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Abstract 

Emergence of collective cooperation in an inherently selfish 
society is a paradox that has preoccupied biologists, sociol- 
ogists, and cognitive scientists alike for centuries. We pro- 
pose a computational model and demonstrate through simula- 
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tions how collective cooperation can emerge from selfish inter- 
ests: the goal of improving each individual’s own rewards. We 
also demonstrate how the same selfish interests lead to the dy- 
namic emergence of a network of interconnected agents. Our 
model includes two simple mechanisms: Selfish-Trust (ST) 
and Selfish-Connection (SC). ST involves the possibility of re- 
lying on others in a society of agents when it is beneficial to 
the individual, and SC involves the possibility of connecting to 
other agents when those agents help improve the individual’s 
own benefit. Our simulation results suggest that collective co- 
operation can emerge from ST and a complex dynamic net- 
work can emerge from ST and SC. The simulated data demon- 
strate an important property of many living organisms: pat- 
terns of temporal complexity, which are essential to transfer 
information among agents of any society of living beings. 
Keywords: Altruism Paradox, Emergence of Cooperation, 
Selfishness, Trust, Networks, Artificial Intelligence 

 
Introduction 

For Charles Darwin (Darwin, 1871) altruism remained a para- 
dox: the act of sacrificing an individual’s own benefit for  
the benefit of the collective community of living organisms 
was regarded as a contradiction to evolutionary theories. The 
dilemma of emergence of cooperative behavior in situations 
in which there is a large incentive to defect for the individual 
benefit has been widely studied in sociology and cognitive 
sciences. The Prisoner’s dilemma (PD) has been a leading 
metaphor for the study of the evolution of cooperative behav- 
ior in populations of selfish in which selfishness is more re- 
warded in the short-term (M. Nowak & Sigmund, 1993; Gon- 
zalez, Ben-Asher, Martin, & Dutt, 2015). 

The PD, dates back to the early development of Game The- 
ory (Rapoport & Chammah, 1965), and it is a common ab- 
straction of the essential elements of many naturalistic situ- 
ations involving cooperative behavior. It is generally repre- 
sented with a payoff matrix that provides payoffs according 
to the actions of two players (see Table 1).  When both play- 
ers cooperate, each of them gains the payoff ∏(t) = R, and 
when both players defect, each of them gains ∏(t) = P. If 
the player i defects and player j cooperates, player i gains the 
payoff ∏(t) = T and player j gains the payoff ∏(t) = S and 

Table 1: The general payoffs of PD game. The first value of 
each pair is the payoff of agent i and the second value is the 
payoff of the agent j. 

 

vice versa. The constraints on the values of the payoffs in the 
PD are T > R > P > S and S + T < 2R. The temptation to 
defect is established by setting the condition T > R. 

The dilemma is that, while the longer-term best mutual ac- 
tion is to cooperate, in the short-term each individual would 
prefer to defect because it indicates a higher reward to the in- 
dividual. Assuming that the other player also searches for its 
own individual maximum reward, the pair will end up in a 
D D situation with the minimum payoff for the two players 
2P. 

How do individuals realize that cooperation is mutually 
beneficial in the long-term? this question has been addressed 
by many researchers, at various levels of inquiry, involving 
pairs of agents (Gonzalez et al., 2015; Moisan, ten Brincke, 
Murphy, & Gonzalez, 2018) as well as larger social networks 
(M. Nowak & Sigmund, 1993). Research suggests that, at 
the pair level, people dynamically adjust their actions accord- 
ing to their observations of others’ actions and outcomes;   
at the network level, research suggests that the emergence  
of cooperation may be explained from network reciprocity, 
where individuals play with those agents with whom they 
are already connected in a network structure. The demon- 
stration of how social networks and structured populations 
with explicit connections foster cooperation was introduced 
by Nowak and May (1992). Alternative models based on Net- 
work reciprocity assume agents in a network play the PD with 
the agents with whom they have specific interconnections. 
Agents act by copying the strategy of the richest neighbor, 
basing their decisions on the observation of the others’ pay- 
offs. Thus, network reciprocity depends on the existence of  
a network structure (an already predefined set of connections 
among agents) and on the awareness of the behavior and pay- 
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offs of interconnected agents. Network reciprocity assumes 
that the evolution of cooperation is a function of the differ- 
ence between the payoffs of the interacting agents. 

