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Abstract 

Sterman (1989) proposed that decision makers misperceive 
the feedback provided by dynamically complex environments, 
and questioned whether people can learn to make effective 
decisions in such environments. We provide empirical 
evidence of learning in a well-known dynamic environment 
called the beer game. We then describe a preliminary version 
of an instance-based, dynamic decision making model built 
using the ACT-R cognitive architecture. The model mimics 
the general patterns of human behavior observed for 
aggregate performance across trials and local performance 
within trials. Implications for research on dynamic decision 
making are summarized. 

Introduction 
Dynamic Decision Making (DDM) requires a series of 
interdependent decisions in an environment whose state 
evolves over time (see Brehmer, 1992, for a review of 
DDM). Dynamic decisions often involve choosing control 
inputs for a dynamic system in a manner that achieves or 
maintains a desired system state (e.g., a state of 
equilibrium). 

The beer game is a dynamic system used extensively to 
study the way decision makers perform when confronted by 
dynamic complexity. Thousands of people from all over the 
world, ranging from high school students to chief executive 
officers and government officials, have played the beer 
game to learn the basic concepts of operations management 
(Sterman, 2004).  

The beer game is not really about beer, and it is not really 
a game. It is a learning environment of the type called 
management flight simulators (Sterman, 2004). It provides 
players an interactive experience that demonstrates the 
impact of time delays and feedback loops on supply-chain 
management, and more generally, on coordination among 
levels in an organization. 

In particular this game has been used to demonstrate the 
bullwhip effect, a costly real world phenomenon in which 
orders oscillate, in increasing amplitude, as one moves 

farther up the supply chain (Croson and Donohue, 2002). 
Sterman (1989, 2004) has demonstrated the bullwhip effect 
in multiple beer game experiments, and has concluded that 
individuals do not learn to control the system because they 
misperceive the feedback provided by dynamic systems. 
Similar results and misperception-of-feedback explanations 
can be found in other studies (see Croson & Donohue, 2002, 
for a review of beer game experiments). 

We contend that participants in previous experiments 
performed poorly simply because they did not have enough 
practice with the system, giving them little opportunity to 
learn. Proficient DDM typically requires extended practice 
with a system, presumably because it gives decision makers 
a chance to learn the system dynamics important for control 
(Kerstholt and Raaijmakers, 1997). 

This paper contributes to the current state of affairs in two 
ways. First, it provides evidence that people learn to 
adequately control the supply chain when given extended 
practice. Second, it offers an explanation as to how people 
learn to control the system by providing an ACT-R 
cognitive model of the learning process. 

In the next section we describe the beer game and 
bullwhip effect in more detail. We then present our study on 
the effect of extended practice. Next we present the ACT-R 
cognitive model and comparisons between the model and 
human. Finally we conclude and present future directions 
for research. 

The Beer Game 
The beer game represents a simplified supply chain 
consisting of a single retailer who supplies beer to 
consumers (simulated as an external demand function), a 
single wholesaler who supplies beer to the retailer, a 
distributor who supplies the wholesaler, and a factory that 
brews the beer (it obtains it from an inexhaustible external 
supply) and supplies the distributor. 

Individuals play the game in groups of four, with each 
participant playing the role of one of the four facilities. 
Their goal is to minimize the cost for the entire supply 



chain. Each player contributes to this goal by ordering beer 
from their respective supplier in a manner that maintains 
enough beer in their respective inventory to meet the 
demand from their respective customer (i.e., the facility they 
supply, or the consumer in the case of the retailer).  

Costs accrue as follows.  Each week, each player is 
charged a 50¢ holding fee for each case of beer in their 
inventory.   If inventory is too small to meet demand, the 
shortage is backlogged to be filled as soon as possible.  
Players are charged a weekly $1 shortage fee for each case 
of backordered beer. The basic strategy, therefore, is to 
minimize inventory while avoiding backorders. 

The dynamics of the beer game make successful 
performance difficult. Each week, each player receives an 
order from their customer, starting with the retailer and 
working upstream in the supply chain toward the factory. 
The customer’s order is filled with available inventory, and 
then the player orders more beer from their supplier to 
replenish the loss from their inventory.  

