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Abstract 

Cognitive Science and Artificial Intelligence share compatible goals of understanding and possibly 
generating broadly intelligent behavior.  In order to determine if progress is made, it is essential to 
be able to evaluate the behavior of complex computational models, especially those built on 
general cognitive architectures, and compare it to benchmarks of intelligent behavior such as 
human performance.  Significant methodological challenges arise, however, when trying to extend 
approaches used to compare model and human performance from tightly controlled laboratory 
tasks to complex tasks involving more open-ended behavior.  This paper describes a model 
comparison challenge built around a dynamic control task, the Dynamic Stocks and Flows.  We 
present and discuss distinct approaches to evaluating performance and comparing models.  
Lessons drawn from this challenge are discussed in light of the challenge of using cognitive 
architectures to achieve Artificial General Intelligence. 
 
Keywords:  Cognitive Architectures, Model Comparison, Dynamic Stocks and Flows 

1. Introduction 

At its creation over 50 years ago, the field of Artificial Intelligence (AI) was understood as 
having a dual goal, as articulated by Herbert Simon: “AI can have two purposes.  One is to use 
the power of computers to augment human thinking. …  The other is to use a computer’s artificial 
intelligence to understand how humans think.” (Stewart, 1994). Over time, rather than benefit 
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from a complementary relationship, these two goals have diverged, and the fields of AI and 
cognitive science have each matured as essentially separate disciplines.  Artificial intelligence has 
become dedicated to the sole purpose of the creation of intelligent computer programs, 
irrespective of their relation to human cognitive processes.  And, despite some initial success at 
tackling broad challenges, it has focused on increasingly narrow tasks, using equally specialized 
techniques.  At the same time, cognitive science has taken the role of studying the processes of 
human cognition and has largely adopted the methods of cognitive psychology, dividing 
cognition into increasingly narrow fields and experimentally and computationally studying highly 
constrained and simplified laboratory tasks. 

The Artificial General Intelligence (AGI) community has issued a call to revive the “Strong 
AI” goal of achieving integrated and general, rather than separate and specialized, intelligence.  
Although AI and cognitive science might one day be unified under this call, we still confront the 
considerable challenge of exploring an enormous design space of potentially intelligent systems 
and architectures. In this light, the divergence of AI and cognitive science is especially 
unfortunate given that human cognition may be the only example of general intelligence on offer.  
About 35 years ago, Allen Newell issued a challenge to go beyond the divide-and-conquer 
approach of cognitive psychology (Newell, 1973).  His proposed solution was to develop 
integrated computational frameworks that would implement the invariant mechanisms of human 
cognition.  Those Unified Theories of Cognition, realized as computational “cognitive 
architectures,” could be used to model human cognition across its entire spectrum of application.  
As such, they provide a set of credible candidate architectures for achieving the AGI goal of 
general, integrated intelligence. 

But even if the human cognitive architecture constrains the design space for an AGI system 
relative to all possible systems, understanding the scope and limits of different cognitive 
architectures as computational instantiations of general intelligence is far from trivial.  The 
purpose of this special issue is to explore the merits of a comparative approach to understanding 
cognitive architectures as AGI systems.  Model comparison is critical to achieving an integrated 
and general intelligence and for making scientific progress (Gluck, Bello, & Busemeyer, 2008).  
The goal here is not to advocate a single theory of cognition or to promote a particular 
computational architecture for AGI. Rather, the focus is on exploring a comparative methodology 
around which we might reconcile some of the now divergent aspects of AI and cognitive science 
in pursuit of AGI. 

The structure and content of this special issue has been influenced by a modeling comparison 
challenge organized by the action editors of this special section (Lebiere, Gonzalez & Warwick, 
2009; Warwick, 2009; Lebiere, Gonzalez, Dutt & Warwick, 2009). The comparison was based on 
the simulation of a generic dynamic decision making task, the Dynamic Stocks and Flows (DSF) 
(Dutt & Gonzalez, 2007; Gonzalez & Dutt, 2007).  DSF was designed to be as simple and 
accessible as possible to computational modelers while focusing on two key ubiquitous 
components of general intelligence: the control of dynamical systems and the prediction of future 
events.  A general call for participation was submitted to invite independent developers using 
distinct computational approaches to simulate human performance in DSF.  Participants in this 
challenge developed computational models to simulate human performance on the DSF task in a 
variety of conditions.  The goal was to reproduce human behavior, including learning, mistakes 
and limitations in such a way that their representations would generalize to new conditions of the 
task undisclosed to the modelers.  Results from three of the nine models submitted were selected 
for presentation at the 2009 International Conference on Cognitive Modeling. Those models, the 
DSF simulation software, and the supporting data are all available on the comparison web site 
(http://www.cmu.edu/ddmlab/modeldsf). 
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This special issue presents our experiences and lessons learned through the model 
comparison challenge. In the remainder of the Editors’ Introduction, we describe the DSF task 
including human performance in the laboratory as well as the simulation infrastructure we 
developed to support model comparison. Next, we describe some of the challenges we faced as 
organizers in understanding human performance in this task and drawing meaningful 
comparisons among models. We then describe how the difficulties in evaluating model 
performance on the DSF task point to more general issues in the quantitative comparison of 
human and model performance data. We then take a further step back and look at how a new 
understanding of quantitative comparison will ultimately support the pursuit of an AGI before 
concluding with a brief overview of the other contributions to this special issue. 