Thus, past research assumes that the emergence of collec- 
tive cooperation requires the observation of others’ actions 
and/or outcomes and the existence of predefined connections 
among agents. Indeed, empirical work suggests that the emer- 
gence of cooperation depends on the level of information 
available to each agent (Martin, Gonzalez, Juvina, & Lebiere, 
2014); and the less information about other agents exist, the 
more difficult, and perhaps the longer it takes, for cooperation 
to emerge (Martin et al., 2014; Rapoport & Chammah, 1965). 
However, other experiments suggest that humans do not con- 
sider others’ payoffs when making their decisions, and that  
a network structure does not influence the final cooperative 
outcome (Fischbacher,  Gächter, & Fehr,  2001).   Indeed,  in 
many aspects of life, we influence others through our choices 
and others’ choices affect us, but we are not necessarily aware 
of the exact actions and rewards received by others affecting 
us. For example, when a member of society avoids air travel 
in order to reduce the individual’s carbon footprint, he or she 
might not be able to observe whether others are reducing their 
air travel too, yet rely on decisions others make, influencing 
the community as a whole. It is thus, difficult to explain how 
behaviors can be self-perpetuating even when the source of 
influence is unknown (Martin et al., 2014). 

In this research, we aim at advancing our understanding 
of the emergence of collective cooperation in the absence of 
explicit knowledge of others’ actions and outcomes, and in 
the absence of an explicit predefined network structure that 
connects agents in a society. We introduce an algorithm (Liv- 
ing Thing, LT) to demonstrate that collective cooperation can 
emerge and survive between agents, out of selfishness (i.e., 
the individual’s need to act on their own personal benefit), 
and in the absence of others’ information (i.e., without a need 
to any predefined network). We aim at developing hypothe- 
ses that can help resolve social dilemmas that exist in the real 
world. For example, if we understand how collective coop- 
eration emerges only from the decisions of each individual, 
we could propose solutions that reduce the dilemmas in so- 
cial problems such as littering in public places or the lack of 
contributions to a reduction of CO2 in the atmosphere (Martin 
et al., 2014). 

A LT agent will act according to the reinforcement of its 
own past actions (Reinforcement Learning, RL), but it will 
rely on two mechanisms that may overwrite the agent’s RL 
actions: Selfish-Trust (ST) and Selfish-Connection (SC). ST 
is a decision to follow or rely on other agent’s decision ex- 
pecting that it will improve the own agent’s reward with re- 
spect to the agent’s own previous payoff. ST is expected to 
turn the initially defector agents to agents that cooperate most 
of the time. SC is a mechanism that helps agents learn who to 
play with: agents increase the propensity of playing with the 
same other agent if the payoff received after playing with that 
other agent is higher than the agent’s own previous payoff. 

Past models of network formation rely on a concept of pref- 
erential  attachment  (PA)  (Barabási  &  Albert,  1999),  which 
uses rules according to which an agent would have a higher 
chance of linking with other agents that already have many 
links (i.e., high reputation nodes). In contrast, LT demon- 
strates that such propensities to connect to other agents 
emerge dynamically, according to the experienced benefits 
that the other agent brings to the individual’s own benefit 
(SC). 

We carry an analysis of the emergence of cooperation from 
these mechanisms. The simulation results hint at how to ex- 
plain emergent collective cooperation from individual selfish 
interests. An important hypothesis emerging from this work 
is that cooperation can emerge and survive out of the selfish- 
ness of agents even when there are no specific awareness of 
outcomes of other agents, and that a network structure can 
emerge dynamically from the connections guided by self in- 
dividual interests. 

