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Abstract 
The evaluation of an AGI system can take many forms. 
There is a long tradition in Artificial Intelligence (AI) of 
competitions focused on key challenges. A similar, but less 
celebrated trend has emerged in computational cognitive 
modeling, that of model comparison. As with AI 
competitions, model comparisons invite the development of 
different computational cognitive models on a well-defined 
task.  However, unlike AI where the goal is to provide the 
maximum level of functionality up to and exceeding human 
capabilities, the goal of model comparisons is to simulate 
human performance.  Usually, goodness-of-fit measures are 
calculated for the various models.  Also unlike AI 
competitions where the best performer is declared the 
winner, model comparisons center on understanding in 
some detail how the different modeling “architectures” have 
been applied to the common task.  In this paper we 
announce a new model comparison effort that will 
illuminate the general features of cognitive architectures as 
they are applied to control problems in dynamic 
environments. We begin by briefly describing the task to be 
modeled, our motivation for selecting that task and what we 
expect the comparison to reveal. Next, we describe the 
programmatic details of the comparison, including a quick 
survey of the requirements for accessing, downloading and 
connecting different models to the simulated task 
environment.  We conclude with remarks on the general 
value in this and other model comparisons for advancing the 
science of AGI development.   
 

Introduction 
 
The evaluation of an AGI system can take many forms. 
Starting with Turing (e.g., Turing, 1950), the idea that 
artificial intelligence might be “tested” has led quite 
naturally to a tradition of competition in AI in which 
various systems are pitted against each other in the 
performance of a well-specified task.  Among the most 
famous include the Friedkin prize for a machine chess 
player that could beat the human chess champion (Hsu, 
2002), the robocup soccer competition for autonomous 
robots (Asada et al., 1999) and the DARPA Grand 
Challenge race across the desert (Thrun et al., 2006).  A 
similar, but less celebrated trend has emerged in 
computational cognitive modeling, that of model 
comparison. As with AI competitions, model comparisons 

invite the development of different computational 
cognitive models on a well-defined task.  However, unlike 
AI where the goal is to provide the maximum level of 
functionality up to and exceeding human capabilities, the 
goal of model comparisons is to most closely simulate 
human performance.  Thus, usually, goodness-of-fit 
measures are calculated for the various models.  Also, 
unlike AI competitions where the best performer is 
declared the winner, model comparisons center on 
understanding in some detail how the different modeling 
“architectures” have been applied to the common task.  In 
this regard model comparisons seek to illuminate general 
features of computational approaches to cognition rather 
than identify a single system that meets a standard of 
excellence on a narrowly defined task (Newell, 1990). 
 
In this paper we announce a new model comparison effort 
that will illuminate the general features of cognitive 
architectures as they are applied to control problems in 
dynamic environments. We begin by briefly describing the 
general requirements of a model comparison.  Next, we 
describe the task to be modeled, our motivation for 
selecting that task and what we expect the comparison to 
reveal. We then describe the programmatic details of the 
comparison, including a quick survey of the requirements 
for accessing, downloading and connecting different 
models to the simulated task environment.  We conclude 
with remarks on the general value we see in this and other 
model comparison for advancing the science of AGI 
development.  Although everyone loves a winner, the real 
value of a model comparison is found in its methodological 
orientation.  Indeed, given the inherent flexibility of 
computational abstractions, understanding the workings of 
a particular cognitive system, much less judging its 
usefulness or “correctness,” is not easily done in isolation. 
 

General Requirements of a Model 
Comparison 

 
We have gained direct experience from a number of 
modeling comparisons projects, including the AFOSR 
AMBR modeling comparison (Gluck & Pew, 2005) and 
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the NASA Human Error Modeling comparison (Foyle & 
Hooey, 2008).  We have also entered cognitive models into 
multi-agent competitions (Billings, 2000; Erev et al, 
submitted) and organized symposia featuring competition 
between cognitive models as well as mixed human-model 
competitions (Lebiere & Bothell, 2004; Warwick, 
Allender, Strater and Yen, 2008).  From these endeavors, 
we have gained an understanding of the required (and 
undesirable) characteristics of a task for such projects.   
 
