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We propose a model for demonstrating spontaneous emergence of collective intelligent behavior
(i.e., adaptation and resilience of a social system) from selfish individual agents. Agents’ behavior
is modeled using our proposed selfish algorithm (SA) with three learning mechanisms: reinforced
learning (SAL), trust (SAT ) and connection (SAC). Each of these mechanisms provides a distinctly
different way an agent can increase the individual benefit accrued through playing the prisoner’s
dilemma game (PDG ) with other agents. SAL generates adaptive reciprocity between the agents
with a level of mutual cooperation that depends on the temptation of the individuals to cheat.
Adding SAT or SAC to SAL improves the adaptive reciprocity between selfish agents, raising the
level of mutual cooperation. Importantly, the mechanisms in the SA are self-tuned by the internal
dynamics that depend only on the change in the agent’s own payoffs. This is in contrast to any
pre-established reciprocity mechanism (e.g., predefined connections among agents) or awareness of
the behavior or payoffs of other agents. Also, we study adaptation and resilience of the social
systems utilizing SA by turning some of the agents to zealots to show that agents reconstruct the
reciprocity structure in such a way to eliminate the zealots from getting advantage of a cooperative
environment. The implications and applications of the SA are discussed.
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I. INTRODUCTION

It is nearly two centuries since Lloyd [1] introduced
the tragedy of the commons scenario to highlight the
limitations of human rationality in a social context. In
a scenario in which individuals must share a common re-
source, individuals acting selfishly, without regard for the
others sharing the resource, will result in the depletion
of resources and subsequent tragedy. But, one can find
a number of weaknesses in this arcane argument, which
we pose here as questions. Do people always (or ever)
behave strictly rationally? Do individuals ever act inde-
pendently of what others in their community are doing?
Do people typically disregard the effects of their actions
on the behavior of others?

Reciprocity, the act of behaving towards others in ways
that would result in mutual benefit, has been a common
answer to the questions posed above. To explain why
people behave rationally and whether people care about
the effects that their actions would have on a common
good, researchers have used predefined norms of reci-
procity between agents, such as network reciprocity [4–9],
reputation [10, 11], social diversity [12], aspiration [13],
punishment [14] and reward [15]. This research has re-
sulted in significant advancements in understanding the
emergence of collective behavior, however there are also
limitations on the assumptions of predefined reciprocity.
First, reciprocity often relies on having explicit knowl-
edge of the decisions others make along with their pay-
offs; second, reciprocity often assumes the existence of a
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network structure where agents are linked to each other
in some way.

In contrast to much of past research, we address the
problem of collective intelligence as an emergent phe-
nomenon, with a model that does not assume any pre-
defined reciprocity. In our proposed algorithm (Selfish
Algorithm, SA), agents learn about their dynamic social
environment by tracking changes in their own payoffs in
response to changes in society and adjust their actions
accordingly. We show that reciprocity emerges between
agents’ mutual interactions and leads them toward sta-
ble cooperative behaviour in a Prisoner’s Dilemma game
(PDG). We also demonstrate that network reciprocity
emerges spontaneously, from the selfish mechanisms of
the model. Finally, we demonstrate the resilience of this
model to changes in the environment. When zealots are
introduced, cooperative behavior re-emerges naturally.

In what follows, we focus on the related literature, we
then summarize our contributions and the significance of
this study, before introducing SA, its components and
results.

II. RELATED LITERATURE

Altruism is one concept that was missing from Lloyd’s
tragedy of the commons discussion, which seems to us,
no less important than the notion of selfishness. The
latter was foundational to his argument. Moreover, if
selfishness is entailed by rationality in decision making,
as he maintained, then altruism must be realized through
an irrational mechanism in decision making. In point of
fact, the competition between the two aspects of human
decision making [16, 17], the rational and irrational, may



2

well save the commons from ruin.

A. The Altruism Paradox

The altruism paradox (AP ) identifies a self-
contradictory condition regarding the survival of of a
species. This dates back to Darwin’s recognition that
some individuals in a number of species act in a manner
that although helpful to other members of the species,
may jeopardize their own survival. He also identified such
altruism as contradicting his theory of evolution, that be-
ing natural selection [18]. Darwin proposed a resolution
to this problem by speculating that natural selection is
not restricted to the lowest element of the social group,
the individual, but can occur at all levels of a biological
hierarchy, which constitutes multilevel selection theory
[19].

Rand and Nowak [21] emphasize that natural selec-
tion suppresses the development of cooperation unless it
is balanced by specific counter mechanisms. Five such
mechanism found in the literature are: multilevel selec-
tion, spatial selection, direct reciprocity, indirect reci-
procity and kin selection. In their paper they discuss
models of these mechanisms, as well as, the empirical ev-
idence supporting their existence in situations where peo-
ple cooperated, but in the context of evolutionary game
theory.

In this work, and in agreement with sociobiology re-
search [19, 20], we show how Darwin’s theory of biological
evolution is compatible with sociology. Cooperation can
emerge in the presence of selfish individuals that make
up the society.

B. Prisoner’s Dilemma and emergence of
cooperation

We use the PDG in demonstrations of the emergence
of cooperation among a large number of agents. The
PDG dates back to the early development of game the-
ory [22], and is a familiar mathematical formulation of
the essential elements of many social situations involving
cooperative behavior. PDGs are generally represented
with a payoff matrix that provides payoffs according to
the actions of two players (see Table I). When both play-
ers cooperate, each of them gains the payoff R, and when
both players defect, each of them gains P . If in a social
group agents i and j play the PDG, when i defects and
j cooperates, i gains the payoff T and j gains the payoff
S and when the decisions are switched, so too are the
payoffs. The constraints on the payoffs in the PDG are
T > R > P > S and S + T < 2R. The temptation to
defect is established by setting the condition T > R.

The dilemma arises from the fact that although it is
clear that for a social group (in the short-term) and for
an individual (in the long-term) the optimal mutual ac-
tion is for both to cooperate, each individual is tempted

TABLE I: The general payoffs of PDG. The first value
of each pair is the payoff of agent i and the second value

is the payoff of the agent j.

Player j
C D

Player i
C (R,R) (S, T )
D (T, S) (P, P )

to defect because that decision elicits the higher imme-
diate reward to the individual defecting. But, assuming
the other player also acts to selfishly maximize her own
benefit, the pair will end up in a defector-defector sit-
uation, having the minimum payoff P for both players.
How do individuals realize that cooperation is mutually
beneficial in the long-term?