Living Thing (LT) Algorithm 
Figure 1 shows one-time cycle of the LT algorithm from the 
perspective of one of the agents, agent i, but every step is 
executed for agent j simultaneously. In Step 1, a pair of ran- 
domly selected agents i and j ”agree” to play. Only one pair 
of agents is selected at each time cycle. The following are 
general notations in the algorithm: Vi is the decision of the 
agent to Cooperate (C) or Defect (D); r represents a random 
number in the interval [0 1] which should be generated when- 
ever it is called in the algorithm; ∆ is a positive number that 
represents an increase in three possible cumulative tenden- 
cies:  to play C or D, to trust the paired agent or not, or to 
play again with a previous agent. These cumulative tenden- 
cies increase by ∆ when the benefit of the agent i changes with 
respect to its previous benefit and if there is no change then 
we set ∆ = 0 which means no change happens in the system. 
∆, in general, can be a function of the difference between two 
past payoffs of the agent and it can be different for differ- 
ent cumulative tendencies, but it does not change the general 
results presented later (the form of sensitivity to payoffs is 
important when two systems interact with each other which 
is out of scope of this paper). 

The following steps are executed in each time t of the al- 
gorithm: 

Pairing Agents (1) 
Agent i and agent j get picked randomly. Agent i at time t has 
the propensity Pi j(t) = Mi j(t)/ ∑k Mik(t) to play with agent 
j. 0 < Pi j(t) < 1. Mi j(t) is cumulative tendency for agent i 
to pick agent j to play at time t. This cumulative tendency 
changes at step 7 according to the last two payoffs received 
by agent i. 

At the same time, agent j has a propensity Pji(t) = 
Mji(t)/ ∑k Mjk(t) to play with agent i. 0 < Pji(t) < 1. Two 
agents i and j pair-up if two random numbers, 0 < r1 < 1 and 
0 < r2 < 1, satisfy inequalities r1 < Pi j(t) and r2 < Pji(t). 
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Figure 1: Flowchart of the LT algorithm. ”Y” and ”N” letters represent ”Yes” and ”No”, respectively. 
 

Otherwise another two agents are randomly selected in each 
time t. 

Reinforcement Learning (RL) (2) 
Agent i initially selects an action by reinforcement learn-  
ing (RL): This agent has  the  propensity  PRLCi j(t) =  
RLCi j(t)/(RLCi j(t)+ RLDi j(t)) to pick C and has the propen- 
sity PRLDi j(t) = RLDi j(t)/(RLCi j(t) + RLDi j(t)) to pick D 
as it’s next potential decision. 

RLCi j(t) and RLDi j(t) are cumulative tendencies for agent 
i playing with agent j, at time t, for choice C or D, respec- 
tively. These cumulative tendencies change at step 6 based 
on the last two payoffs of agent i. 

To select the action, a random number r gets picked and if 
r < PRLCi j(t) then it’s next decision will be C otherwise will 
be D. The same process applies for agent j. 

Selfish-Trust (ST) (3) 
Instead of executing the decision determined by RL in Step 
2, agent i has a chance to trust the decision made by agent j 
made using RL in Step 2, and with whom agent i is paired 
with. The propensity that agent i relies on the decision of 
agent j is: PSTi j(t) = STi j(t)/(STi j(t) + RLi j(t)). STi j(t) and 
RLi j(t) are cumulative tendencies for agent i to execute its 

choice based on ST from agent j, at time t, or to execute its 
choice based on RL respectively. These cumulative tenden- 
cies update in step 5 based on the last two payoffs of agent 
i. Again, if a random number r is less than PSTi j(t) then ST 
happens. 

Evaluating Own Payoffs (4) 
At time t agent i after executing its C or D action while play- 
ing the PD game with agent j, receives the payoff ∏i j(t). 
The last two payoffs of the agent i are used to determine the 
changes in its accumulative tendencies: δ∏i jk(t) = ∏i j(t) 
∏ik(t  1), where agent (k) is the agent that played with agent 
i in trial t    1.  In the flowchart we showed this quantity as 
δ∏. 

Update of cumulative tendency of ST or RL (5) 
If agent i used ST and after playing with agent j its payoff is 
higher than its previous payoff, δ∏i jk(t) > 0, then the accu- 
mulative tendencies STi j and RLi j , for the next time agent i 
and j, change to STi j + ∆ and RLi j ∆. The same happens for 
agent j. 

Similarly, if agent i used RL and after playing with agent  
j its payoff is higher than its previous payoff, δ∏i jk(t) > 0, 
then the accumulative tendencies RLi j and STi j, for the next 
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curve) compared to the emergence of cooperation when the 
simulations rely on the additional ST mechanism. 