While previous modeling comparison projects did illustrate 
the capabilities of some modeling frameworks, we found 
that the tasks were often ill-suited for modeling 
comparison for a number of reasons: 
 

•  The task demands a considerable effort just to 
model the details of task domain itself (and 
sometimes, more practically, to connect the model 
to the task simulation itself).  This often results in 
a model whose match to the data primarily 
reflects the structure and idiosyncrasies of the task 
domain itself rather than the underlying cognitive 
mechanisms.  While this task analysis and 
knowledge engineering process is not without 
merit, it does not serve the primary purpose of a 
model comparison effort, which is to shed light 
upon the merits of the respective modeling 
frameworks rather than the cleverness and 
diligence of their users. 

• The task is defined too narrowly, especially with 
regard to the data available for model fitting.  If 
the task does not require model functionality well 
beyond the conditions for which human data is 
available, then the comparison effort can be 
gamed by simply expanding effort to parameterize 
and optimize the model to the data available.  This 
kind of task puts frameworks that emphasize 
constrained, principled functionality at a 
disadvantage over those that permit arbitrary 
customization and again serves poorly the goals of 
a modeling comparison. 

• The task is too specialized, emphasizing a single 
aspect, characteristic or mechanism of cognition.  
While this type of task might be quite suitable for 
traditional experimentation, it does not quite the 
kind of broad, general and integrated cognitive 
capabilities required of a general intelligence 
framework. 

• No common simulation or evaluation framework is 
provided.  While this allows each team to focus 
on the aspects of the task that are most amenable 
to their framework, it also makes direct 
comparison between models and results all but 
impossible. 

• No suitably comparable human data is available.  
While a purely functional evaluation of the 

models is still possible, this biases the effort 
toward a pure competition, which emphasizes raw 
functionality at the expense of cognitive fidelity. 

 
This experience has taught us that the ideal task for a 
model comparison is: 
 

• lightweight, to limit the overhead of integration 
and the task analysis and knowledge engineering 
requirements 

• fast, to allow the efficient collection of large 
numbers of Monte Carlo runs 

• open-ended, to discourage over-parameterization 
and over-engineering of the model and test its 
generalization over a broad range of situations 

• dynamic, to explore emergent behavior that is not 
predictable from the task specification 

• simple, to engage basic cognitive mechanisms in a 
direct and fundamental way 

• tractable, to encourage a direct connect between 
model and behavioral data 

 
Like other enduring competitive benchmarks of human 
cognition that have kept on driving the state of the art in 
some fields (e.g. Robocup), the key is to find the right 
combination of simplicity and emergent complexity.  We 
believe the task we have selected, described in detail 
below, meets these requirements and strikes the right 
combination between simplicity and complexity.  In fact, 
in our own pilot studies, we have encountered significant 
challenges in developing models of the task that could 
account for even the basic results of the data and our 
models have consistently surprised us by their emergent 
behavior, and even minor changes in task representation 
have had deep consequences for model behavior (Lebiere, 
Gonzalez, & Warwick, under review).  We expect the same 
will be true for other participants in this effort. 
 

The Dynamic Stocks and Flows Task 
In dynamic systems, complexity has often been equated 
with the number of elements to process at a given time: 
goals, alternatives, effects and processes (Brehmer & 
Allard, 1991; Dorner, 1987).  Researchers have 
investigated the problems and errors that people make 
while dealing with this type of complexity in dynamic 
systems to foster our understanding of decision making.  
However, dynamic systems manifest another type of 
complexity that is less well known, that is dynamic 
complexity (Diehl & Sterman, 1995).  This type of 
complexity does not depend on the number of elements to 
process in a task.  In fact, the underlying task could be 
superficially simple depending on a single goal and one 
element to manage and make decisions.  Dynamic 
complexity follows from the combinatorial relationships 
that arise from the interactions of even a few variables over 
time.   
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Gonzalez & Dutt (2007) and Dutt & Gonzalez (2007) have 
investigated human performance in dynamically complex 
environments using a simple simulation called the dynamic 
stocks and flows (DSF).  DSF (see figure 1) is an 
interactive learning tool that represents a simple dynamic 
system consisting of a single stock in which the rate of 
accumulation is a function of time; inflows increase the 
level of stock, and outflows decrease the level of stock.  
The goal in DSF is to maintain the stock within an 
acceptable range over time.  The stock is influenced by 
external flows (External Inflow and Outflow) that are out 
of the user’s control, and by user flows (User Inflow and 
Outflow) that the player of DSF decides on in every time 
period.  
 