This question has been answered by many researchers,
at various levels of inquiry, involving pairs of agents
[3, 23], as well as, larger social networks [2]. Research
suggests that, at the pair level, people dynamically ad-
just their behavior according to their observations of each
others’ actions and outcomes; at the level of a complex
dynamic network or societal level, this same research sug-
gests that the emergence of cooperation may be explained
by network reciprocity, whereby individuals play primar-
ily with those agents with whom they are already con-
nected in a network structure. The demonstration of
how social networks and structured populations with ex-
plicit connections foster cooperation was introduced by
Nowak and May [24]. Alternative models based on net-
work reciprocity assume agents in a network play the
PDG only with those agents to whom they have specific
links. Agents act by copying the strategy of the richest
neighbor, basing their decisions on the observation of the
others’ payoffs. Thus, network reciprocity depends on
the existence of a network structure (an already prede-
fined set of links among agents) and on the awareness of
the behavior and payoffs of interconnected agents.

a. Empirical evidence of emergence of cooperation
Past research has supported the conclusion that the sur-
vival of cooperators requires the observation of the ac-
tions and/or outcomes of others and the existence of pre-
defined connections (links) among agents. Indeed, empir-
ical work suggests that the survival and growth of coop-
eration within the social group depends on the level of
information available to each agent [25]. The less infor-
mation about other agents that is available, the more dif-
ficult it is for cooperative behavior to emerge [22, 25]. On
the other hand, other experiments suggest that humans
do not consider the payoffs to others when making their
decisions, and that a network structure does not influ-
ence the final cooperative outcome [26]. In fact, in many
aspects of life, we influence others through our choices
and the choices of others affect us, but we are not nec-
essarily aware of the exact actions and rewards received
by others that have affected us. For example, when a
member of society avoids air travel in order to reduce
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their carbon footprint, s/he might not be able to observe
whether others are reducing their air travel as well, yet
they rely on decisions others make, thereby influencing
the community as a whole. Thus, it is difficult to explain
how behaviors can be self-perpetuating particularly when
the source of influence is unknown [25].

b. The Hypothesis These empirical observations
when taken together support an important hypothesis of
the work presented herein. Our hypothesis is that mu-
tual cooperation emerges and survives, even when the so-
cial group consists exclusively of selfish agents and there
is no conscious awareness of the payoffs or decisions of
other agents. Moreover an adaptive network structure
can emerge dynamically from the connections formed and
guided by individual selfishness.

Note that we address the dynamics of a network, as
distinct from the more familiar dynamics on a network.
The dynamics on a network assumes a static network
structure, as in evolutionary game theory, whereupon the
strengths of the links between agents may change, but
the agents sit at the nodes of the network and interact
with the same nearest neighbors. On the other hand, the
dynamics of a network makes no such assumption and the
dynamics consist of the formation and dissolution of links
between any two agents within the social group. Thus,
collective cooperation emerges through establishing of a
network that develops over time.

III. CONTRIBUTIONS AND SIGNIFICANCE
OF THIS STUDY

Herein, we aim to clarify how collective intelligence
emerges without explicit knowledge of the actions and
outcomes of others, and in the absence of any prede-
fined reciprocity between the agents (such as network
reciprocity linking agents within a society). We introduce
an algorithm (the Selfish Algorithm, SA) and construct a
computational model to demonstrate that collective in-
telligence can emerge and survive between agents in a
social group, out of selfishness.

First, the SA model provides a resolution of the altru-
ism paradox (AP ) and shows how agents create a self-
organized critical group out of individual selfish behav-
ior, simultaneously maximizing the benefit of individual
and of the whole group. Second, the SA model demon-
strates how adaptation can naturally emerge from the
same mechanisms in the model. Adaptation is an im-
portant property of living things, which allows them to
respond to a changing environment in a way that opti-
mizes their performance and survivability.

We studied four systems governed with different learn-
ing mechanisms proposed by the SA, where the behavior
of the agents is modeled using three modes of learning:
reinforced learning (SAL), trust (SAT ), and connection
(SAC). The first system studied has only the SAL mech-
anism active. The other three systems are a combination
of SAL and SAT (SALT ), SAL and SAC (SALC),

and the combination of all the mechanisms (SALTC).
Next, we tested the sensitivity of the collective behavior
that emerged from these systems to changes in the social
makeup by modifying a fraction of the agents by having
them exchanged with zealots at a given time. A zealot
is an agent that will not change its decision regardless
of the payoff; defecting all the time. We present a com-
parison of the mutual cooperation of a system with the
same sized system having a number of zealots to provide
a measure of resilience, or robustness (i.e., the resistance
of the collective behavior to perturbations). The compu-
tational results show that these systems can be ranked
from strongest to weakest as a function of their resilience.

To put the significance of our contributions in perspec-
tive, let us highlight the main differences between the
results of the SA model and those of previous studies.
First, the works following the strategy of the Nowak-
May agents [24] typically compare their individual pay-
off with the payoffs of the other agents when making
their next decision. One way to realize this strategy is
to adopt the decision of the most successful neighbor. In
contrast, all the updates in the SA model are based on
the last two payoffs to the self-same individual. In other
words, SA agents do not rely on information about the
other members of society to determine their evolution.
SA agents are connected to other agents only indirectly
through their local payoffs in time. The most recent pay-
off to the individual is the result of its interaction with
its most recent partner, but its previous payoff, used for
tuning its tendencies (presented below in Equation 1),
might be the result of playing with a different partner.
Second, the Nowak-May agents [24] are assumed to be
located at the nodes of a lattice and to be connected by
links, as they were also assumed to be in the decision
making model (DMM) [20]. For example, because of so-
cial interactions these lattice networks are regularly used
to model complex networks and have historically been
assumed to mimic the behavior of real social systems.
These studies emphasized the important role of network
complexity in sustaining, or promoting, cooperation [28].
This was accomplished without explicitly introducing a
self-organizing mechanism for the network formation it-
self.

In appendix A we replicate the simulation work of
Nowak and May [24] to demonstrate the limitations
of having predefined network reciprocity mechanisms.
First, we showed that in their model mutual coopera-
tion only exists for small values of temptation to cheat
(Tc) and for high values of initial cooperators on the lat-
tice (see Figure 12). Second, we show that by removing
the predefined network reciprocity between the agents
the mutual cooperation cannot survive. (see Figure 13).

As we demonstrate next, the SA model does not rely
on a predefined network reciprocity, yet, mutual cooper-
ation is subsequently shown to emerge and survive the
disruption caused by perturbations. In fact, we show
that the network reciprocity can be interpreted to be a
byproduct of the SA, emerging out of the selfishness of
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the SA agents.

IV. THE SELFISH ALGORITHM (SA)

The selfish algorithm (SA) proposed in this re-
search belongs to a family of agent-based models in mod-
ern evolutionary game theory [29]. Specifically, the SA
model represents a generalization of a model introduced
by Mahmoodi et al. [8] which is a coupling of DMM
with evolutionary game theory put into a social context.
This earlier introduction led to the self-organized tem-
poral criticality (SOTC) concept and the notion that a
social group could and would adjust their behavior to
achieve consensus, interpreted as a form of group intelli-
gence, as had been suggested by the collective behavior
observed in animal studies [30]. The SOTC model, like
the Nowak and May model [24], assumes a pre-existing
network between the agents which use the DMM (be-
longing to the Ising universality class of models for deci-
sion making [31]) to update their decision. In Appendix
B, we give a summary of the DMM and SOTC. The SA
model overcomes these constraints, resulting in a gen-
eral model for emergence of collective intelligence from a
complex dynamic network.

The general notion that the SA model adopted from
Mahmoodi et al. [8] is that an agent i makes a decision
according to the change in a cumulative tendency (i.e.,
preference). The change in this cumulative tendency, ∆,
is a function of the last two payoffs of agent i who played
with agents j and k:

∆i,jk = χ
Πij(t)−Πik(t− 1)

|Πij(t)|+ |Πik(t− 1)|
, (1)

where χ is a positive number that represents the sensi-
tivity of the agent to its last two payoffs. The quantity
Πij(t) is the payoff agent i obtained from the play with
agent j at time t and Πik(t−1) is the payoff to the agent
i obtained from the play with agent k at time t− 1. We
used the S value in the PDG that is > 0 and assumed
∆i,jk = 0 when the denominator of Eq. (1) is zero.

A simplified version of the SA model was previously
introduced elsewhere [32], and a detailed version of the
SA algorithm and its mathematical details are included
in Appendix C.