2. Overview of the DSF Task and Human Performance in the Estimation and 
Comparison Phases 

The stock management problem is that of controlling the level of an accumulating quantity by 
making decisions about levels of inflow and outflow.  This is a generic problem, pervasive in 
everyday life, which arises at every temporal, spatial, and organizational levels (Cronin, Gonzalez 
& Sterman, 2009).  For example, capabilities and competitive advantages arise from the 
accumulation of resources and knowledge (Dierickx & Cool, 1989; Sterman, 1989b); managers 
must control their cash flows to maintain adequate stocks of working capital; and production must 
be adjusted as sales vary to sustain sufficient inventory. The stock management problem has been 
investigated in many ways.  For example, researchers investigated the perception of the building 
blocks of every dynamic system (Cronin & Gonzalez, 2007; Cronin, et al., 2009; Sterman & 
Booth Sweeney, 2002; Booth Sweeney & Sterman, 2000) where a dynamic system is reduced to 
its most essential elements: one stock (a resource that accumulates or depletes over time) and 
flows that alter the stock (an inflow that increases the stock or an outflow that decreases the 
stock). A conclusion from past years of investigation is that these simple stock problems are 
unintuitive and difficult, even in simple systems with a minimal number of variables, and even 
for highly educated people with strong technical backgrounds. In one experiment, for example, 
Booth Sweeney and Sterman (2000) presented highly educated graduate students at an elite 
university with a picture of a stock and graphs showing the inflow and outflow, then asked them 
to sketch the trajectory of the stock. Although the patterns were simple, fewer than half the 
participants were able to correctly sketch the path of the stock.  This same effect has been 
reproduced in multiple experiments (Cronin & Gonzalez, 1997; Cronin et al., 2009). 

2.1 The design and function of the DSF 

The Dynamic Stocks and Flows is a simulation tool for studying learning and decision making in 
the context of simple stock management problems (Dutt & Gonzalez, 2007; Gonzalez & Dutt, 
2007). Although the simulated stock problems are simple in the traditional sense (i.e., they have 
few elements to manage), the DSF is still dynamically complex (Sterman, 2000). The complexity 
arises from the interaction between decisions made and changes in the environment over time. 

The DSF represents the essential elements of every dynamic system: a single stock, which 
represents an accumulation of discrete (e.g., units in inventory) or continuous (e.g., water) units; 
inflows, which increase the level of the stock; and outflows, which decrease the level of the stock. 
The goal of this task is to maintain the stock at a particular level or at least within an acceptable 
range. External inflow and outflow increase or decrease the level of stock, both of which are 
outside the control of decision makers. Stock levels are also influenced by the user’s decisions of 
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inflow and outflow, which increase or decrease the level of the stock and are under the control of 
the user. Further, the level of the stock at time t depends upon the state of the system at the 
previous time t-1, a characteristic of dynamic systems called interdependency (Edwards, 1962). 
Also inherent in dynamic systems are feedback loops, where a variable can affect itself and other 
variables. 

Figure 1 displays the graphical user interface for the DSF environment. The stock is 
represented graphically as a tank. In this version, the simulation represents continuous units of the 
stock as water in a tank. The markings on the left side of the tank represent the water level in the 
tank at any instant of time. There are 4 pipes connecting the tank, as shown in Figure 1. Two 
pipes labeled User Inflow and Environment Inflow are located on the input side and increase the 
level of stock in the tank; two pipes labeled User Outflow and Environment Outflow are located 
on the output side and decrease the level of stock in the tank. 

