridworld. The observer should be able to accomplish ToM
given full or partial observation of the agent’s action traces
in past gridworlds. The observer model in CogToM is built
according to IBLT (Gonzalez et al., 2003).

Gridworld
A gridworld is a sequential decision making problem wherein
agents move through a N×N grid to search for targets and
avoid obstacles. We use gridworlds of 11×11 size following
(Rabinowitz et al., 2018) (see Fig 1). A gridworld contains
randomly-located obstacles (black bars) and the number of
obstacles varies from zero (no obstacles) to six with the size
of 1×1. In each grid, there are four goals of different values,
represented as four colored objects (blue, green, orange, and
purple), which are put at random locations that do not over-
lap the obstacles. Starting at a random position (i.e., (x,y)),
the agent (black dot) makes sequential decisions about the
actions to take (i.e., up, down, left, right) to reach one of the
four objects. A sequence of moves from the initial location to
the end location forms a trajectory (dotted red line) which is
produced by the strategy (the sequence of decisions) that the
agent takes.

Generally, a gridworld task can be formulated as a Par-
tially Observable Markov Decision Process (POMDP) as
in (Rabinowitz et al., 2018). Each POMDP M j has a state
space S j, and each square in the grid is called a state s ∈ S j.
At each state s, an agent Ak is required to take an action a
from an action space A j. Each agent follows their policy (i.e.
strategy), to decide how to move around the grid. By execut-
ing its policy πk in the gridworld M j, the agent Ak creates a
trajectory denoted by Tk j = {(st ,at)}T

t=0. If the agent has a
full observation of the grid, POMDP is referred to as MDP.

Models of Acting Agents in the Gridworld
We consider three different types of acting agents that play in
the gridworlds: Random, Reinforcement Learning (RL), and
Instance-based Learning (IBL) agents.

A random agent Ak selects an action a in state s based on
the probability πk(a|s). Precisely, the policy of Ak is drawn
from a Dirichlet distribution πk ∼ Dir(α) with concentration
parameter α, so that ∑a∈A πk(a|s) = 1 and πk(a|s)> 0.

A RL agent uses a tabular form of Q-learning algorithm,
a quintessential temporal difference approach (Sutton, Barto,
et al., 1998). In general, the goal of the RL agent Ak is to es-
timate the optimal state-action values referred to as Q-values,
where Q(s,a) returns the expected future reward of action a
at state s. Initially, all the Q-values are set to zero and then
are iteratively updated. Given enough iterations, the agent
can learn the optimal Q-values denoted by Q∗(s,a), and for
each state s the agent selects the action having the highest Q-
value, π∗k(s) = argmaxa Q∗(s,a). As our main concern is in
the performance of the IBL observer rather than the agents,
we only explore Q-learning agents since the temporal differ-
ence method corresponds closely to the learning behaviors of
humans (Sutton et al., 1998), though the implementation of
different RL algorithms is entirely possible.
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Figure 1: CogToM framework

An IBL agent uses the memory and learning mechanisms
in IBLT. However, we also explore a currently under-studied
situation in IBL models, wherein feedback is sparse and de-
layed. In the gridworld task, the representation of an instance
is defined by a triplet (s,a,x), where x is the observed or ex-
pected outcome resulting from taking action a at state s (i.e.,
the state is the location of the agent, defined by the x-y co-
ordinates) in a certain grid. When making a prediction about
which action a the agent Ak will take at state s, the IBL agent
selects the action with the highest expected utility using the
blended value (Equation 3).

Importantly, the agent only gets the real outcome at the
end of each episode, typically entailing a sequence of trials.
Thus, the IBL agents must learn to update the expected out-
come from the consequent reward or penalty, so that different
instances are either reinforced or penalized accordingly. To
that end, we employ an exploratory mechanism of delayed
feedback in the IBL model, where the actual observed out-
come is assigned equally to all actions taken in a trajectory.
That is, considering the trajectory Tk = {(st ,at)}T

t=0 if the Ak
gets the outcome x′ at the end of the episode (t = T ) then
outcome of executing {(st ,at)}T−1

t=0 is all updated to x′.