In the first cycle of the SA, a pair of randomly selected
agents i and j ”agree” to play. Only one pair of agents
play at each time cycle. Each agent of a pair engages in
three decisions; each decision is represented in a learning
mechanism (a cumulative propensity lever, ranging from
0 to 1) by which the agent can gain information about
the social environment: learning from their own past out-
comes (Selfish Algorithm Learning, SAL), trust the de-
cision of other agents (Selfish Algorithm Trust, SAT ),
and make social connections that are beneficial (Selfish
algorithm-based connection, SAC). Each of these three
levers is updated according to the agent’s self interest
(selfishness): a decision is made according to the state of

each lever, and the lever is updated according to ∆ as
formalized in Eq. (1 ).

In the SAL mechanism, an agent decides to cooper-
ate (C) or defect (D) while playing the PDG with the
paired partner, according to the state of the cumulative
propensity of playing C or D. The cumulative propen-
sity of the agent to pick C or D increases (or decreases) if
it’s payoff is increased (or decreased) with respect to its
previous payoff, as per Eq. (1). The updated cumulative
tendency to play C or D with the same agent is used
for the next time agent i is paired with the same agent
j. The simulation results show that the SAL mechanism
attracts the agents toward mutual cooperation.

In the SAT decision, an agent decides to rely on the
decision of its partner, instead of using its own decision
made using the SAL model, according to the state of the
cumulative propensity of ”trusting” the other’s decision
or not. Each SAT agent can tune this propensity to rely
on its partner’s decision according to ∆ as formalized in
Eq. (1). The SAT agent increases (or decreases) its ten-
dency to trust its partner’s decision if it increased (or
decreased) its payoff with respect to its previous payoffs.
The simulation results show that the SALT (both SAL
and SAT active) mechanism amplifies the mutual coop-
eration between the agents regardless of the value of the
incentive to cheat Tc.

Finally, the SAC model determines the decision of an
agent to pick the partner with whom to play in each
round. Each SAC agent can tune its propensity of se-
lecting its partner according to ∆ as formalized in Eq.
(1). A SAC agent increases (or decreases) its tendency
of playing with the same partner if the payoff received
after playing with that partner is higher (or lower) than
the agent’s own previous payoff. The simulation results
show that a network of connections emerge over time be-
tween SAC agents, and that this network amplifies the
mutual cooperation between agents.

The details of the updating rules and evaluation of
the propensities of the decisions are presented in Ap-
pendix C. As an example, here we explain the updating
of the cumulative tendencies and the evaluation of the
propensities for decisions C or D (i.e., the SAL mecha-
nism), which presents the generic way of learning in the
SA: After paired agents i and j received their payoffs
they update their cumulative tendencies for the decisions
they made. The cumulative tendencies for decisions C or
D update as follows: If the decision of agent i was C
then the cumulative tendencies Cij and Dij change to
Cij + ∆i,jk and Dij − ∆i,jk for the next time agent i
and j paired. If the decision of agent i was D then the
cumulative tendencies Dij and Cij change to Dij + ∆i,jk

and Cij − ∆i,jk for the next time agent i and j paired.
The same happens for agent j, with the indices inter-
changed. The propensity that agent i picks decision C
or D, if is paired with agent j, is simply Cij/(Cij +Dij)
or Dij/(Cij + Dij), respectively. The same happens for
agent j, with the indices interchanged. The other ten-
dencies are updated in a similar way.
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TABLE II: The payoffs of the PDG. The first value of
each pair is the payoff of agent i and the second value is

the payoff of the agent j.

Player j
C D

Player i
C (1, 1) (0, 1 + Tc)
D (1 + Tc, 0) (0, 0)

V. SIMULATION METHODS

We fixed the number of agents to 20 in all the simu-
lations. However, for robustness, we replicate the results
presented below with 10, 30, 40, and 50 agents in Ap-
pendix D. The results indicate that the size of the system
alters the learning time of the agents but does not affect
the emergence of cooperation in the long run.

We set the following initial parameters for the calcu-
lations: all the agents started as defectors, had payoffs
of zero, propensities of 0.9 to remain defectors, propen-
sities of zero to trust their partner’s decision, with equal
propensities of 1/(20-1) to connect with each of the other
agents, and the sensitivity coefficient χ = 200. The pa-
rameter χ controls the magnitude of the changes of the
cumulative tendencies. Again, for testing the robustness
of the model, we replicated the simulations with other
value of χ = 400 which are presented in Appendix D.
The results show that a higher χ, with respect to the
maximum value of the cumulative tendency, improves the
process of learning, but it does not qualitatively change
behavior, but merely scales the dynamical properties of
the system.

The payoff matrix used in the simulations is shown in
Table II as suggested by Gintis [33]: R = 1, P = 0 and
S = 0. So, the maximum possible value of T = 1 + Tc
is 2. We selected the value Tc = 0.9 (unless otherwise
explicitly mentioned) which provides a strong incentive
to defect. This simple payoff matrix has the spirit of the
PDG and allows us to emphasize the main properties of
the SA model. However, for completeness and for testing
the robustness of our model we also ran simulations with
the constraints of T > R > P > S by making P range be-
tween 0.0 and 0.2. The results are presented in Appendix
D and show that SA can generate cooperation regardless
of increase of P, although, in a lowered amount.

VI. SIMULATION RESULTS

A. Emergence of reciprocity and mutual
cooperation by SAL

In this section we demonstrate that the learning mech-
anism of SAL model attracts agents playing the PDG
to a state of mutual cooperation. Figure 1 shows the
time evolution of the RMC in simulations where the 20
agents, randomly partnered in each cycle, used only the

FIG. 1: Each curve shows the time evolution of the
Ratio of Mutual Cooperation (time average of mutual

cooperation at time t) for 20 agents used SAL and
played the PDG with Tc = 0.1, 0.3, 0.5, 0.7, 0.9

corresponding to the black, red, blue, green and purple
curves, respectively.The standard error of the curves

(for 5× 105 < t < 106) is about 1.95× 10−6. Each curve
is the result of a single simulation.

SAL mechanism to update their decisions. The RMC in-
creased from zero and asymptotically saturates to a value
that depends on the value of the temptation to cheat Tc.
The smaller the Tc value the higher the saturated RMC
value and the greater the size of the collective coopera-
tion. Using SAL, each agent learns, by social interac-
tions with the other agents, to modify its tendency to
play C or D. These agents are connected through their
payoffs. Each agent compares its recent payoff with its
previous one, which, with high propensity, was earned by
playing with a different agent. This mutual interaction
between the selfish agents led them to form an intelligent
group that learns the advantage of mutual cooperation in
a freely connected environment whose dynamics are rep-
resented by the PDG.