 
 

 
Figure 1. The interface of the DSF simulation. For a more detailed description of the different 
parts of the simulation, please see: Dutt & Gonzalez, 2007 and Gonzalez & Dutt 2007. 

 
A user makes a decision on the inflow and outflow rates (user inflow or user outflow) by 

entering the values in the blank boxes at the bottom of the screen for each time period and hits 
Submit. The target level of accumulation is shown with a red horizontal line with Goal mentioned 
on the right side and also in the Goal information box.  The current amount of water in the tank is 
shown in the Amount in Tank box.  The Environment inflow and Environment outflow are 
exogenous functions that the user cannot control. After the user hits the submit button, the 
simulation determines the amount of water in the tank by adding the User Inflow and 
Environmental Inflow to the amount in the tank and subtracting the User Outflow and the 
Environmental Outflow. Then the simulation presents the resulting values in the following time 
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period. Thus, in the example of Figure 1, the goal is to keep the level of water at 4 gallons.  At 
time period 2 a user entered 3 in the User Inflow box and 0 in the User Outflow box.  The 
“Environment” added 2 as inflow and removed 3 as outflow.  The resulting amount of water at 
time period 3 is 2 gallons. 

2.2 The Estimation and Comparison Data Sets 

The model comparison challenge was based on data from two experimental data sets, an 
estimation set and a comparison set.  The two data sets were collected in the laboratory from 
human participants interacting with several different conditions of the DSF task. The estimation 
sessions were run and reported initially by Dutt & Gonzalez (2007). This estimation data set was 
provided to participants of the model comparison challenge to support the development of their 
models.  They were given detailed data and were allowed to explore and study the estimation data 
set in relation to their own models.  The goal given to them in the model comparison challenge 
was to develop a model that would predict human performance in the comparison data set. 

 
2.2.1 THE ESTIMATION DATA SET 
The estimation data set came from two experiments that varied with respect to the kind of 
function controlling the Environmental Inflow. In those experiments the Environmental Inflow 
was either an increasing function or a decreasing function over 100 trials.  The Environmental 
Outflow function was constant and set to zero throughout 100 time periods.  Hence, Environment 
net flow was equal to Environment Inflow. The main performance measure in DSF was the goal 
discrepancy: the difference between the goal and the stock amount in each time period.  The 
subject’s goal was to maintain the level of water in the tank within +/- 0.1 gallons from the 4 
gallons goal during all 100 time periods. The initial water level in the tank was fixed in all 
conditions to 2 gallons.   
 
 

 
Figure 2. Functions of Environmental Inflow used in the estimation data set.  Environmental 
Outflow was zero in all conditions. 
 



LEBIERE, GONZALEZ, AND WARWICK 

6 

In the first estimation data set, the Environment Inflow function was a Linear increasing or a 
Linear decreasing function (see Figure 2, top graphs). Environment Inflow increased or decreased 
over the course of 100 time periods using the formulas: 0.08 * (TimePeriod) + 2 for the 
increasing linear Environment Inflow function and -0.08 * (TimePeriod-1) + 10 for the 
decreasing linear Environment Inflow function. Both functions caused an equal amount of water 
(which was 604 gallons) to flow into the tank over the course of 100 time periods. 

In the second estimation data set, the Environment Inflow function was a Non-Linear 
increasing or a Non-Linear decreasing function (see Figure 2, bottom graphs).  Environment 
Inflow increased or decreased over the course of 100 time periods using the formulas: 5*LOG 
(TimePeriod) and 5*LOG (101- TimePeriod). Both conditions had a total Environment net flow 
of 831 gallons over the course of 100 time periods. 
 
 

 
Figure 3. Human Performance results (stock level).  Top Panel: results in the Linear increasing 
and decreasing functions.  Bottom Panel: results in the Non-Linear increasing and decreasing 
functions. 
 

The human performance results for the increasing and decreasing functions in DSF are 
presented in Figure 3.  The raw data for each condition, included: participant id, time period 
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(from 1 to 100), Environmental Inflow value (according to the function in that condition) and 
Environmental Outflow value (zero in all conditions), User Inflow value and User Outflow value, 
actual amount in the tank, and target goal.  
 