Table 2: The payoffs of PD game used in the simulations. The 
first value of each pair is the payoff of agent i and the second 
value is the payoff of its pair, agent j. 

 
time agent i and j pair up, change to RLi j + ∆ and STi j ∆. 
The same happens for agent j. 

Update of cumulative tendency to choose C or D (6) 
Step 6 is only active if the agent decided to use RL is step 3. If 
agent i played with agent j and received a payoff higher than 
its previous payoff, δ∏i jk(t) > 0, and this happened because 
agent i played C, then the accumulative tendencies RLCi j and 
RLDi j, for the next time agent i and j pair up, change to 
RLCi j + ∆ and RLDi j + ∆. If the increase happened because 
agent i played D, then the accumulative tendencies RLDi j and 
RLCi j , for the next time agent i and j pair up, change to 
RLDi j + ∆ and RLCi j − ∆. The same happens for agent j. 

Selfish-Connection (SC) (7) 
In this step the cumulative tendency to play with a spe-  
cific agent changes. If agent i, after playing with agent j, 
receives higher benefit with respect to its previous payoff, 
δ∏i jk(t) > 0, then the cumulative tendency of pairing with 
agent j, Mi j, increases to Mi j + ∆ and for the rest of the cu- 
mulative tendencies decreases to Mil  ∆/(N   1), l   j.  If 
δ∏i jk(t) < 0, then the cumulative tendency of pairing with 
agent j, Mi j, decreases to Mi j ∆ and for the rest of the cu- 
mulative tendencies increases to Mil + ∆/(N 1), l = j. The 
same happens for agent j. 

Simulation Methods 
We studied a system with N = 100 agents. Initially all the 
agents are defectors, have payoff of zero, have more chance 
to stay as defector; RLCi j(0) = 1, RLDi j(0) = 99, have more 
chance to use RL over ST; STi j(0) = 1, RLi j(0) = 99, and 
have equal chance to pair up with other agents; Mi j(0) = 100. 
We set ∆ = 10. ∆ is the property of the system and shows the 
sensitivity of the agent to the feedback from its two last pay- 
offs. Smaller ∆ decreases the rate of reaching to cooperation 
but doesn’t change the dynamical properties of the system. 
The payoffs matrix used has the values shown in Table 2 as 
suggested by Gintis (2009): R = 1, P = 0 and S = 0. So,  
the maximal possible value of T is 2. We selected the value 
T = 1.9, which gives a very strong incentive to defect. 

Results 
Emergence of Cooperation from ST 
Here we show that simple mechanism of ST can lead agents 
who play PD game (which has a high tendency to defect) to- 
ward cooperation. Figure 2 shows the proportion of coopera- 
tion in simulations that rely only on the RL mechanism (blue 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Top panel: the orange curve is the ratio of Cooper- 
ators vs. time for N = 100 agents, randomly paired up to play 
PD game and used ST (steps 7 in LT algorithm inactive) for 
updates of the strategy and cumulative tendencies. The blue 
curve is the ratio of cooperators for N = 100 agents, randomly 
paired up to play PD game and just used RL for the decision 
making process (steps 3 and 7 in LT algorithm inactive). Bot- 
tom panel: emergence and evolution of the probability of trust 
of unit 1 the other 9 agents in a system with 10 agents, used 
ST to update their strategies and cumulative tendencies. The 
thicker, black curve in this figure is the average of all the nine 
probabilities of trust 

 
The blue curve in the top panel of Figure 2 shows the time 

evolution of the ratio of cooperators when RL is the only 
mechanism that agents use to update their strategy (steps 3 
and 7 are inactive). 

The orange curve in the top panel of Figure 2 shows the 
emergence of cooperation between agents when at any trial 
two of them (out of 100) paired up randomly and used ST 
(steps 7 in LT algorithm inactive) to update their strategy (C 
or D) and their cumulative tendencies. The system reached its 
dynamic equilibrium after about 2 106 and sustained around 
the average ratio of cooperation of 0.9. 

This shows the effect of ST on improving the level of coop- 
eration compared to only RL. In the absence of ST the ratio of 
cooperators fluctuates around 0.3 which means the majority 
of agents are defectors. 