Difficulties arise because players must anticipate demand, 
as there is a one week delay between when an order is 
placed and when the supplier receives the order. Assuming 
that the supplier has enough inventory, there is an additional 
two week transportation delay before the player receives the 
ordered beer. If the supplier’s inventory is too small to fill 
the order, additional delays will occur. 

The Bullwhip Effect and Experimental Economics 
Researchers have identified several causes for the bullwhip 
effect (Croson & Donohue, 2002). Rational decision makers 
must use current demand to forecast future demand in an 
effort to control the impact of order delays, transport delays, 
production delays, etc. on inventory. Forecasts based on 
simple ordering formulae (e.g., moving averages) lead to the 
bullwhip effect. Ordering in batches (e.g., monthly instead 
of daily) can also create the bullwhip effect. Other causes 
include fluctuating prices which lead to forward buying, and 
rationing where suppliers divide limited inventory among 
customers who then inflate their orders to get a bigger share. 

The beer game is much simpler than real world supply 
chains. Players have no incentive for forward buying 
because prices are fixed. Order batching is less likely 
because the frequency with which orders are placed is fixed 
at one per week. Rationing is not possible because each 
facility in the supply chain has only one customer. Finally, 
in the standard scenario, external consumer demand starts at 
a constant of 4 cases of beer per week and then jumps to a 
constant of 8 cases per week at the fifth week and remains 
there for the remainder of what is typically a 52 week 
scenario. 

Sterman (1989) demonstrated that the bullwhip effect 
emerges even though the beer game presents participants 
with a nearly ideal supply chain; participants’ orders 
oscillated, and grew in amplitude as orders propagated 
upstream. This produced oscillations in each participant’s 
net inventory (i.e., inventory – backorders), which also grew 
in amplitude the farther the facility was from the external 
consumer. The end result was a supply chain whose 

operations costs exceeded “optimal” costs by almost 10-
fold. 

Based on this finding, along with similar findings from 
experiments with simulations of other supply chains, 
Sterman (1989) concluded that people misperceive the 
feedback provided by dynamic systems. According to the 
misperception of feedback hypothesis, people lack the 
cognitive machinery to comprehend the dynamic 
complexity produced by the causal and temporal 
relationships among system variables. Dynamic complexity 
is created by delays in a system’s response (e.g., transport 
and order delays), feedback loops, stocks and flows, and 
nonlinear relationships among system variables. All are 
commonly found in dynamic systems, and all are present in 
the beer game. 

Extended Practice Experiment 
In its strongest form, the misperception of feedback 
hypothesis implies that people simply cannot learn to 
control dynamically complex systems. Indeed, researchers 
often demonstrate that individuals cannot understand the 
‘basic building blocks’ of systems thinking such as the 
concept of stocks and flows (e.g., Jensen & Brehmer, 2003; 
Sweeney & Sterman, 2000). This position however, cannot 
explain how experts in the real world can perform 
effectively in highly complex dynamic systems such as air 
traffic control. 

A possibility we address here is that although people may 
not understand the building blocks of dynamic systems, 
extended practice may help individuals learn to control a 
dynamic system because it gives them the opportunity to 
learn the relationships between control inputs and system 
outputs, and how to anticipate common situations (Kerstholt 
and Raaijmakers, 1997). 

Our experiment required playing the beer game for 20 
trials, where each trial used the standard 52-week scenario 
(described above). The experiment, therefore, required a 
total of 1,040 ordering decisions in contrast to the typical 
single-trial experiment that requires a one-time run of 52 
weeks and thus 52 ordering decisions. 

This experiment simplified game play in two ways. First, 
participants played alone rather than in teams. Participants 
played the role of the distributor and the computer played 
the remaining roles. Second, the computerized players 
simply ordered the demand. Thus, variability was not added 
to the external customer demand as it propagated upstream 
through the supply chain. 

Method 
Participants. Thirteen Carnegie Mellon University students 
participated for payment. Participants were paid a base rate 
of $10, plus performance bonuses of up to $16 (see below). 
 
Procedure. We developed a computerized version of the 
beer game that presents information in the same way as the 
in the Systems Dynamics Group www site 
(http://beergame.mit.edu/). A screenshot of this simulation 
is presented in Figure 1. 