2.2.2 THE COMPARISON DATA SET 
The comparison data were collected while the participants were working on their model 
development.  The comparison data set consisted of five new conditions under two broad sets of 
manipulations, sequence and delay.  There were a total of 120 participants in the laboratory study.  
Each participant in this data set (denoted by an ID number from 1 to 120) was tested in one 
condition under each of the two manipulations. The overall design was counterbalanced so that 
half the participants started with a sequence condition and the other half with a delay condition. 
In the sequence conditions the Environmental Inflow function generated a non-monotonic 
sequence of values of different length, including: a repeated sequence of length 2, the sequence of 
length 2 with noise, and a repeated sequence of length 4. The three conditions are as follows: 
 
1) Sequence=2:  The sequence of 1,5,1,5,... for 100 trials. 
2) Sequence=2+Noise: The sequence 1,5,1,5… , +1 or -1 for each of 100 trials. The noise values 
were chosen randomly, thus the sequence after adding binary noise could be 0/2,4/6,0/2,4/6.... etc.  
3) Sequence=4: The sequence of 0,4,2,6... for 100 trials. 
 

This sequence manipulation was inspired by experiments in the field of sequence learning in 
cognitive psychology (e.g., Curran & Keele, 1993). The three separate conditions were tested 
with different human participants.  All conditions started with 4 gallons of water in the tank, had 
a goal of 6 gallons, an Environmental Outflow of zero, and a total of 100 trials.  Human 
participants received a base payment of $5 and bonus performance payment of 2.5 cents per trial, 
to make a total of $7.5 for 100 trials in approximately 30 minutes.  
 
 Figure 4 shows the median absolute value of the discrepancy Abs(Goal - Stock) over the 
100 trials for the human data set in each of the three conditions above. 
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Figure 4. Median absolute value of discrepancy results for the Sequence conditions.   Top Panel: 
Sequence 2.  Middle Panel: Sequence 2 + noise condition.  Bottom Panel: Sequence 4 condition.  
 

In the delay conditions, user inputs to the system were delayed for either two or three time 
periods.  This manipulation was inspired by the investigations of the detrimental effect of delayed 
feedback well known in the field of control systems (e.g., Brehmer, 1992).  The Environmental 
Inflow function was the same linear increasing function used in the estimation data set (where 
there was an increase from 2 to 10 gallons of water deposited into the tank over the course of 100 
trials).  The two conditions are as follows: 
 
1) Delay=2: All user inflow and outflow decisions were delayed for 2 time periods 
2) Delay=3: All user inflow and outflow decisions were delayed for 3 time periods  
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Again, the conditions started with 4 gallons of water in the tank, had a goal of 6 gallons, an 
Environmental Outflow of zero, and a total of 100 trials.  Human participants received a base 
payment of $5 and bonus performance payment of 2.5 cents per trial, to make a total of $7.5 for 
100 trials in approximately 30 minutes.  
 

Figure 5 shows the median absolute value of the discrepancy Abs(Goal - Stock) over the 100 
trials for the human data set in each of the two conditions above. 
 
 

 

 
Figure 5. Median absolute value of discrepancy results for the Delay conditions. Top Panel: 
Delay 2 condition. Bottom Panel: Delay 3 condition.  
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2.3 Model Comparison Challenge Results 

We received nine submissions to our modeling challenge. The models exhibited both a 
comforting set of common principles but also a fascinating diversity of approaches and emphases. 
We ran each of the models in all the conditions of the comparison data set.  We faced the difficult 
task of performing a quantitative evaluation and ranking for purposes of adjudicating the 
challenge. We ran each of the models in all the conditions of the comparison data set.  We 
computed Root Mean Square Error (RMSE) and correlation (R^2) measures over a range of 
potential values (bonus, user input and output, tank amount, discrepancy to goal) at the individual 
run level. Due to the strong correlation between the various values, we selected a single one, the 
discrepancy from the goal, as our focus. This left us with 10 quantitative measures, RMSE and 
R^2 over 5 distinct conditions. We rank-ordered each model over those 10 measures, with 1 being 
best and 9 worst, and summed those rankings over all 10 measures to establish an overall ranking. 
The ranks of each model were added, and accordingly the top three models were selected.  The 
authors of the top three models were invited to present their work at the 2009 International 
Conference of Cognitive Modeling. These results are summarized in Table 1.  

Figure 6 shows the median absolute value of the discrepancy over 100 trials for the three top 
models against the comparison human data in the sequence 2 condition, arguably the easiest of 
the transfer conditions.  While the models show generally comparable average performance to the 
human data for the sequence 2 condition, they also display substantial differences, such as greater 
regularity and the gradual drift of the second model. 