To explain how reciprocity emerges, we looked into the
evolution of the propensities to cooperate between two
selected agents (among 20). Figure 2 depicts the time
evolution of the propensity of agent 1 to cooperate with
agent 2 ((PC12), red curve), and the propensity of agent
2 to cooperate with agent 1 ((PC21), black curve). Gen-
erally, we observe a high correlation between the propen-
sities to cooperate between the two agents. The top panel
presents these propensities when the temptation to defect
is Tc = 0.9, and the bottom panel presents the propen-
sities when the temptation to defect is Tc = 0.1. The
correlation between the propensity of the two agents is
0.65 for Tc = 0.9 and 0.84 for Tc = 0.1. The correlation
between the agents is a consequence of the learning pro-
cess between them. Let’s assume Tc = 0.5 and that agent
1 played C and agent 2 played D at time t which results
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FIG. 2: Emergence of decision reciprocity: The curves
show the time evolution of the propensity of agent 1 to

play as C with agent 2 (red curve) (PC12) and the
propensity of agent 2 to play as C with agent 1 (black
curve) (PC21). Agents 1 and 2 were among 20 agents
used SAL to update their decisions and had Tc = 0.9

(top panel) and Tc = 0.1 (bottom panel). The standard
error of the curves of the top and bottom panels are
about 4.71× 10−4 and 3.45× 10−4, respectively. The

curves in each panel are the result of a single simulation.

in payoffs of 0 and 1.5 for them, respectively. Comparing
its payoff with its previous payoff, earned playing with
other agent (= 1.5, 0, 1 or 0), agent 1 would change
its accumulative tendency to play C for the next time
it is randomly paired with player 2 by −χ, 0, −χ or 0.
This means that agent 1 reacts to the defective behavior
of agent 2 by tending to behave as D and consequently
agent 2 wouldn’t continue to have the advantage of a
cooperative environment. On the other hand, agent 2
would change its accumulative tendency to play D with
agent 1 by 0, χ, 0.2χ or χ. This means agent 2 would
like to play as D next time it pairs with agent 1. So,
both agents learn to play D with one another, leading to

the coordination state DD where both get a zero payoff.
Such pairs compare this payoff (= 0) with their previous
payoff, played with other agents, and would change their
accumulative tendency to play D by −χ, 0, −χ or 0,
which shifts their future decisions toward the coordina-
tion state CC. These agents would change their tendency
to play C by −0.2χ, χ, 0 or χ which favors their stay as
C toward one another. However, because of the time to
time change of −0.2χ (depending on the value of Tc ) in
the accumulative tendency to play C with other pairs,
there is always a chance for agents to play D for a while,
before they are pulled back by other agents to behave as
C. This creates a dynamic equilibrium between CC and
DD states and defines the level of emerged mutual co-
operation observed in Figure 1. Thus, the dual dynamic
interaction, based on self-interest, between each agent
and its environment causes the emergence of mutual co-
operation between the agents who play PDG and use the
SAL model to update their decisions. Note that in hu-
man experiments, humans learning from only their own
outcomes without awareness of the partners’ outcomes
did not lead to mutual cooperation [25] as distinct from
what the rational agents of the SAL model do. High cor-
relation between the propensities of the pairs of agents
using the SAL model means high coordination between
their decisions, which also can occur if the ”Trust” mech-
anism is active between the agents. Trust lowers the in-
termediate CD pairings and leads agents to coordinate
and converge on the same decision. In the next section
we show that combining the SAL model with the SAT
model amplifies the RMC between the agents. Our cur-
rent experimental work [34] also confirms that adding the
trust mechanism in decision making experiments with of
human pairs assisted them in realizing the advantage of
mutual cooperation.

B. Enhancement of mutual cooperation by SALT ;
trust as an adaptive decision

Figure 3 shows the enhancing effect on the emergence
of collective cooperation when each agent is allowed to
make a decision whether to ”Trust” (rely on) the decision
made by the paired agent or not (SAT ).

The SALT mechanism also decreases the time for
agents to realize the benefit of mutual cooperation. In
Figure 4 we compare the CD and DD ratios of part-
ners in a group of 20 agents playing the PDG with a
temptation to cheat of Tc = 0.9 when using the SALT
model (dashed lines) and when using the SAL model
(solid lines). It is apparent that because of the trust
mechanism, SALT agents coordinate more often than
they do when the trust mechanism is absent and conse-
quently avoid the formation of CD pairs. We also plot
the ratio of DD pairs for the two systems. These curves
show that SALT agents learn to select CC pairs over CD
pairs more readily than do SAL agents, thereby pushing
the RMC up to approximately 0.9. The average correla-
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FIG. 3: Each curve shows the time evolution of the
Ratio of Mutual Cooperation (RMC) for 20 agents

used SALT and played the PDG with
Tc = 0.1, 0.3, 0.5, 0.7, 0.9 corresponding to the black,

red, blue, green, and purple curves, respectively. Each
curve is the result of a single simulation.

FIG. 4: The solid black and the solid red curves show,
respectively, the time evolution of the ratio of CD and
DD pairs played PDG and used SAL to make decision.

The dashed black and dashed red curves show,
respectively, the time evolution of the ratio of CD and

DD pairs played PDG and used SALT to make
decision. M = 20, Tc = 0.9. Each curve is the result of

a single simulation.

tion between the propensity of two agents to play C with
one another is about 0.92 when Tc = 0.9 which is a sign
of high coordination. We highlighted the difference be-
tween trust used in the literature with our dynamic trust
model in Appendix E.

C. Emergence of network reciprocity from SALC
and SALTC

By activating the ability of the agents to make deci-
sions about the social connections that are beneficial to
themselves (SAC), we expect that an even larger and
faster increase in cooperative behavior. The connection
mechanism allows each agent to select a partner that
helped the agent to increase its payoff with respect to
its previous payoff.

We demonstrate the increase in the RMC for a model
without the Trust mechanism SALC and a model with
the Trust mechanism SALTC. The top panel of Fig-
ure 5 shows an increase in the RMC of the agents using
SALC (top panel), and using SALTC (bottom panel).
When comparing the SALC model behavior to that of
the agents without the connection mechanism (paired
randomly) in Figure 1, we observe that the dependence
on the temptation to cheat Tc is weaker. For example
at time t = 106 the average RMC for the agents us-
ing SALC are about 0.84, 0.80, 0.75, 0.65 and 0.62 for
Tc = 0.1, 0.3, 0.5, 0.7 and 0.9, respectively, whereas for
the agents using SAL the average RMC for the same
conditions are about 0.76, 0.64, 0.58, 0.52 and 0.45, re-
spectively. On the bottom panel of Figure 5, we observe
that using the Learning, Trust, and Connection mecha-
nisms in conjunction (SALTC), the level of cooperative
behavior is the highest with the least dependence on the
temptation to cheat.

To show that the reciprocity emerged between the
agents using the SAC mechanism, we plotted in Figure
6 the propensities of making connections between a typi-
cal agent (agent 1) and the other 19 agents where agents
used SALC (top panel) or SALTC (bottom panel) to
update their decisions. In both cases, these figures show
that agent 1 developed a preferential partner and learned
to play most of the time with one of the agents among
others.

The manner in which the network develops over time is
schematically depicted in Figure 7. Three panels of this
figure show the snapshots of the connection propensities
between 20 SA model agents taken at three times. In-
tensity of the lines between pairs show the magnitude of
the propensity of one agent to connect to the other and
the directions indicates that the intensity of the affinity
one agent has for another is asymmetric. Agent A can
have a high affinity for agent B, but agent B does not
necessarily reciprocate with the same level of affinity for
agent A. The colors of the nodes represent the state of the
agents at that time, red as defector and green as cooper-
ator. The figure shows the connections among the agents
at t = 101 (left panel), passing through an intermediate
state (middle panel, t = 5 × 103) and after reaching dy-
namic equilibrium (right panel, t = 5× 105). The prefer-
ential connections forming the dynamic network emerge
here over time and are based on the perception of the ben-
efit that an agent receives from other agents, with whom
it has interacted. Some connections become stronger,
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FIG. 5: Each curve shows the time evolution of the
Ratio of Mutual Cooperation (RMC) for 20 agents

used SALC (top panel) or SALTC (bottom panel) and
played the PDG with Tc = 0.1, 0.3, 0.5, 0.7, 0.9

corresponding to the black, red, blue, green and purple
curves, respectively. Each curve is the result of a single

simulation.

whereas others become weaker according to the SAC
mechanism. The IPL PDF is very different from the
Poisson PDF , the latter having an exponentially dimin-
ishing probability of changing the propensity compared
with the much greater IPL value. Consequently, the
propensity of forming a link between partners is much
greater for the IPL PDF and the SAC model over time
forms a much more complex network than does a Poisson
PDF .