IBL Observer
IBL observer is a model that is identical to the IBL agent
(i.e., the theoretical principles of the IBL model are the same).
However, the IBL observer learns from the observations of
the agent’s decisions in the gridworld, while the IBL agent
actually makes the decisions in it.

An instance in the IBL observer is structured in an identical
fashion to the IBL agent. The logic behind the IBL observer
model, however, is that it learns from past observations of
action traces taken by agents in the gridworld, in order to infer
and predict the agent’s behavior in the new gridworld.

The “past experience” of the IBL observer is implemented
as proposed in (Lejarraga, Dutt, & Gonzalez, 2012; Gonza-
lez & Dutt, 2011): inserting “pre-populated instances” in the
model’s memory. The pre-populated instances correspond

to the sequence of decisions the agents made in multiple
episodes. More precisely, each observed trajectory Tk j pro-
duced by an agent Ak following its policy πk in POMDP M j
is structured as pre-populated instances in the IBL observer’s
memory. Presumably, each agent has their true reward signal
Rk that defines their goal and desire (and that is reflected in the
path taken in the task). Derived from the observable actions
of the agent, the observer first needs to infer the agent’s true
reward function which is inaccessible to the IBL observer.
Then based on the inferred reward, the IBL observer makes
the prediction about the agent’s behavior in the new environ-
ment. Simply put, the goal of the observer is not only to infer
the agent’s objectives or rewards but also to learn the path the
agent would take in a new environment derived from the in-
ference. This differentiates our work from the approach of
Inverse Reinforcement Learning (Ng, Russell, et al., 2000)
which is merely aimed at finding a reward function that ex-
plains the given agent’s history of behavior.

Experiments
To evaluate whether the IBL observer model is able to de-
velop ToM (i.e., the ability to predict desires and beliefs of
agents in new gridworld environments), we conducted three
experiments including: (1) an arbitrary goal, (2) a goal-
directed task, and (3) a robust test of ToM: false beliefs.

It is important to emphasize that in these experiments none
of the parameters of any of the models were optimized in any
way. The parameters of the agents’ models and those of the
observer IBL model were “default” values, commonly used
in the literature. The IBL observer’s parameters were σ =
0.25 and d = 0.5 values that come from the ACT-R cognitive
architecture (Anderson & Lebiere, 2014).

Experiment 1: Arbitrary Goal with Random Agents
In this experiment, random agents aim at obtaining one of the
four colored objects within a 31 step limit. We created dif-
ferent types of random agents based on their action strategy,
i.e. their policy πk. In turn, given behavioral trajectories of
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Figure 2: Accuracy of the IBL observer’s prediction about the
Random agents’ initial actions

these random agents on randomly generated gridworlds, the
IBL observer was tasked with predicting the initial action that
each of the random agents in a new gridworld.

More concretely, we defined different random agents by
varying concentration parameter α in each agent’s policy that
was drawn from a Dirichlet distribution πk ∼ Dir(α). If α is
close to 0 then the policy of an agent is characterized to be
near deterministic. Take, for instance, the agent with πk ∼
Dir(α = 0.01), it belongs to the class of agents that is very
likely to head in one specific direction (either up, down, left or
right). Conversely, if πk ∼ Dir(α = 3) then the characteristic
of the agent’s type is far more stochastic.

We trained an IBL observer by letting it observe the tra-
jectory of the corresponding agents that were randomly gen-
erated in various POMDPs. We manipulated the number of
past gridworlds (Npast ) from which the observer could learn
to evaluate its performance.

Experimental Setup. We considered five alternative val-
ues of α = {0.01,0.03,0.1,1,3} and Npast = {0,1,5}. The
number of observed agents for each type is 100, and the ob-
server was trained for each type of agent separately on Npast
gridworlds. Then, given an agent’s position in a new grid-
world, the IBL observer was queried about that agent’s next
action. There was no reward function for the random agents
as consuming any of the four objects terminated the episode.
The accuracy was measured by the proportion of the accu-
rately predicted actions relative to the agent’s true next action.