Figure 7 displays similar data for the Delay 3 condition, arguably the hardest condition for 
both models and subjects.  This condition led to extremes values of discrepancy in the models in a 
way that made displaying the values difficult.  For example, one of the models had values of 
absolute discrepancy as high as 40,000,000 gallons.  In general, there was a tendency for the 
models to produce an erratic behavior with increased number of trials.  Thus, to be able to plot the 
absolute discrepancy in a way that we could make some visual comparisons, we removed extreme 
values of absolute discrepancy that were above 2000 gallons.  This is quite a high value of 
discrepancy, considering that the optimal value is zero.  Although a couple of the human 
participants also produce extreme values of absolute discrepancy in some of the trials (again, on 
the order of 40,000,000 gallons), a large majority of trials from human participants stay below the 
2000 gallon cutoff.  Even after removing these extreme values, one can see in Figure 7 that the 
models, especially the first and second, display substantial swings in control (note the scale) 
beyond those of human subjects. 

 



11 

 

RSM
E 

 

Delay=2 
Delay=3 

Sequence=2  
Sequence=2+Noise 

Sequence=4 
 

M
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Value 
Rank 

M
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Rank  

M
odel 

Value 
Rank 

M
odel 

Value  
Rank 

M
odel 

Value 
Rank 

 

4th  Place M
odel 

25559.65614 
1 

1st Place M
odel 

5930065.843 
1 

6th  Place M
odel 

2.389391245 
1 

2nd  Place M
odel 

12.30789649 
1 

3rd  Place M
odel 

3.842132208 
1 

  

3rd  Place M
odel  

25560.64323 
2 

5th  Place M
odel 

5948339.426 
2 

1st Place M
odel 

3.978684208 
2 

3rd  Place M
odel 

12.4796554  
2 

1st Place M
odel 

4.120680522 
2 

  

5th  Place M
odel 

25560.73644 
3 

4th  Place M
odel 

5958227.153 
3 

3rd  Place M
odel 

4.330294541 
3 

1st Place M
odel 

12.48050964 
3 

2nd  Place M
odel 

4.191526873 
3 

  

6th  Place M
odel 

25560.79757 
4 

3rd  Place M
odel 

5958290.296 
4 

2nd  Place M
odel 

4.446793766 
4 

5th  Place M
odel 

12.91020917 
4 

4th  Place M
odel 

4.324393357 
4 

  

1st Place M
odel 

25560.84149 
5 

7th  Place M
odel 

5958302.643  
5 

5th  Place M
odel 

5.017039656 
5 

4th  Place M
odel  

13.20581246 
5 

5th  Place M
odel 

4.84942078 
5 

  

8th  Place M
odel 

25691.36149 
6 

8th  Place M
odel 

8623745.699 
6 

4th  Place M
odel 

5.333908033 
6 

7th  Place M
odel  

32.57013019 
6 

7th  Place M
odel 

12.22281907 
6 

  

2nd  Place M
odel 

104372.928 
7 

6th  Place M
odel 

10629371.62 
7 

7th  Place M
odel 

36.77878748 
7 

8th  Place M
odel 

39.28063253 
7 

8th  Place M
odel 

19.25430286 
7 

  

9th  Place M
odel 

913917.2672 
8 

2nd  Place M
odel 

15470739.89 
8 

8th  Place M
odel 

45.49902821  
8 

9th  Place M
odel 

165.6242666 
8 

9th  Place M
odel 

188.8278338 
8 

  

7th  Place M
odel 

1.74997E+37  
9 

9th  Place M
odel 

2.01691E+13 
9 

9th  Place M
odel  

149.2110442 
9 

6th  Place M
odel 

966873514.7 
9  

6th  Place M
odel 

1338101156 
9 

  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

R^2 
  

Delay=2 
Delay=3 

Sequence=2 
Sequence=2+Noise 

Sequence=4 
  

M
odel 

Value 
Rank 

M
odel 

Value 
Rank 

M
odel 

Value 
Rank 

M
odel 

Value 
Rank 

M
odel 

Value 
Rank 

  

7th  Place M
odel 

0.006945102 
1 

2nd  Place M
odel 

0.006305459 
1 

6th  Place M
odel 

0.032074972 
1 

9th  Place M
odel 

0.00467078 
1 

1st Place M
odel 

0.048517273 
1 

  

2nd  Place M
odel 

0.001652099 
2 

1st Place M
odel 

0.005542475 
2 

1st Place M
odel 

0.023023154 
2 

2nd  Place M
odel 

0.004353249 
2 

4th  Place M
odel 

0.043084207 
2 

  