In the next section we study the adaptability of so-
cial systems ruled by different size steps in the SA
model. Disrupting these systems is done by changing
some agents into zealots and tracking the changes among
the remaining agents in response to the zealots.

FIG. 6: Top and bottom panels show the time evolution
of the propensity of pairings between agent 1 and the
other 19 agents when agents used SALC or SALTC,
respectively. Agents had Tc = 0.9. The curves in each

panel are the result of a single simulation.

D. SA entails complex adaptive reciprocity

To investigate the dynamics of the SA agents we dis-
rupt the stable behavior pattern emerging from the so-
cial group by fixing a fraction f = 0.5 of the N = 20
agents to be zealots and calculating the response of the
remaining agents. A zealot is an agent whose proper-
ties are: zero tendency to be a C; zero trust to other
agents; and a uniform tendency to play the PDG with
other agents. This choice divides the system into two
subsystems: a fraction f = 0.5 of the agents that con-
tinue to evolve based on SAL, SALT , SALC or SALTC
(subsystem S) and (1 − f)N agents as zealots (subsys-
tem S). It would appear that the zealots might have the
advantage of defection in the emerging cooperative envi-
ronment. We investigate how the remaining fN agents
of system S adapt to the new environment by various
modes of learning. The degree to which these agents can
sustain their mutual cooperation in the presence of the
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FIG. 7: Emergence of reciprocity from dynamics of the network. From left to right the panels show the snapshots of
the propensities of connections between 20 agents played the PDG and updated their decisions based on SALTC at
t = 1, t = 5× 103 and t = 5× 105, respectively. The Intensity of the lines between nodes represent the magnitude of
the propensity of one agent to select the other to play PDG. The direction of the lines show the intensity belongs to

which agent and towards which one. The colors of the nodes represent the state of the agents at the times the
snapshots were taken

, red as defector and green as cooperator.

zealots is a measure of their resilience, or its compliment
is a measure of their fragility, a fundamental property of
complex networks subject to perturbation.

To track the behavioral changes of the agents in S
from those in S we study the chance of an event happen-
ing within a given SA cycle. This could be the chance
of finding the pairings Cooperation-Cooperation, Trust-
Trust, etc. In previous sections we used the ratio of
events, which was useful as there was no perturbation
in the systems to detect. To evaluate the chance of the
event occurring we used ensemble averages over 103 sim-
ulations of each simulation.

The blue and orange curves in the panels of Figure 8
show the CMC within a group of N = 20 agents and
CMC within the subsystem of the 10 agents (CMCS)
who were not exchanged with zealots after time tz . The
top-left panel, shows the CMC and CMCS between the
agents which used SAL to update their decisions, before
and after 10 of them being replaced by zealots at time
tz = 2.5 × 105. There is a drop in the CMC because
of the inevitable pairings between the SAL model agents
and the zealots. The CMCS between the 10 agents who
were not switched with zealots increased after their in-
teractions with the zealots, despite the overall decrease
in the CMC in the system. In other words, the agents
of the subgroup S improved their mutual cooperation
from about 0.1 to about 0.25. This is because when the
agent of subsystem S is randomly paired with a zealot of
the subsystem S, with high probability, it ended up as
a sucker and received the minimum payoff of zero. The
agent used this payoff as a measure on which to base its
next decision. When an agent of subsystem S paired with
another agent of the same subsystem, with high probabil-
ity (because of their past experience of playing together)
played C , but because of the low payoff it received pre-
viously playing with a zealot, still increases its tendency
to play C with this agent.

The top-right panel in Figure 8 depicts the CMC and

CMCS between agents who used the SALT model to
make decisions, before and after the switching time tz =
2.5 × 105. Although the SALT model highly increased
the CMC level, it failed to sustain that level due to the
influence of the zealots. After the switching time tz only
the agents of the subsystem S contributed to the mutual
cooperation.

The bottom-left panel in the figure depicts the advan-
tage of adding the SAC to the SAL mechanism in sus-
taining the CMC of the system after the switching time
tz = 2.5 × 106. This figure shows that after the time tz
the CMCS of the subsystem S increases, as the only con-
tribution for mutual cooperation, and saturates at about
0.85. The bottom-right panel of the figure shows the
CMC and CMCS of the agents use SALTC (entire SA
algorithm) to update their decisions. The panel shows
a very high resilience of the system even after this mas-
sive number of SA agents switched to zealots at time
tz = 2.5 × 106. Similar to the system governed by the
SALC model, there is a drop in the CMC but the agents
could sustain the level of CMCS to about 0.95. This is
because the SA agents of this system learned to discon-
nect themselves from the zealots using the SAC mecha-
nism, which highly increased the robustness of the emerg-
ing mutual cooperation. Notice that after the switching
time tz all the mutual cooperation occurs within subsys-
tem S.

Figure 9 summarizes the influence a given fraction of
zealots within a group manifest under the different learn-
ing mechanisms. The figure shows the saturated value of
CMCS of the SA agents, using different mechanisms of
the SA algorithm for decision making, after a fraction
f of the agents turned to zealots at time tz. The more
adaptable the system, the higher the saturation value of
CMCS that can be achieved by the remaining (1− f)N
agents. This provides us with a measure of the resilience
of the system. The solid curve is the saturated CMCS
for the agents using the SAL model as a function of the
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FIG. 8: The blue curves show the time evolution of the Chance of Mutual Cooperation (CMC) (chance of CC to
happen among 20 agents at time t) and the orange curves shows the CMC between 10 agents who didn’t forced to
be zealot. In top-left panel agents used SAL and in top-right panel used SALT to update their decisions while, for
both cases, since tz = 2.5× 105 10 of the agents forced to be zealots. In bottom-left panel the agents used SALC
and in bottom-right panel used SALTC to update their decisions while, for both cases, since tz = 2.5× 106 10 of

the agents forced to be zealots. N = 20, Tc = 0.9. The curves are ensemble averages over 103 simulations.

fraction (f) of the agents who switched to zealots at time
tz . For f < 0.4 (8 zealots) the system retains a CMCS
slightly above 0.4. Beyond this fraction of zealots there is
an exponential decay of CMCS . In this situation the SA
agents learn to modify their decisions (C or D) depend-
ing on whether or not their pair is a zealot or another
SA agent using SAL to make its decisions.

The dashed curve in the figure is the saturated value of
the CMC of the SA agents, using the SALT model, af-
ter the switching time tz. Introducing the SAT learning
improves the resilience of the system for f < 0.4 above
that of SAL alone. However, beyond f = 0.4 the calcu-
lation converges with the earlier one indicating that the
additional learning mechanism of trust ceases to be of
value beyond a specific level of zealotry.