Results. The average of 100 random agents of each type
are reported in Fig 2. When Npast = 0, the curve is flat and
nearly constant over the different types of agents since the ob-
server’s prediction is independent of α. In contrast, the IBL
observer’s accuracy immediately increases as the number of
past observations increases to Npast = 1 and 5. It is easier for
the IBL observer to predict the agents’ behavior with near de-
terministic policies and the accuracy diminishes as the value
of α increases.

Experiment 2: Goal-Directed Task with RL Agents
The task is set such as that a RL agent is driven by a goal or
reaching a particular object that has the highest reward within
31 steps. Consuming any of the other objects results in the
termination of the episode.

The IBL observer was required to predict the RL agent’s
behavior in a new world, given either full or partial observa-
tion of the agent’s trajectory in a randomly generated training
gridworld (MDP). It is important to stress that even though
the RL agent’s behavior was observable, its reward function
along with its policy were completely unknown to the IBL ob-
server. Hence, the IBL observer’s mission is to learn to infer
which object the agent desires to consume, which is deter-
mined by its reward function and transferable to a new grid-
world, and then to make behavioural predictions of the agent
in the new environment.

We first experimented with the case when the IBL observer
was provided with an RL agent’s full trajectory in the past
gridworld (i.e., full information) and then we inspected how
the IBL observer performed when it was limited to observing
only a partial trajectory (i.e a single action pair in the past
MDP, partial information).

We analyzed the association between IBL observer’s accu-
racy with full or partial information, varying the number of
past MDPs (Npast ), to assess the IBL observer’s predictions
about the RL agent’s behavior in a new gridworld.

(a) True trajectory (b) Predicted trajectory

(c) Predicted next action (d) Predicted consumption

Figure 3: Illustration of the IBL observer’s predictions about
the behaviors of goal-directed agents

Experimental Setup. The discount factor γ and learning
rate in the RL agent’s model were set to 1 and 0.1. Addi-
tionally, each agent Ak was driven by a fixed reward function
that rewards the agent with rk,o ∈ (0,1) for consuming an ob-
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ject o. The vector rk was drawn from a Dirichlet distribution
with concentration parameter α = 0.01, which signified that
the agent Ak was favourably attracted to a specific object.

The agent was also penalized for each move and for walk-
ing into a wall, 0.01 and 0.05, respectively. Given that the
Q-learning algorithm (i.e. the RL agent) only converges to
optimal values under specific conditions (Dayan & Watkins,
1992), and that to be more in line with human reasoning, the
object that the agent consumed by following its sub-optimal
policy with respect to the predefined reward function rk was
considered the ground truth. The agent is arguably not always
successful in obtaining its true goal (i.e., the object with the
highest reward) even though it was trained to be competent at
the task after a certain number of episodes, e.g. 500.

As the agent’s reward function was concealed from the ob-
server, only the observable actions were used for the IBL ob-
server’s training. In case the agent’s full trajectory was pro-
vided, the IBL observer derived from the probability distribu-
tion over the objects consumed by the agent in the past MDP
to learn about the agent’s reward function. When only a sin-
gle action pair was provided (partial information), the IBL
observer was trained to identify the preferred object based on
the movement direction of the agent’s action.

Given the initial location of an agent in a new gridworld,
the IBL observer was queried about: (1) the next-step action
that the RL agent would take, and (2) the object the RL agent
would consume by the end of the episode. We measured the
difference between the RL agent’s true behaviors (the ground
truth) to the IBL observer’s predictions. For the analysis of
partial trajectories, the value Npast was varied from 0 to 10.
The experiment was run on different 100 RL agents, and then,
we averaged the prediction accuracy over these agents.