1st Place M
odel 

0.000783014 
3 

4th  Place M
odel 

0.005026803 
3 

3rd  Place M
odel 

0.007556976 
3 

8th  Place M
odel 

0.00210721 
3 

3rd  Place M
odel  

0.040925091 
3  

  

5th  Place M
odel 

0.000766518 
4 

5th  Place M
odel 

0.003403337 
4 

4th  Place M
odel 

0.005576699 
4 

3rd  Place M
odel 

0.001874682 
4 

2nd  Place M
odel 

0.026398729 
4 

  

6th  Place M
odel 

0.000747421 
5 

6th  Place M
odel 

0.002676126 
5 

5th  Place M
odel 

0.004921518 
5 

1st Place M
odel 

0.0010141 
5 

7th  Place M
odel 

0.009105476 
5 

  

4th  Place M
odel 

0.000621257 
6 

8th  Place M
odel 

0.000990819 
6 

7th  Place M
odel 

0.002348685 
6 

7th  Place M
odel 

0.000966799 
6 

6th  Place M
odel 

0.001432866 
6 

  

8th  Place M
odel 

0.000515284 
7 

9th  Place M
odel 

0.000717852 
7 

2nd  Place M
odel 

0.001906049 
7 

4th  Place M
odel 

0.000794785 
7 

5th  Place M
odel  

0.001201751 
7 

  

9th  Place M
odel 

9.61337E-05 
8 

7th  Place M
odel 

0.000625682 
8 

8th  Place M
odel 

5.8485E-05 
8 

6th  Place M
odel 

0.000304811 
8 

9th  Place M
odel 

8.96343E-05 
8 

  

3rd  Place M
odel 

1.23006E-06 
9 

3rd  Place M
odel 

3.12194E-05 
9 

9th  Place M
odel 

1.10954E-06 
9 

5th  Place M
odel 

6.29131E-05 
9 

8th  Place M
odel 

3.05454E-05 
9 

  

 

Table 1. Summary results of the participant models in the DSF Challenge. 
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Figure 6. Median absolute value of discrepancy results for the comparison human and model data 
(first, second and third place) in the Sequence 2 condition. 

 

 
Figure 7. Median absolute value of discrepancy results for the comparison human and model data 
(first, second and third place) in the Delay 3 condition after removing extreme values. 
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No doubt there are serious issues with any quantitative measure in this case, including 

statistical validity of tests comparing similarly performing models under high-variability 
conditions. But an even deeper issue remains as to whether such traditional measures of fit would 
be appropriate to the DSF tasks even if the data were better behaved.  (see Lebiere, Gonzalez & 
Warwick, 2009 for a discussion of qualitative and quantitative model comparison issues). Broadly 
speaking, the various models exhibited fairly similar strengths and weaknesses. As expected, they 
generally did better in the sequence conditions than in the delay conditions.  The analyses below 
address a less traditional way in evaluating performance and performing comparisons between 
model and human data. 

3. Domain-Specific Analysis 

In evaluating performance in a complex task, including comparisons between model and human 
data, it is important to go beyond aggregate statistics that summarize overall performance.  
Instead, it is essential to develop quantitative measures that capture the key aspects underlying 
performance in the task and in particular those that reveal the fundamental cognitive mechanisms 
being used.  The goal is to obtain the most direct measures that enable the modeler to understand 
and constrain the structure and content of the model instead of having to resort to post hoc and 
often ad hoc parameter optimization.  These quantitative measures should be robust to superficial 
differences in performance, such as for example the particular phase of the oscillations in the 
sequence conditions performance, which could result in very poor or even negative correlation 
between models that might otherwise be quite similar, just because of some accident of timing.  A 
key question is whether general quantitative performance measures can be found or whether they 
are bound to be specific to the particular domain and task.  In the context of the DSF task this 
requires understanding the general cognitive functions that have to be applied to obtain effective 
performance.  Those functions are basically twofold: controlling the simulation environment 
given its current state, and anticipating future environmental inputs that might affect future states. 

We will apply our analysis here in the sequence+noise condition, which has a pair of 
interesting properties: (a) as explained below, the control function and the anticipation function 
result in inputs that are largely uncorrelated, which allows us to isolate those functions in the data, 
and (b) the noise limits the effectiveness of explicit reasoning strategies and the individual 
differences that result, allowing learning to proceed more smoothly over the entire length of the 
experiment. 