(1, 1) (0, 1.9) 
(1.9, 0) (0, 0) 
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The nine curves in the bottom panel of Figure 2 are the 
chances that one of the agents might trust others in a system 
with 10 agents. The thicker, black curve is the average of the 
STs between agent 1 and the other nine agents. The chances 
of ST increased and sustained to about 0.9. This means that 
the agent learns that ST has benefit for it (and for the whole 
society). The payoff of the individual is not shown here be- 
cause it is proportional to the level of cooperation: more co- 
operation results in more payoff for individual agent and for 
the emerged group. In conclusion, cooperation emerges and 
survives because ST lets the strategies to spread between the 
agents, if it benefits them individually. 

Emergence of Complexity over time 
The analysis of the fluctuations of a time series gives us a 
measure for the complexity of the system. We define the 
events in the time series as the times the time series crosses 
its mean value. The distribution of the time intervals between 
the two consecutive events is of interest (Figure 3). 

 

 
Figure 3: Demonstration of defining events in a time series. 
The blue curve is a zoomed in part of the Ratio of Coopera- 
tors’ time series (as an example) and the horizontal red line 
is its mean value. Whenever the time series crosses the mean 
value is defined as an event. The distribution of the time in- 
tervals between two consecutive events gives a measure for 
the complexity of the system (complexity index µ). 

 
We collect all the time intervals between two consecu- 

tive events (τ’s) and evaluate the probability density function 
(PDF) ψ(τ). If the resulting distribution is Poisson then the 
dynamic of the system is random and obeys ordinary statis- 
tics. But, if the PDF is a power law; ψ(τ) ∝ 1/τµ, then the 
dynamics falls in the category of the complex systems, for 
example, the dynamics of the brain. The parameter µ, the 
slope of the Inverse power law in a log-log plot, is a mea- 
sure for the complexity of the time series: when µ > 3 then 
the system is ordinary while for 1 < µ < 3 there is Ergodicity 
Breaking and the system does not obey ordinary statistics. 

Temporal criticality is crucial for transfer of information 
between two intelligence systems (Aquino, Bologna, West, 
& Grigolini, 2011). To measure the complexity index µ of 

the time series of the ratio of cooperators on the four cases 
of emergence of cooperation (top panels in Figure 2 and Fig- 
ure 6), we studied their fluctuations in the asymptotic regime 
(t > 5 × 106) around their mean value. 

Figure 4 shows that the time series of the ratio of cooper- 
ators for both cases where agents used ST or just used RL, 
time series of top panel in Figure 2, have inverse power law 
PDF with the same complexity index of µ = 1.3 (which falls 
in the interval 1 < µ < 3). The difference is that the linear 
part of the distribution for the first case, where ST exists, is 
extended toward larger τ’s which means the system is more 
complex respect to the latter case. 

 

 
Figure 4: The PDF of the time intervals between the two 
consecutive events of the time series of Figure 2 (in log-log 
scale). 

 
Figure 5 shows the PDFs of the time series of the ratio of 

cooperators for the cases where agents are using ST SC (LT) 
or RL SC for their evolution, top panel in Figure 6. Both 
cases have an inverse power law PDF. The PDF of the first 
case where ST and SC are both active shows very extended 
linear part with complexity index of µ = 1.73. This complex- 
ity is similar to that of the time series of the living things 
(Allegrini, Paradisi, Menicucci, & Gemignani, 2010). 

On the other hand, the complexity of the second case is 
similar to the system where agents were using just RL (blue 
curve of Figure 5). This means that SC could increase the 
complexity of the system where ST was already in action. 

Emergence of connections with other agents 
In this section we add another level of learning to ST by let- 
ting the agent to find the agents which playing with them in- 
creases its payoff respect to its previous payoff ( all sections 
of the LT algorithm active). The aim is to show that a dy- 
namic complex network emerges naturally and from the ST 
and SC mechanisms of the LT model. 

The blue curve in the top panel of Figure 6 is the ratio of 
cooperators when SC is added to RL (section 3 of the LT 
algorithm inactive). The blue curves in the top panels of Fig- 
ure 2 and Figure 6 are very similar, which means that adding 



2259  

 
 
 

Figure 5: The PDF of the time intervals between the two 
consecutive events of the time series of Figure 6 (in log-log 
scale). 