Results. Fig 3a and 3b illustrate that the IBL observer’s
predicted trajectory of the RL agent in a new gridworld is
qualitatively aligned with the true trajectory of the agent.
Fig 3c and 3d show the IBL observer’s predictions of the
agent’s next action and the object consumption. In the new
gridworld the IBL observer predicts the probability of taking
the action “left” with about 70% accuracy, and the consum-
ing of “blue” object with about 98% accuracy. The average
results from the 100 agents show a mean accuracy in predict-
ing next action is 0.515 ± 0.08 and the goal consumption is
0.687±0.09 with 95% confidence level.

Regarding partial trajectories, Fig 4a and 4b demonstrate
that increasing Npast can lead to the improvement in the IBL
observer’s prediction accuracy of the next-step action and of
the intended goal.

Experiment 3: False-belief Test with three Agents
Similar to Rabinowitz et al. (2018) we tested the IBL observer
for the recognition of agents’ false beliefs using the Sally
Anne test (Baron-Cohen, Leslie, & Frith, 1985; Goodman et
al., 2006). The Sally-Anne test maps onto the gridworld set-
ting as follows (Table 1): we generated a set of gridworlds in
which an agent Ak was trained to be a blue-object-preferring,
but it was required to reach a subgoal (i.e. an additional ob-

(a) Predicted next action (b) Predicted consumed object

Figure 4: Accuracy of the IBL observer’s prediction about the
RL agents’ behavior when varying Npast

Table 1: An overview of simulation design

Sally-Anne test Gridworld task

a) Sally places a marble
in a basket

a) An agent Ak is trained to be a
blue-object-prefereing agent

b) Sally moves away b) Ak is forced to reach a subgoal
c) Anne puts the marble
to a box

c) The location of the preferred object
is swapped

d) Where will Sally look for
her marble when returning
(the basket or the box)?

d) At the subgoal, where will Ak go
to find the preferred blue object
(its original or new location)?

ject) first before returning to consume its preferred blue ob-
ject. During this time, the location of the preferred object
was swapped. Eventually the IBL observer was asked to pre-
dict whether or not the agent Ak would return to the original
location of the blue object.

As the subject of the test, the IBL observer was aware of
the changes in the gridworld (i.e. the swap event), hence it is
expected to indicate that if the agent Ak sees the swap then
Ak it will not go back to the original location, but if the agent
is not aware of the swap then it will return to the original
location of the blue object. This test will signify that the IBL
observer is able to model the agent’s true and false beliefs.

Importantly, in this test we considered three kinds of
agents: Random, RL, and IBL agents. We included an IBL
model as an agent to explore whether the IBL observer would
be more accurate in developing ToM of an IBL agent than of
other models (RL or Random agents) that, by definition, are
less aligned with the IBL observer’s beliefs.

Experimental Setup. We examined the effect of the swap
event on the behavior of the three types of agents, and on the
IBL observers’ performance. We compared how the agents
behaved in the absence and presence of the swap event and
how the IBL observer performed when observing each of the
three types of agents.

When the swap event occurred, the locations of the four
objects were randomly permuted. Moreover, we introduced
a distance variable (dist) to control whether or not an agent
sees the change. If the swap occurred within the agent’s view
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(a) Random agents (b) RL agents (c) IBL agents

Figure 5: Effect of swap events on the agents’ true behavior and on the prediction of IBL observer about the agents’ behavior

(i.e. the distance between the agent’s and the preferred ob-
ject’s location is within a 2-block radius), the agent’ policy
was updated according to the change. Conversely, if the swap
was outside the agent’s view, its policy remained unchanged,
which exhibits a sign of a false belief. The agent was re-
warded with 1 for consuming the subgoal and a particular
preferred object (e.g. the blue object in this experiment).

Since an agent was tasked with consuming the subgoal first
and then the preferred object, only the agent’s policy in the
episodes in which such condition was satisfied were selected
for the IBL observer to learn. Hence, the observer was in-
formed about the distance variable, and it could derive the
agent’s preferred object from looking at what was consumed
after the subgoal. The point here is that the observer must
infer the agent’s beliefs from just observing how the agent
behaved when the swap event occurred and when it did not.