The ability to control the system in its current state, assuming steady environmental inputs, 
reduces to a means-end focus on the discrepancy between current tank content and goal amount.  
Thus, the correlation between the discrepancy between current and desired tank amount at a given 
time step and the net user outflow should be a direct indicator of that ability.  A perfect 
correlation would indicate a user’s single-minded focus on eliminating the current discrepancy. 

The ability to project the future state of the system and, in particular, to predict the major 
source of uncertainty (i.e., future environmental inputs) is harder to isolate.  Specifically, we must 
separate the user's ability to predict future states from the ability to control the system, because 
users only express their knowledge of the system through explicit control.  Here, we will measure 
the prediction ability by first taking the difference between the two quantities used to measure the 
control ability, namely, the discrepancy between current tank amount and the net user outflow, 
and then measure the correlation between that difference and the environmental inflow.  
Assuming the user’s ability to control the system in its current state, a perfect correlation would 
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indicate that the user is also able to perfectly anticipate upcoming environmental flows to not 
only eliminate the current discrepancy (if any) but also the immediately upcoming one as well. 

Figure 8 displays those quantities for each of the 40 individual subjects, with the first quantity 
along the abscissa and the second along the ordinate.  The analysis confirms the substantial 
variation in performance in even this relatively simple task.  The ability to control the system is 
generally quite good, with a correlation between current and desired amount discrepancy and user 
net outflow between 0.45 and 0.85 for most subjects.  In contrast, the ability to predict the future 
system state, specifically the correlation between net environmental inflow and the difference 
between the user net outflow and the amount discrepancy, is quite low.  It varies between 0.0 and 
0.4 for most subjects.  Thus, subject ability to anticipate environmental flows varies from non-
existent to fairly substantial, especially considering the presence of random noise in the 
environmental inflow that limits its predictability.  Finally, correlation between the two measures 
is low, with a negative relation between the ability to control the system and the ability to predict 
its future inputs (though some of that might be due to limitations of the approach that we have 
taken to separate the two measures). 
 
 

 
 

Figure 8. Individual Differences in Control and Prediction. 
 

Figure 9 displays the same measures for each of 20 model runs for the top three models from 
our 2009 comparison challenge developed by Reitter (this issue), Iglesias et al. (Lebiere et al., 
2009), and Halbruegge (this issue).  The most striking aspect is the lack of variability in model 
performance.  Reitter’s model displays very strong control ability, with a correlation between net 
outflow control and discrepancy of over 0.9, but a strongly negative correlation between the 
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difference and future environmental inflow.  This pattern results from the alternating nature of the 
environmental inflow sequence, which leads a model solely focused on reducing the current 
difference to systematically be one step behind the environmental input flows.  Halbruegge’s 
model displays more variation, especially in its prediction ability, but still a very high focus on 
control at the expense of a largely negative prediction ability.  Iglesias’ model is the closest to the 
average subject performance, with a control correlation of about 0.7 and a prediction correlation 
limited but at least positive around 0.1.  However, that model is completely deterministic and fails 
to exhibit any of the variations of human performance. 
 
 

 
 

Figure 9. Model Performance in Control and Prediction. 
 

Another important aspect of human behavior is the ability to improve performance with 
experience and adapt to changes in the environment.  Just as individual differences reveal 
fundamental insights about the nature of cognition and its role in performance, learning and 
adaptivity provide stronger constraint on the possible nature of a model than average performance 
measures.  In this analysis, we measure learning along the same dimensions, as the difference 
between the final 25 trials and the first 25 trials of the experiment.  We chose to focus on the first 
and last quarters of the 100-trial runs because the former gives the best estimate of initial 
performance (a smaller window would be too noisy and a longer one would reflect too much 
learning already) and the latter of final performance (which tends to plateau after the three-quarter 
mark).  Figure 10 indicates that most subjects get better at controlling the system between the first 
and last block of 25 trials.  However, the ability to anticipate the next input again shows much 
more variation, with roughly equal numbers of increases or decreases across subjects.  Part of this 
variation might reflect a meta-cognitive adaptivity: some subjects might be able to supplement 
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their baseline control ability with the additional ability to predict future environmental events, 
thus improving their overall performance, while others cannot achieve sufficient ability to 
effectively learn the environmental pattern, and might decide to stop trying to do so as it might 
detract from their first-order control ability when their guesses turn out erroneous.  As for the 
averages in Figure 9, gains in the two measures appear only slightly correlated, with a negative 
relation between control gains and prediction gains, which might reflect the kind of metacognitive 
tradeoff just described. 
 
 

 
 
Figure 10. Subject Adaptivity in Control and Prediction. 
 