The two top curves of Figure 9 are saturated CMC
for the SA agents using the SALC model (doted curve)
and the SALTC model (dot-dash curve) to make deci-
sions, after the switching time tz. These two curves show
substantial improvement in the system’s resilience to an
increase in the fraction of zealots. Or said differently,
the robustness of the system to perturbations is insensi-
tive to the number of zealots, that is, until the zealots

constitute the majority of group membership. The SAC
learning in the decision making of the SA agents have the
ability to avoid pairing with the zealots. Once the frac-
tion of zealots exceeds 0.6 the resilience drops rapidly.
The saturated CMC for the SALTC model is highest
where the three learning levels (decision, trust, connec-
tion) are active, giving the SA agents maximum adapt-
ability, that is, flexibility to change in order to maxi-
mize their self-interest. This realization of self-interest
improves the payoff of the whole system as well. Notice
that as the number of the zealots increases, it takes longer
for agents to agree to play, but when they do play, they
do so with a high propensity that they will cooperate
with each other. In other words, increasing the number
of zealots slows down the response of the system.

VII. EFFECT OF ZEALOTS ON THE
DYNAMICS OF THE SA

Figure 10 shows the time evolution of the propensity of
the SAC model of one agent 1 to the other 19 agents, in
a system of 20 agents which used the SALT model (top
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FIG. 9: Effect of ratio of the zealots (agents that turned
to defectors at tz = 2.5× 106) on the saturated value of

the Chance of Mutual Cooperation (CMC) of the
remained agents. The agents used SAL (solid curve),
SALT (dashed curve), SALC (dot curve) and SALTC

(dot-dash curve) to update their decisions. N = 20,
Tc = 0.9. The curves are ensemble averages over 104

simulations.

panel) or the SALTC model (bottom panel) to make
decision until tz where 10 (out of the 19) agents turned
to zealots. This figure shows that agent 1, before t =
tz, mostly played with the agent corresponding to the
purple or green curve of top or bottom panel respectively.
But after these agents switched to zealots then agent 1
decreased its propensity to pair up and play with them
and switched to pairing with the agent corresponding to
blue curves (not a zealot).

The three panels of Figure 11 show the snapshots of the
propensities of connections between 20 agents, used the
SALTC model to make decisions, at the beginning state
(left panel), at t = 5 × 105 where the dynamic network
formed and agents learned to do mutual cooperation for
their benefit (middle panel) and at t = 106 where agent
16 had been behaving as a zealot since t = 5× 105 (right
panel). This figure shows that the network is intelligent
and is able to isolate the zealot, in order to sustain the
highest level of mutual cooperation possible.

VIII. DISCUSSION AND IMPLICATIONS OF
RESULTS

The Selfish Algorithm provides a demonstration that
the benefit to an individual within a social group need
not be achieved at the cost of diminishing the overall
benefit to the group. Each individual within the group
may act out of self-interest, but the collective effect can
be quite different than what is obtained by the naive
linear logical extrapolation typically made in the tragedy

FIG. 10: Time evolution of the propensity of agent 1 to
pair with the other 19 agents (P1j , j = 2 : 20)

, where agents used SALC (top panel) and SALTC
(bottom panel) before tz = 2.5 × 106 and after tz 10 of the
agents (out of 19) turned to zealots. N = 20, Tc = 0.9. The
curves in each panel are the result of a single simulation.

of the commons arguments [1]. In fact, the SA model
demonstrates how robust cooperation can emerge out of
the selfishness of the individual members of a system that
improve the performance of each agent, as well as, that
of the overall group, resolving the altruism paradox.

A collective group intelligence emerges from the SA
model calculations, one based on the self-interest of the
individual members of the group. This collective intel-
ligence grows spontaneously in the absence of explicit
awareness on the part of individuals of the outcomes
of the behavior of other members of the group. Per-
haps more importantly, the collective intelligence devel-
ops without assuming a pre-existing network structure
to support the collective behavior, and without assuming
knowledge of information about the actions or outcomes
from other members of the society.

As demonstrated in this research, collective intelligence
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FIG. 11: Complex adaptation in the dynamic network emerged by SA. From left to right the panels show the
snapshots of the propensities of connections between 20 agents at t = 1, t = 5× 105 and t = 106, respectively.

Agents played the PDG and updated their decisions based on SALTC except agent 16 (red node on the left panel)
which turned to a zealot and kept defecting after tz = 5× 105. Intensity of the lines between pairs represent the
magnitude of the propensity of one to another and the directions show the intensity belongs to which agent and

towards which one. The colors of the nodes represent the state of the agents at the times the snapshots were taken

, red as defector and green as cooperator. M = 20, Tc = 0.9.

entailed by the SA model unfolds as a consequence of
three learning mechanisms:

The SAL model supports reinforced learning
based on the selfishness of agents who play
the PDG. An agent chooses C or D in its
play with other agents and agents influence
one another through their payoffs, resulting
in the emergence of mutual cooperation, that
reveals a collective intelligence.

The SAT model tunes the propensity of an
agent to imitate the strategy of their partner.
The strength of the tuning is proportional to
the trust being beneficial or detrimental to
the agent itself. The role of the SAT mech-
anism is to assist agents in achieving coor-
dination, which results in a reduction in the
formation of CD pairs. This reduction makes
it easier for the system to learn to select CC
over CD pairings over time.

The SAC model tunes the propensity of an
agent to connect to other agents based on how
they improved its self-interest.

We have studied the advantage of each of the SA
learning mechanisms in creating mutual cooperation and
thereby the facilitation of the growth of group intelli-
gence. We also studied the adaptation and resilience of
the emergent intelligence by replacing some of the agents
with zealots and examining the system’s response. The
control of the dynamics in the SA model is internal and
according to the self-interest of the agents, spontaneously
directs the system to robust self-organization. The most
robust systems use the SAC mechanism to make deci-
sions, which increase the complexity of the system by
forming a dynamic complex network with a high propen-
sity for partnering, thereby providing the agents with the

ability to learn to shun the zealots. These complex tem-
poral pairings that emerge from the SAC model can be
seen as a source of the network reciprocity introduce by
Nowak and May [24].

One advantage of the SA model is its simplicity, which
enables us to introduce additional behavioral mechanisms
into the dynamics such as deception or memory. This
makes it possible to create algorithms for different self-
organizing systems such as those used in voting. The
SA model leadership emerges anywhere and everywhere
as the need for it arises and it leads to socio-technical
systems which achieve optimum leadership activities in
organizations to make teams more effective at achieving
their goals. The model also has promise in the informa-
tion and communication technology field of sensor and
sensor array design. Future research will explore the ap-
plication in detecting deception in human - human or
human - machine interactions, in anticipating threats, as
well as providing leaders with near real-time advice about
the emerging dynamics of a given specific situation.

The predictions in this work are entirely simulation-
based, however a number of them are being experimen-
tally tested. Experimental work (paper in preparation)
confirms the emergence of mutual cooperation between
human pairs playing PDG when they are given the op-
tion to trust their pair’s decision, in no explicit awareness
of the payoffs to other agents. Additional experiments to
test our hypothesis that the cooperative behavior emerg-
ing from the SA model is robust against perturbations
are in progress.
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FIG. 12: The colors on the top and bottom panel show
the average of the ratio of Mutual Cooperation (RMC)
at time 100, when each agent played the PDG for 100
times with its eight nearest neighbors, and updated its

decision by imitating the decision of the richest
neighbor (including themselves). The agents were
located on a regular two-dimensional lattice of size
10×10 (top panel) and 30×30 (bottom panel). The

horizontal axis of the panels shows the degree of
temptation to cheat experienced by the agents and the
vertical axis is the ratio to initial cooperators on the
lattice. 100 ensembles were was used to evaluate the

average RMC at time 100.