 

the ability to the agents to select their partner is not favor- 
ing cooperation when ST is inactive. The reason is that only 
when ST is active the level of cooperation between the agents 
increases and because of mutual benefit, which is stable, an 
agent can rank the links by changing the chance of playing 
with other agents based on the increase on its last two pay- 
offs. 

To illustrate this, we plot the chances of an agent (called 
agent 1) to trust the other 9 agents using LT algorithm in the 
bottom panel of Figure 6. This figure shows that the agent 
trusts some of the agents more than others, most of the time, 
and only from time to time it trusts other agents. But later on, 
the agent starts to trust some agents most of the time. The 
thicker, black curve in this figure is the chance that the agent 
( 1) connects to the agent corresponding to the purple curve. 
The similarities between the red and purple curves show that 
the agent 1 learns to connect with the agent which it is most 
trusting, most of the time. The preferential connections here 
are dynamic and are based on the perception of the benefit 
that an agent receives from the other agents. This process 
creates connections among agents that are dynamic. Some 
connections become stronger and others become weaker ac- 
cording to the SC mechanism. 

Figure 7 demonstrates the chance of a random agent (repre- 
sented by a dot in the center) pairing with the other 99 agents 
at two different times: t = 102 (top panel) and 106 (bottom 
panel). The thickness of the lines represents the chance of 
the pairings. At t = 102, we observe an almost uniform dis- 
tribution of the probability of the connections of an agent to 
the others (top panel); but later, the agent learned to prefer to 
connect to some partners more than to others (bottom panel). 

Figure 8 shows the probability density function of the pair- 
ings for all the agents in Figure 7 (bottom panel). This distri- 
bution, plotted in a log-log scale, shows an inverse power law 
∝ 1/Pβ with complexity index of β = 1.3, rather than having 
a Poisson distribution,  showing that the emerged network is 

 
 
 
 
 
 
 
 
 

Figure 6: Top panel: orange curve: the ratio of Cooperators 
vs. time for N = 100 agents which in addition to ST they 
use SC to pick their partner to play PD game ( all sections  
of the LT algorithm active). The Blue curve is the ratio of 
cooperators, paired using SC, but updated their strategies only 
with RL (section 3 of the LT algorithm inactive). Bottom 
panel: emergence and evolution of trust of unit 1 the other 9 
agents in a system with 10 agents using the LT algorithm (ST 
SC) to update their strategies and cumulative tendencies. The 
thicker, black curve in this figure is the chance of agent 1 to 
play with the agent which is most trusting (the purple curve 
close to 1). 

 
complex. 

Discussion and Implications of Results 
The novelty of the LT algorithm is the demonstration of how 
collective behavior can emerge from Selfish Trust and how a 
network can emerge from Selfish connections; in the absence 
of an explicit a-priory network structure, and in the absence 
of explicit awareness of others’ outcomes. LT uses ST that 
adapts to increase or decrease the chance that agent i will 
trust the strategy of agent j, if that strategy is beneficial or 
detrimental for agent i itself. LT also uses SC that adapts to 
increase or decrease the chance of agent i to connect to agent 
j, if agent j has contributed or not to the own benefit of agent 
i. This means that selfishness of agent i is used as the main 
learning incentive: If the payoff of the agent i increased with 
respect to its previous payoff then it will increase the likeli- 
hood of repeating its last action. This control of the dynamics 
is internal and emergent according to the self-interest of the 
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Figure 7: Each dot represents an agent. The dot in the center 
shows the agent of interest and the other 99 dots are con- 
nected to it with lines. The thickness of each line is propor- 
tional to the chance of the corresponding agents to pair up at 
time t = 102 (top figure) and t = 107 (bottom figure). 

 
agents, leading the system to self-organization. The role of 
ST is to spread the strategies between the agents, if it is in- 
creasing the payoff of individuals with respect to their previ- 
ous one. Adding SC to ST lets each agent learn which agents 
to connect to, in order to increase its own payoff with respect 
to its last one. SC can improve the complexity of the system 
by forming a dynamic network of chances of pairings, which 
results in an inverse power law PDF with complexity index of 
β = 1.3. The self-organized system evolved by LT host events 
with inverse power law PDF of the interval between the con- 
secutive events with complexity index µ = 1.73 < 3. This is 
the main property of dynamic complex systems which makes 
them able to transfer information and match to another. 
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