 



  Figure 1: Screenshot of the Beer Game Simulation 

The simulation provided information only about the 
inventory and supply line of the role played by the 
participant (distributor). Also, only the participant’s 
cumulative cost was displayed. As in the www simulation, 
the last week’s back order, and this week’s demand and 
satisfied demands were displayed.  

Participants played the 52-week scenario 20 times. They 
were instructed to minimize their total cost by ordering beer 
each week in a manner that allowed them to meet their 
customer’s demand (i.e., the wholesaler’s weekly orders). 
They were told about the cumulative weekly charges, the 
one week ordering delay, the two week transportation delay, 
and the possibility that if their supplier (i.e., the factory) 
could not fill their order, the transportation delay would be 
longer because of the time it takes the factory to transport 
raw materials.. 

The bonus pay schedule was then described. Trials were 
divided into four blocks of five. A $4 bonus was given for 
each block of trials in which the designated performance 
target was achieved at least once. Performance targets (total 
costs), based on 11 pilot study participants, grew more 
stringent over the time course of the experiment. The 
performance targets for blocks 1-4 were total costs of 750, 
650, 550, and 450, respectively. (The minimum total cost 
possible was 396; there were no practical limitations on 
maximum total cost possible.) 

To familiarize participants with the system they played a 
short 10-week scenario with random external demand. 
Questions were addressed during this time. Afterward, they 
played the standard scenario 20 times. 

Results  
One participant did not complete the 20 trials, so their data 
set was not considered subsequently. The data set of a 
second participant was removed after an outlier analysis. 

Figure 2 shows the mean cost per trial. A one-way 
repeated-measures ANOVA using total cost as a dependent 
variable indicates that performance improved with practice, 
F(19,190) = 3.4, p < .05. Helmert contrasts (e.g., Judd & 
McClelland, 1989) indicate that performance gradually 
improved until about the ninth trial. 

 

Figures 3, 4 and 5 depict performance within trials 1, 9, 
and 20 respectively. Each shows net inventory (inventory – 
backorders) across the time course of the 52-week scenario. 
A net inventory of 0 is ideal. 

As Figure 3 shows, our participants exhibited the same 
behavior as that reported in previous studies. The net 
inventory oscillates around the ideal of 0. The large 
deviations from 0, in turn, produce high total costs. 

The 3-week delay between placing and receiving orders 
inevitably leads to back-orders when external consumer 
demand jumps from 4 to 8 cases per week. (The distributor 
sees the jump at week 7.) This sudden increase in demand 
creates a shortage which must be corrected by ordering 
more beer than indicated by current demand. Too much beer 
is ordered, creating a slight overshoot in ideal inventory as 
indicated by the second cycle of positive net inventory. To 
correct for the overshoot, orders are cut back below current 
demand, creating yet another cycle of inventory shortages.  

As with the control of any system with response delays, 
the only way to avoid oscillations in net inventory is to 
anticipate demand. Figure 4 shows that by Trial 9 the 
oscillations in net inventory are still present but participants 
have learned to dampen them. As can be seen, they 
anticipate the step increase in external consumer demand 
and build inventory prior to the increase in demand. The 
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Figure 2: Cumulative Cost as a Function of Practice
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Figure 3: Net Inventory per Week in Trial 1 



build-up, however, is not yet sufficient, which leads to back-
orders and negative net inventory. They continue to 
overcorrect for back-orders, as indicated by the second cycle 
of positive net inventory. 

Figure 5 shows that participants have learned to mostly 
avoid oscillations in net inventory by Trial 20. The 
dampening of oscillations between Trials 9 and 20 seems to 
appear because participants have learned how to correct for 
back-orders without overshooting the desired net inventory 
of 0.  

ACT-R Plays the Beer Game 
Our participants learned to play the beer game. But what 

did they learn, and how did they do it? Gonzalez, Lerch, and 
Lebiere (2003) proposed Instance-Based Learning Theory 
(IBLT) to account for DDM performance and concurrent 
learning processes. IBLT has been successfully applied to 
multiple dynamic tasks including the Sugar Production 
Factory and the Tansportation task among others (see 
Gonzalez and Lebiere, in press).  

The gist of IBLT is that dynamic decisions are made by 
comparing current situations with previously experienced 
situations. If a similar situation is recalled, the decision 
associated with that situation is used as an anchor that is 
adjusted to fit the current situation. Learning occurs as 

decision makers gradually shift from using simple decision 
making heuristics to the instance-based anchoring and 
adjustment process.  