Appendix A: Importance of network reciprocity on
survival of cooperators in Nowak and May model

To show the importance of the specific connection of
agents on a lattice in Nowak and May [24] model, we
replicated their simulation work. In this simulation the
agents are located on a regular two-dimensional lattice,
each having eight nearest neighbors to play the PDG.
There is an agent located at each node of the lattice

and they each update their decision at each round of the
computation by echoing the decision of the richest agent
in their neighborhood (including themselves). Figure 12
shows our replication of their work. The colors on the
panels indicate the average of the Ratio of Mutual Coop-
eration (RMC) which sustained between the agents lo-
cated on the 10×10 lattice (top panel) and on the 30×30
lattice (bottom panel) after each agent played 100 times
with its eight nearest neighbors. The yellow areas corre-
spond to high RMC which happened for low temptation
to cheat Tc (i.e., agent’s selection of the Defect action in
the PDG) and high initial number of cooperators. The
yellow area is more extended in the case of agents located
on the larger lattice of size 30×30 (bottom panel).

To explicitly show the importance of Nowak and May’s
assumption of the lattice structure for survival of mutual
cooperation, we ran their model and compared time evo-
lution of the RMC between these agents in the case where
the agents were paired up randomly. The top panel of
Figure 13 shows the ensemble average of 100 simulations
for 100 agents (black curve) and 900 agents (red curve)
connected on a two-dimensional lattice. At each time
round, each agent plays the PDG, with a low tempta-
tion to cheat Tc(= 0.25), with all its eight neighbors. Ini-
tially 75% of the agents were cooperators, but the RMC
evolved and sustained in both cases. The bottom panel
of Figure 13 shows the results of the same experiment,
but selecting the interacting pairs randomly (no lattice
structure is assumed for the agents). As shown in the
figure, the RMC vanishes in the absence of the network
structure.

Appendix B: Summary of the DDM and SOTC
models

The decision making model (DMM) is based on N2

two-state agents placed at the nodes of a two-dimensional
N×N lattice with periodic boundary conditions, thereby
constituting a torus on which the dynamics take place.
In the absence of interactions the agents have an expo-
nential probability of switching between the two states
(+,−) at a constant rate. If K is the strength of
the interaction between agents, Nj(t) is the number of
nearest neighbors in the state j = + or −, at time
t and exp[−K[N+(t)−N−(t)]/4] is the modification of
the transition rate for an agent. Note that this time-
dependent rate can be different for each agent and the
probability of switching states at each point in time
can increase or decrease depending on whether N+(t) is
greater or less than N−(t) for that agent. The DMM is
computationally intensive and involves solving an N di-
mensional two-state master equation. However, because
the interactions are local, symmetric and random is suf-
ficient to prove that the DMM belongs to the univer-
sality class of kinetic Ising models . Consequently, there
is a critical value for K at which the group undergoes a
phase transition and reaches consensus. Other interest-
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FIG. 13: Top panel: The time evolution of the Ratio of
Mutual Cooperation (RMC) for agents located on a
regular two-dimensional lattice with 10×10 (black

curve) and 30×30 agents (red curve). Initially 75% of
agents randomly picked to be cooperators and at each
time agents played PDG with Tc = 0.25 with their 8

nearest neighbors and imitated the decision of its
richest neighbor (including themselves). Bottom panel:

The time evolution of the RMC for the agents with
similar condition as those adopted in the top panel

except that at each time two agents are picked
randomly and played PDG (no predefined connections).

The curves are averaged over 100 simulations.

ing properties, including the sensitivity to perturbations,
the robustness of configurations to zealots, are recorded
and discussed in West et al. [35].

The DMM was generalized to form the self-organized
temporal criticality (SOTC) model, which has a form of
social interaction that takes place at the level of individ-
uals and is not externally imposed as it was through the
choice of K in the DMM . This was accomplished by
making the interaction strength time-dependent through

FIG. 14: Flowchart of the SA. ”Y” and ”N” letters
represent ”Yes” and ”No”, respectively.

the introduction of a second network on which the PDG
is played. The resulting internal dynamics of the two-
level network in the SOTC model spontaneously seeking
consensus [8, 20]. This bottom-up process is not only in
the best interest of the individual, but provides optimal
benefit for society as well.

Appendix C: Details for the SA algorithm

The following steps are executed during a single cycle
initiated at time t of the SA algorithm depicted in Figure
14

a. Step 1. Selfish algorithm - connection (SAC)
Agents i and j are picked randomly such that at time
t the SAC agent i has the propensity:

Pij(t) =
Mij(t)∑
kMik(t)

(2)
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FIG. 15: The curves show the size dependence of the Ratio of Mutual Cooperation (RMC) for the agents used SAL
(Top-left panel), SALT (Top-right panel), SALC (bottom-left panel), and SALTC (bottom-right panel) to update
their decisions. Tc = 0.9 and χ = 200. The blue, red, yellow, purple, and green colors represent systems with 10, 20,

30, 40 ,and 50 agents, respectively. The curves are ensemble averages over 10 simulations.

to play with agent j, where the propensity falls in the
interval 0 < Pij(t) < 1. The quantity Mij(t) is the cu-
mulative tendency for agent i to select agent j to play
at time t. This cumulative tendency changes at step 7,
according to the last two payoffs received by agent i.

At the same time, the SAC agent j has a propen-
sity given by Eq. (2), with the indices interchanged, to
play with agent i, where the propensity falls in the in-
terval 0 < Pji(t) < 1. Two agents i and j partner if two
numbers r1 and r2 are randomly chosen from the interval
(0,1), and satisfy inequalities r1 < Pij(t) and r2 < Pji(t).
If both inequalities are not satisfied another two agents
are randomly selected at each time t until the inequalities
are satisfied and the two agents ”agree” to play a PDG.
In the flowchart wherever letter r is called it returns a
single uniformly distributed random number in the in-
terval (0,1). Notice that if step 7 is inactive, then step 1
turns to simply picking two random, different agents.

b. Step 2. Selfish algorithm - learning (SAL) Agent
i, playing with agent j, initially selects an action, C or

D, using SAL. The agent i has the propensity:

PCij(t) =
Cij(t)

Cij(t) +Dij(t)
(3)

to pick C and the propensity:

PDij(t) =
Dij(t)

Cij(t) +Dij(t)
(4)

to pick D, as it’s next potential decision. Note that the
sum of these two terms is one. The quantities Cij(t) and
Dij(t) are cumulative tendencies for agent i playing with
agent j, at time t, for the choice C or D, respectively.
These cumulative tendencies change at step 6 based on
the last two payoffs of agent i.

To decide on an action a random number r is selected
from the interval (0,1). If r < PCij(t) then the next
decision of SAL agent i will be C, otherwise will be D.
The same reasoning applies for agent j.



17

c. Step 3. Selfish algorithm - trust (SAT ) Instead
of executing the decision determined by SAL in step 2,
agent i has a propensity to trust the decision made by
agent j, which also used SAL in step 2. The propensity
for agent i to trust the decision of agent j is:

PTij(t) =
Tij(t)

Tij(t) + T ij(t)
. (5)

Here again, if a random number r, chosen from the in-
terval (0,1), is less than PTij(t) then trust is established.