To do that, the observer was trained to observe the relative
importance between the swap distance and the ratio of how
frequently the agent went back to the preferred object’s orig-
inal location over a certain number of episodes (e.g. 500).
For instance, if the swap happened within the agent’s sight
then it was less likely to return to the original location (the
low frequency). In contrast, if the swap event occurred out of
the agent’s view then the frequency of revisiting the original
position was high.

To evaluate the impact of the swap event on the agent’s pol-
icy, we used the Jensen-Shannon divergence (DJS) between
the probability distribution over the locations associated with
the four objects that the agent consumed at the end of the
episode in the swap and no swap conditions. Basically, DJS
scores between 0 (i.e., the two distributions are identical) and
1 (i.e. the two distributions are maximally different). Like-
wise, we measured DJS to study how the swaps would affect
the IBL observers’ prediction about the agents’ behavior.

Results. Fig 5 shows the performance of each of the three
types of agents: Random, RL and IBL agents (100 differ-
ent agents of each type). As we observed, IBL agents out-
perform the RL and Random agents in distinguishing the ab-

sence and the presence of the swap event when it is visible to
the agent (dis≤ 2) (solid line section between swap distance
1 and 2). In particular, when the swap event occurs within the
agents’ view, the IBL model shows a larger divergence score
DJS(swap,¬swap), given that the probability distribution of
the agent’s behavior in swap and no swap events is expected
to be different. When dist > 2, by contrast, the swap event is
invisible to the agent (dot lines), and hence the agent is unable
to recognize the difference between swap and no swap events,
leading DJS(swap,¬swap) to be close to 0. Evidently, the
Random agents completely fail to differentiate between these
two events since its DJS is small and nearly constant regard-
less the swap distance.

Fig 5 further reports the results obtained from the IBL ob-
server, when observing 100 agents for each type of Random,
RL, IBL agents in terms of DJS. The IBL observers can make
the predictions that qualitatively resemble the RL and IBL
agents’ true behaviors. This, however, does not hold for the
Random agents since when the swap occurred but not visible
to the agents, the Random agents still were less likely to turn
back to the original location due to their random characteris-
tics. As a result, the IBL observer mistakenly learned that the
agents saw the swap so they moved away, which results in the
increase of DJS.

Finally, we measured the differences between the predic-
tions of the IBL observer about the agents’ behavior in terms
of Root Mean Square Error (RMSE). The RMSE in predict-
ing the Random, RL and IBL agents’ actions is 0.242, 0.071
and 0.048, respectively. The result corroborates our hypothe-
sis that the IBL observer can provide better predictions about
the IBL agents than other agents.

Conclusions
We introduce CogToM, that uses a cognitive model gener-
ated from IBLT (Gonzalez et al., 2003) to demonstrate the
development of ToM from observation of actions of acting
agents. This is an advancement over current models of ToM,
given that IBL models are cognitively plausible and rely of a
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generic theory of decisions from experience. Standard com-
putational models of ToM often make unrealistic assumptions
about the rationality of the agents (Baker et al., 2017) and re-
quire of complex architectures or complex Machine Learning
approaches (Rabinowitz et al., 2018).

We demonstrate a memory-based inference process that
uses simple cognitive mechanisms derived from theoretical
principles of human cognition. The advantages of using a
theoretically-grounded approach are that we are able to ex-
plain human inductive learning processes without the need of
relying on unrealistic assumptions of human rationality, large
amounts of data, or complex models.

Results from our experiments illustrate the ability of the
IBL observer to predict next action, beliefs and false beliefs in
novel situations after minimal observations of the actions of
other agents. Interestingly, an IBL observer is able to predict
false beliefs of an IBL agent better than the false beliefs of
random and RL agents. Given the recognized ability of IBL
models to replicate human behavior (Gonzalez & Dutt, 2011;
Gonzalez, 2013; Hertwig, 2015; Lejarraga et al., 2012), this
result suggests the IBL model would be able to predict the
acting agents’ beliefs and actions in similar ways as humans
would, although this demonstration is left for future research.
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