IBLT, as implemented in ACT-R, provides a simple 
explanation of the observed dissociation between 
verbalizable knowledge and DDM performance (e.g., Berry 
& Broadbent, 1984). According to IBLT each judgment of 
an alternative creates an instance, which is represented as a 
chunk in declarative memory in ACT-R. The slots in the 
chunks represent the situation, the decision made, and the 
expected utility of that decision. As declarative knowledge, 
each instance can be verbalized. However, the subsymbolic 
parameters that control the retrieval and application of 
instances (e.g., base-level activation, similarity among 
chunks, and strengths of association) are not consciously 
accessible. These subsymbolic parameters represent implicit 
knowledge of the system, and underlie DDM performance. 
The implication is that DDM tasks can be learned without 
explicitly encoding structural and temporal relationships 
among system variables.  

In accordance with IBLT, we enforced the following 
constraints for modeling beer game performance in ACT-R. 
First, we represented information only if it was directly 
available to participants. Second, we represented 
information only if participants paid attention to it – as 
indicated by think-aloud protocols from two additional beer 
game participants. Third, we avoided clever engineering by 
using only those cognitive mechanisms inherent in ACT-R. 
This includes using recommended default values for all 
parameters. 

We have also imposed two additional constraints on our 
modeling efforts to date. The declarative chunks described 
by Gonzalez et al. (2003) contained slots that represented 
expected utility. In that model, feedback mechanisms were 
used to adjust expected utilities. Subsequent application of 
those instances then depended on their expected utility. We 
do not include slots for expected utility in the beer game 
model because of the complications arising from delayed 
feedback, and the difficulties associated with determining 
utility. The second additional constraint is that the model 
reported here uses partial matching only. Base-level 
learning and blending mechanisms, as used in Gonzalez et 
al. (2003), have not been used so far.  

Because the model operates in a task where contextual 
attributes vary continuously (e.g., the number of cases of 
beer in inventory, back-order, etc.), exact matches between 
context and relevant instances are rare. Partial matching 
provides a mechanism for retrieving chunks with attribute 
values that are similar to the current context. Thus, relevant 
chunks can be retrieved even though they do not exactly 
match the retrieval cues provided by the current context 
(i.e., the values of the slots in the goal buffer).  

Specifically, the chunk with the highest match score will 
be retrieved if its activation is higher than the retrieval 
threshold (-1.0 in our case), where match score Mip is a 
function of the activation of chunk i in production p 
(including transient activation noise, .25 in our case) and its 
degree of mismatch to the desired values: 
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Figure 5: Net Inventory per Week in Trial 20

Figure 4: Net Inventory per Week in Trial 9 
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In the partial matching equation above, MP is a mismatch 
penalty constant (1.5 in our case), while Sim(v,d) represents 
the similarity between the desired value v in the goal and the 
actual value d in the retrieved chunk.  We used a negatively 
accelerated similarity function.  

The Model 
Based on performance, it appears that participants learned: 
(1) to anticipate the increase in demand and (2) to adjust the 
size of their orders so that the amplitude of oscillations in 
net inventory progressively decrease. For our model, we 
started with the simple heuristic of ordering the demand to 
replace inventory losses. Verbal protocols indicated that 
participants frequently examined back-orders and/or 
inventory immediately after placing an order – even though 
the change due to that order would not occur until at least 3 
weeks later. This observation prompted the addition of slots 
that represented the changes in back-order and inventory. 
We then added several more simple heuristics that increase 
or decrease the base order (i.e., order the demand) according 
to changes in back-order and/or inventory. These heuristics 
form the core of the model, and are engaged in the creation 
of all instances. 

At the beginning of each ordering cycle, the model 
assesses changes in inventory and back-orders, and then 
attempts to retrieve a relevant instance from declarative 
memory. The retrieval cue is constructed by projecting the 
current state of the system onto the next state. That is, 
current inventory is multiplied by the inventory change that 
occurred upon entering the current state to produce an 
expected inventory. An expected back-order is constructed 
similarly. Expected inventory and expected back-order are 
then used as retrieval cues.  