 
Figure 1: DSF Interface 

 
A stock, inflows and outflows are the basic elements of 
every dynamic task, at the individual, organizational, and 
global levels (for a discussion of the generality of this 
structure in complex dynamic systems, see Cronin, 
Gonzalez, & Sterman, 2008).  For example, the structure of 
the task discussed here, is currently being used to 
investigate the problems of control of the atmospheric 
CO2, believed to lead to Global Warming (Dutt & 
Gonzalez, 2008). 
 
Despite its seeming simplicity, controlling the DSF is very 
difficult for most subjects (Gonzalez & Dutt, 2007; Dutt & 
Gonzalez, 2007).  For example, Cronin, Gonzalez & 
Sterman (2008) found that in a sample of highly educated 
graduate students with extensive technical training nearly 
half were unable to predict the qualitative path of a stock 
given very simple patterns for its inflow and outflow. 
Subject learning was slow and ultimately sub-optimal even 
in the simple conditions of the task, for example, that of 
controlling the system due to an increasing inflow and zero 
outflow (Gonzalez & Dutt, 2007; Dutt & Gonzalez, 2007).  
Moreover, Cronin and Gonzalez (2007) presented subjects 
with a series of manipulations related to the form of 
information display, context of the task, incentives and 
others factors intended to help the subject understand the 

task, demonstrating that the difficulty in understanding the 
DSF is not due to lack of information or the form of 
information presentation.  
 
For all the difficulty subjects have controlling DSF, the 
task environment itself is easily modeled and extended. 
The state of the task environment is completely determined 
by the functional relationship among inflow, outflow, user 
action and stock, while the functions themselves can be 
modified in direct ways.  For example, stochastic “noise” 
can be added to the functions that control environmental 
inflow and outflow to explore the effects of uncertainty; 
the addition of different or variable delays between user 
actions and outcomes changes the nature of the dynamic 
complexity; finally, the task lends itself to the exploration 
of team or adversarial performance simply by allowing 
another agent to control the environmental inputs and 
outputs.   
 
Participating in the DSF Model Comparison 

 
Participation in this model comparison begins with a visit 
to the DSF Model Comparison website: 
http://www.cmu.edu/ddmlab/ModelDSF. There, potential 
participants will be asked to register for the competition.  
Registration is free, but is required so that we can plan to 
allocate adequate resources to the evaluation of the 
participants’ models (as described below). 
 
At the website, participants will find a more detailed 
description of the DSF task and a free downloadable 
version of the task environment.  The DSF task 
environment requires a Windows platform and can be run 
in two modes.  First, the DSF can be run as a live 
experiment so that participants can interact with exactly the 
same task environment the subjects used in the 
experiments.  In this way, modelers can gain hands-on 
experience with the task and use this experience to inform 
the development of their own models.  Second, the DSF 
environment can be run as a constructive simulation, 
without the user interface, in a faster-than-real time mode 
with the participants’ computational models interacting 
directly with the task environment. 
 
The DSF uses a TCP/IP socket protocol to communicate 
with external models.  Details about the “client” 
requirements and the communication syntax will be 
available on the website, along with example software 
code for connecting to the DSF. 
 
Once participants have established a connection to the DSF 
environment, we invite them to calibrate their models 
running against the “training” protocols and comparing 
model performance against human performance data.  Both 
the training protocols and data will be available from the 
website.  In this way, participants will be able to gauge 
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whether their models are capable of simulating the basic 
effects seen in human control of the DSF task.  Our past 
experience suggests that this will lead to an iterative 
development process where models are continually refined 
as they are run under different experimental protocols and 
against different data sets. 
 
Model comparison begins only after participants are 
satisfied with the performance they have achieved on the 
training data.  At that point, participants will submit 
executable version of their model through the website to be 
run against “transfer” protocols.  As we indicated above, 
the DSF task supports several interesting variants.  We are 
currently running pilot studies with human subjects to 
identify robust effects under these various conditions. The 
choice of specific transfer conditions will be entirely at our 
discretion and submitted models will be run under these 
conditions as-is.  
 
Our goal for this blind evaluation under the transfer 
condition is not to hamstring participants, but to see how 
well their models generalize without the benefit of 
continual tweaking or tuning.  Assessing robustness under 
the transfer condition is an important factor to consider 
when we investigate the invariance of architectural 
approaches.  That said, goodness-of-fit under the training 
and transfer conditions is not the only factor will use in our 
comparison effort.  In addition to submitting executable 
versions of their models, we will require participants to 
submit written accounts of their development efforts and 
detailed explanations of the mechanisms their models 
implement.  As we discuss below, this is where model 
comparisons bear the most fruit.  Again, based on our past 
experience, we recognize that it is difficult to explain the 
workings of a cognitive model to the uninitiated, but it is 
exactly that level of detail that is required to understand 
what has been accomplished.   
 