The quantities Tij(t) and T ij(t) are cumulative tenden-
cies for agent i to execute the choice of agent j, at time t,
or to not rely on trust and to execute its choice based on
SAL, respectively. These cumulative tendencies update
in step 5 based on the last two payoffs of agent i.

d. Step 4. Evaluating Own Payoffs After agent i
and j executed their action, C or D, their payoff is eval-
uated using the payoffs matrix of the PDG, Πij(t) and
Πji(t), respectively.

e. Step 5. Update of cumulative tendency of SAT If
agent i used SAT playing with agent j then the accumu-
lative tendencies Tij and T ij change to Tij + ∆i,jk and

T ij −∆i,jk for the next time agent i and j partner. The
same happens for agent j. Similarly, if agent i did not
use SAT , but relied on its own SAL, then the accumu-
lative tendencies T ij and Tij change to T ij + ∆i,jk and
Tij −∆i,jk for the next time agent i and j partner. The
same happens for agent j.

f. Step 6. Update of cumulative tendency of SAL
Step 6 is only active if the agent did not use SAT at
step 3. If agent i played C with agent j, then the accu-
mulative tendencies Cij and Dij change to Cij + ∆i,jk

and Dij + ∆i,jk for the next time agent i and j partner.
If agent i played D with agent j, then the accumula-
tive tendencies Dij and Cij change to Dij + ∆i,jk and
Cij −∆i,jk for the next time agent i and j partner. The
same happens for agent j.

g. Step 7. Update of cumulative tendency of SAC
In this step the cumulative tendency to play with a spe-
cific agent changes. If agent i played with agent j then
the cumulative tendency of pairing with agent j, Mij

changes to Mij + ∆i,jk. The same happens for agent j.
As boundary condition for steps 5, 6 and 7, if the up-

dated cumulative tendency goes beyond its defined max-
imum (or below its defined minimum) then it has to set
back to the maximum value (minimum value).

h. Boundary condition We set the maximum and
minimum of the cumulative tendencies to be 1000 and
0, respectively. If an updated cumulative tendency went
above 1000 (or below 0) then it set back to 1000 (or 0).

Appendix D: Robustness and Sensitivity Tests

We ran a number of simulations to test the robustness
of the SA algorithm.

First, Figure 15 shows the effect of the size of the sys-
tem (M = 10, 20, 30, 40 and 50) on the RMC for differ-
ent mechanisms of the SA. As observed, regardless of the
system size the RMC curves converge; although it takes
longer the more agents there are in the system. Thus,
although size of the system alters the learning time, it
does not affect the main result of agents’ convergence to
cooperation.

Second, we tested the effect of the payoffs of the
PD matrix on the emergence of cooperation. We set
T = 1 + Tc = 1.9, R = 1 and S = 0 but changed the
values of P (in the interval of [0, 0.2]). For each P we ran
ten simulations and evaluated the RMC at t = 106 for
SAL, SALT , SALC, and SALTC mechanisms. The top
panel of Figure 16 shows that in the case of SAL, where
there is just one learning mechanism at work, the level
of RMC decreased steadily as the payoff for DD (P )
increased. This is due to formation of DD reciprocity
between the agents; Increasing P alters the set of ∆i,jks,
that agents use to updated their cumulative propensities,
in favor of increase of mutual defection DD. For SALC
mechanisms, the decrease in RMC is more as the con-
nection mechanism improved the DD reciprocity, which
could dominate the CC reciprocity. In other words, play-
ing most of the time with one player prohibited the agents
from exploration and finding the advantage of CC over
DD. Both SALT and SALTC (all the mechanisms of
the SA active) could sustain the level of RMC as P in-
creased. This shows the advantage of learning through
trust in the SA. Trusting the decision of other agents im-
proved the exploration capability of the agents to learn
the advantage of CC over DD.

Third, we tested the sensitivity of our results to the
value of χ. The bottom panel of Figure 16 shows the
results of the simulation with a higher value of χ = 400.
As observed, increasing χ improved the level of RMC
for all the mechanisms. Higher coefficient χ increased
the magnitude of the ∆i,jks; increased the exploration
capability of the agents.

Appendix E: Effect of trust (fixed chance of trust)
on the evolution of decisions

The aim of this section is to highlight the difference be-
tween trust used in the literature with our dynamic trust.
We introduced ”trust” and ”not trust” as a ”decision”
(while the word trust means ”not making a decision”).
We connected trust to a reinforcement learning mecha-
nism to make it adaptable. To show the difference, here
we determine the effect of fixed chance of trust between
the agents on the dynamics of decisions where there is no
reinforcement learning active, which is to say that trust
is the only learning mechanism through SAT . We in-
vestigated the dynamics of the decisions made by social
groups consisting of 10, 20, or 30 agents. These agents
randomly partner at time t and can either retain their
decision, or exchange it with a fixed chance for their part-
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FIG. 16: The top panel shows the effect of changing the
value of P (the value of punishment in the PD game)
on the Ratio of Mutual Cooperation (RMC) at time

106 for different mechanisms of the SA. For each value
of P and each mechanism there are ten points resulted
from ten simulations. The colors red, black, blue and

green correspond to the SALTC, SALT , SAL, and the
SALC mechanisms, respectively. The bottom panel

shows the effect of increasing the value of χ to 400 on
the results of the top panel. Tc = 0.9

ner’s decision (trusting). In top panel of Figure 17 the
average time for the agents to reach consensus is plotted
versus the chance of trust that agents have to take the
decision of their partner as their next decision in each of
the three groups. This figure shows that there is a broad
flat minimum (optimum) value of trust that leads the
agents to achieving consensus faster and that this time
increases with the size of the network.

It is interesting to note that the evolution of mutual
cooperation when one of the agents becomes a zealot,
which is to say, that agent remains the same all the time,
the network rapidly relaxes to the value of the zealot.
The conclusion is that this network is highly sensitive to
this small perturbation depending on the chance of trust.

FIG. 17: Top panel: The black, red and blue curves
show the average time to reach consensus (the time that

all the agents reach in +1 or all in -1 state) vs. the
magnitude of the trust between them for systems with

10, 20, and 30 agents, respectively. At each time an
agent can keep its previous decision or can imitate the
decision of its partner by the fixed propensity of trust.

Bottom panel: Dependence of the average time to
consensus to the number of the agents with 0.1 (black),
0.5 (red) and 0.9 chance of trusting the decision of their
pair. The power law coefficients for Nα are 2.37, 2.28

and 2.29, respectively. The curves are ensemble
averages over 100 simulations.

In other words, this system, that learns only through
trust is not significantly resilient (is not robust).

The panel on the bottom of the Figure 17 indicates
a dependence of the average time for a group to reach
consensus from a random initial state is a monotonously
increasing function of group size N. The average time
to reach consensus satisfies an allometry equation [37]:
Y = aXb, where Y is the functionality of the system, X
is a measure of system size and the empirical parame-
ters a and b are determined by data. Allometry relations
(ARs) have only recently been applied to social phenom-
ena [38] but on those applications the scaling has always
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been superlinear (b > 1). Bettencourt [38] point out that
the superlinear scale reflects unique social characteristics
with no equivalent in biology in which the ARs scaling
is invariably sublinear (b < 1). They point out that the
knowledge spillover in urban settings drive the growth
of functionality such as wages, income, gross domestic
product, bank deposits, as well as rates of invention...all

scale superlinearly with city size. In this paper the agents
were allowed to learn through a variety of modalities and
to find their individual optimum value of trust regarding
other agents. Subsequently, we showed that this dynamic
trust acting, in concert with other learning modalities,
leads to robust mutual cooperation.