Figure 11 shows that all models, like most subjects, become better at control over time.  
Reitter’s model improves at control only slightly, largely because, as seen in Figure 9, that ability 
is almost already at ceiling to start with.  However, it becomes slightly worse at prediction, 
possibly a result of the sole focus on control.  Iglesias’ model exhibits the same pattern but in a 
more extreme form, improving its control ability substantially but becoming significantly worse 
at prediction, both to a degree only matched by a pair of human subjects, again without 
variability. Halbruegge’s model displays the pattern closest to human subjects, demonstrating an 
increase in control ability similar but somewhat more restricted than subjects (perhaps owing to a 
ceiling effect caused by its highest average) as well as a range of both positive and negative 
variation in control ability quite similar to the range of human subjects (albeit from a lower initial 
baseline).  As for the average measures, Halbruegge’s model also demonstrates the largest 
variation across individual runs. 



17 

The immediate conclusion of this analysis is that it is hard to determine a “best” model in a 
general way. Reitter’s model fits best by the traditional measure of fit to overall performance used 
in the competition, Iglesias’ model fits best by the average of the measures that we defined in our 
analysis, and Halbruegge’s model fits best by the learning and adaptivity demonstrated in these 
measures as well as by the degree of variation in individual runs.  This analysis established that 
the emphasis in model comparisons should be on understanding model performance in depth 
rather than on a competition aspect that uses a limited range of measures to declare a “winner”. 
 
 

 
 
Figure 11. Model Adaptivity in Control and Prediction. 

4. The Practice of Model Comparison and Progress toward AGI 

It is easy to view a model comparison as a one-time event, but the scientific value of a 
comparison lies as much in the ongoing development and refinement of comparison techniques as 
in the identification of any particular winning model. Though implementing a predictive model of 
human performance for a task as demanding as the DSF is as instructive as it is difficult (as the 
contributions from Reitter, Halbruegge and Peebles & Banks demonstrate), we hope to advance 
the pursuit of AGI by pointing out the different contributions of our own model comparison. 

First, despite the pointed advice of many of our colleagues, we still managed to underestimate 
some of the practical difficulties a comparison effort entails. In particular, it was difficult to 
communicate expectations to our participants and for some of them, in turn, to describe inner 
workings of their models to us. Clearly, a successful comparison requires that participants know 
and understand how their models will be connected to and interact with a simulated environment. 
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But this requirement is more than just a matter of ensuring software interoperability; it is also a 
matter of communicating what the models need to do, how we will verify that they have done 
what they were supposed to do and how it was that they managed to do what they did. 
Unfortunately, the vocabulary to communicate model capabilities and functions is limited and 
often the terms held in common among interdisciplinary research communities serve to confuse 
rather than clarify discussion. To the extent that the development of an AGI will likely depend on 
identifying and implementing general features of intelligence, it will be critical to understand and 
communicate exactly what those features are to a large and diverse community. Here, we repeat 
the advice of our colleagues: do not underestimate how hard it can be to communicate the content 
of a model and, by extension, the requirements and capabilities of an AGI.  

Second, although well-defined tasks lead to well-behaved data and straightforward measures 
of fit, complex, dynamic tasks do not. Of course, it is the complex, dynamic tasks that make for 
interesting comparisons and are more likely to lie at the foundation of an AGI. As we discussed 
previously, the standard measures of fit are not always helpful in understanding model 
performance on such tasks. New measures and techniques are needed that will help us better 
understand when a model or an AGI is really doing its job. Stewart & West suggest such a 
measure while Gluck, Stanley, Moore, Reitter & Halbruegge describe how to judge whether a 
given component is really contributing to the overall performance of a model. 

Finally, we think it is unlikely that fundamental progress toward AGI will be accomplished 
while implementing solutions to specific, one-off tasks. We chose the DSF task as our benchmark 
for comparison because it embodies general cognitive abilities like pattern detection and 
projection. Its generality ensured that it could be extended in ways that captured fundamentally 
different abilities within the same overall task definition, thus requiring no changes to models in 
order to test their generalization. Requiring models to generalize, even in seemingly obvious 
ways, is an important step away from over-fitted, data-specific models. Myers, Gluck,  
Gunzelmann & Krusmark march even further in this direction by describing how a model’s 
performance can be validated against different time scales. The pursuit of an AGI is clearly 
furthered by model comparisons that require generalization in new and unpredictable ways.  After 
all, perhaps the key feature of our intelligence is to adapt to unforeseen circumstances in 
effective, open-ended ways. 
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