If the retrieval fails, the heuristics described above are 
applied to the current demand.  If the retrieval is successful, 
three pieces of information from the projected state are used 
to construct the current order. First, the demand slot from 
the projected state indicates the expected demand. The 
expected demand becomes the current base order. (Notice 
that this is similar to the first heuristic we created, if it is 
recognized that expected demand equals current demand in 
unfamiliar situations.) Retrieval of expected demand thus 
provides a mechanism by which the model can learn to 
anticipate the increase in demand.  

The next two pieces of information correspond to the 
changes in inventory and back-orders that produced the 
projected state. These may be thought of as the size of the 
adjustments that lead into the projected state, and thus the 
size of the adjustment that should be made to the current 
base order.  

Results 
The results reported herein use the mean of 11 simulated 
subjects based on the model described above, each playing 
the beer game 20 times in the standard scenario as human 
participants did. 

The model’s mean learning curve approximates the 
humans’ mean learning curve in terms of Total Cost, r2 = 
.875 (see Figure 6). The model does not perform quite as 

well as humans but it appears to learn more quickly than 
humans do. The addition of blending might be expected to 
help with both of these defects.  

Building an ACT-R model that exhibits a learning curve 
for an aggregate performance measure (i.e., total cost) is 
fairly straightforward. It is more important for our current 
efforts that the model learns to control inventory in a 
manner consistent with that demonstrated by our 
participants. We can assess this by examining how the 
patterns of net inventory over weeks in the scenario match 
those produced by humans.  

Figures 7, 8 and 9 depict the model’s mean performance 
in terms of net inventory for trials 1, 9, and 20 respectively. 
The pattern of the model’s performance in trial 1 (see Figure 
7) closely mimics that produced by humans. It exhibits the 
large oscillations in net inventory, along with the 
overcorrections demonstrated by humans. One difference in 
the pattern is that the model’s cycles of net inventory 
oscillations have greater amplitude than those of humans. 
The model also appears to be already learning to dampen 
the oscillations in net inventory, whereas humans 
demonstrated a second cycle that was roughly of the same 
amplitude as their first.  

-50

-40

-30

-20

-10

0

10

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Week

N
et

 In
ve

nt
or

y 

Model
Data

 
Figure 7: Model’s Net Inventory per Week for Trial 1. 

By trial 9 the model, like the humans, has learned to 
partially anticipate the increase in demand, and has learned 
how to decrease the amplitude of the oscillations in net 
inventory (see Figure 8). Overall, the pattern of the model’s 
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Figure 6: Practice Effect for Model and Humans 



performance is similar to that of humans. One difference is 
that humans tended to be biased toward a positive inventory, 
whereas the model appears to be biased toward a negative 
inventory. This is probably due to the fact that the model, at 
this point, does not take into account the difference in costs 
associated with inventory versus back-orders.  
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Figure 8: Model’s Net Inventory per Week for Trial 9. 

By Trial 20 the model’s performance indicates further 
dampening of net inventory oscillations (see Figure 9). 
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Figure 9: Model’s Net Inventory per Week for Trial 20 

Conclusions 
Learning in dynamic environments is particularly 
challenging due to the complexity of dynamic problems and 
cognitive limitations, but our behavioral data showed 
considerable performance improvements with extended 
practice in a dynamic task. Our simplifications to the beer 
game removed the uncertainty in demand created by other 
players, raising a question of whether it is dynamic 
complexity or uncertainty that hinder learning. 

The cognitive model and the closeness to human data 
have demonstrated that IBLT implemented on top of a 
cognitive architecture provides a constrained and reasonably 
accurate model of the learning process dynamic tasks. The 
results from the cognitive model support the prediction from 
IBLT that decision making in dynamic environments is a 
learning rather than an optimizing process. Humans learn to 
make better decisions by noticing the changes in an 
environment, storing examples of each situation 

experienced, and predicting future situations based on past 
experience.  

Although encouraging, the results presented in this paper 
are however, far from conclusive. An interesting avenue for 
future research concerns the robustness of instance-based 
learning. If people primarily learn the input-output 
relationships in a dynamic environment rather than more 
abstract characteristics of dynamic systems, questions arise 
as to whether and how this type of learning transfers to 
varying environmental conditions. Our current experimental 
research is examining this, and is providing preliminary 
evidence of transfer of knowledge. 
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