On the basis of both model performance and written 
explanation, we will select three participants to present 
their work at the 2009 International Conference on 
Cognitive Modeling 
(http://web.mac.com/howesa/Site/ICCM_09.html).  We 
will also cover basic travel expense to that conference.  
Finally, participants will be invited to prepare manuscripts 
for publication in a Special Issue of the Journal for 
Cognitive Systems Research 
(http://www.sts.rpi.edu/~rsun/journal.html) devoted to the 
topic of model comparison. 
 

Model Comparison as Science 
The call for the development of an artificial general 
intelligence is meant to mark a turn away from the 
development of “narrow AI.”  From that perspective, a 
model comparison might seem to be an unwelcome return 
to the development of one-off systems engineered to excel 

only on well-specified highly-constrained tasks. It would 
be a mistake, however, to view the outcome of a model 
comparison as merely a matter of identifying the approach 
that produces the best fit to the human performance data on 
a specific task.  Rather, a goodness-of-fit measure is only a 
minimum standard for the more detailed consideration of 
the computational mechanisms that lead to that fit. Insofar 
as these mechanisms implement invariant structures, they 
shed light on the general nature of cognition.  But the devil 
is in the details; understanding whether an architecture 
actually constrains the modeling approach and thereby 
shed some insight into the general features of cognition, or 
whether it merely disguises the skill of the clever modeler 
is never easy. 
 
This difficulty is compounded by several other factors.  
First, as Roberts and Pashler (2000) have pointed out, good 
human performance data are hard to come by and it is 
harder still to see these data, by themselves, can undergird 
an experimentum crucis among different modeling 
approaches.  Simply put, even good fits to good data will 
underdetermine the choices of architecture. This is not 
merely a problem of loose data, but is also due to one of 
the defining insights of computation, that of Turing 
equivalence and the related notion in the philosophy of 
mind of multiple realizability.  The fact that any algorithm 
can be implemented by any number of Turing-equivalent 
mechanisms all but guarantees some degree of 
underdetermination when we consider the relationship 
between model and theory.  Unless one is willing to 
engage in a question-begging argument about the 
computational nature of mind, Turing equivalence does not 
guarantee theoretical equivalence when it comes to 
cognitive modeling and different computational 
mechanisms will come with different theoretical 
implications.  
 
While some might argue that this latter problem can be 
addressed by fixing the appropriate level of abstraction this 
otherwise sound advice has had the practical effect of 
allowing the modeler to decide what the appropriate 
relationship is between model and theory.  Moreover, 
proposing an abstraction hierarchy, no matter how elegant 
or appealing, is not the same thing as discovering a natural 
kind, and it remains an empirical endeavor to establish 
whether the abstractions we impose really carve the nature 
of cognition at the joints.  Thus, correspondence is too 
often asserted by fiat, and notions like “working memory,” 
“situation awareness” “problem detection” and such are 
reduced to simple computational mechanisms without any 
serious theoretical consideration.  Those concerned about 
the implementation of a general intelligence are left to 
wonder whether if-then-else is all there is to it. 
 
A number of tests for a general theory of intelligence have 
been advanced (e.g. Cohen, 2005; Selman et al, 1996; 
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Anderson & Lebiere, 2003).  A key common aspect is to 
enforce generality in approach, in order to prevent special-
purpose optimization to narrow tasks and force integration 
of capabilities.  One can view that strategy as effectively 
overwhelming the degrees of freedom in the architecture 
with converging constraints in the data.  However, precise 
computational specifications of those tests have to tread a 
tight rope between requiring unreasonable amounts of 
effort in modeling broad and complex tasks and falling 
back into narrow task specifications that will again favor 
engineered, optimized approaches.  This model 
competition is our attempt at testing general cognitive 
capabilities in an open-ended task while offering low 
barriers to entry. 
 
We see model comparison as one solution to these 
problems.  Model comparison is not just a practical 
solution for understanding how different systems work, but 
a theoretical prescription for identifying invariant 
structures among different approaches, seeing how they 
are, in fact, applied to specific problems and a way of 
seeing past the buzzwords to the mechanism that might 
finally illuminate what is needed to realize an artificial 
general intelligence. 
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