
Instance-Based Decision Making Model of Repeated Binary Choice 
 

Christian Lebiere (cl@cmu.edu) 
Psychology Department 

Carnegie Mellon University, 5000 Forbes Avenue 
Pittsburgh, PA 15213 USA 

 
Cleotilde Gonzalez (coty@cmu.edu) and Michael Martin (mkmartin@andrew.cmu.edu) 

Dynamic Decision Making Laboratory, 
Social and Decision Sciences Department 

Carnegie Mellon University, 5000 Forbes Avenue 
Pittsburgh, PA 15213 USA 

 
 

Abstract 
We describe an instance-based model of decision-making for 
repeated binary choice.  The model provides an accurate 
account of existing data of aggregate choice probabilities and 
individual differences, as well as newly collected data on 
learning and choice interdependency.  In particular, the model 
provides a general emergent account of the risk aversion 
effect that does not require any metacognitive assumptions.  
Advantages of the model include its simplicity, its 
compatibility with previous models of choice and dynamic 
control, and the strong constraints it inherits from the 
underlying cognitive architecture. 

Keywords: Learning; dynamic decision making; RELACS; 
memory; cognitive architectures; ACT-R. 

Introduction 
Erev and Barron (2005) have discussed the tradeoffs of 

adaptation and maximization in repeated choice tasks. A 
main demonstration from their studies is that extended 
practice with a binary choice problem with immediate 
feedback does not always lead to payoff maximization. 

The deviations from maximization may be due to 
different effects. One of them, the payoff variability effect, 
refers to a tendency to increase exploration in a noisy 
environment (Erev & Barron, 2005). That is, when payoff 
variability is associated with an alternative of higher 
expected value compared to the other alternative, choice 
behavior moves toward random choice. This payoff 
variability effect has been found in one-shot decisions 
(Busemeyer & Townsend, 1993) but it is more robust in 
repeated choice (Erev & Barron, 2005). 

Erev and Barron (2005) proposed a model of 
Reinforcement Learning Among Cognitive Strategies 
(RELACS) to account for the payoff variability effect and 
other deviations from maximization.  RELACS assumes that 
a decision maker follows one of three cognitive strategies in 
each choice, and that the probability of using a strategy is 
determined by previous experiences with the strategy. 

The fast best reply strategy involves selecting the 
alternative with the highest recent payoff.  The case-based 
reasoning strategy involves moving from a random 
selection of alternatives initially to a two-stage process in 
which a belief is first determined and then verified as not 

being associated with large losses. The slow best reply 
strategy involves choosing to explore the two alternatives 
initially and moving gradually toward preferring the 
alternative more likely to maximize earnings. According to 
RELACS, the three strategies are reinforced with their 
frequency of use and are updated according to the observed 
payoffs. 

In their analyses and comparisons to other models, Erev 
and Barron determine that the slow best reply strategy is the 
one that best captures the payoff variability effect. They also 
found that the assumption of learning among the different 
strategies is not important because a random selection 
among strategies fits the data as well as RELACS does. 

In our past research we have proposed a framework and 
computational model that characterize decision makers’ 
preferences and utilities in terms of action-outcome links. 
This theory called Instance-Based Learning Theory (IBLT) 
(Gonzalez, Lerch & Lebiere, 2003), implemented in ACT-R 
(Anderson & Lebiere, 1998; Anderson et al, 2004), proposes 
learning (i.e., increasing maximization) occurs through a 
progressive accumulation of decision instances. Instances 
are discrete units of knowledge (action-outcome links) 
which are constructed, upgraded, and reused through 
experiential learning in a decision making situation. Better 
decision policies emerge gradually as decision makers move 
from using explicit rules of action to implicit recognition of 
familiar patterns (cf. Dienes & Fahey, 1995), similar to the 
gradual process proposed in Logan’s (1988) instance theory 
of automaticity. Many decision making tasks have 
successfully been implemented in ACT-R using this 
process, including dynamic control tasks (Wallach & 
Lebiere, 2003), supply chain management (Gonzalez & 
Lebiere, 2005; Martin, Gonzalez & Lebiere, 2004), 
backgammon (Sanner et al, 2000) and simple 2x2 games 
like the Prisoner’s Dilemma (Lebiere, Wallach & West, 
2000). 

Our main contention in this paper is that the experiential 
accumulation, activation, retrieval and generalization of 
action-outcome decision instances is a general decision 
making strategy applicable to multiple decision making 
tasks, including the simple repeated choice effects posed by 
Erev and Barron (2005). Accordingly we describe an 
instance-based decision making model that captures the 



learning effects and the tradeoffs of adaptation and 
maximization reported by Erev and Baron (2005). Our 
instance-based decision making model works in ways 
similar to the slow best reply strategy proposed by Erev and 
Barron (2005).  The results from our ACT-R model support 
Erev and Barron’s arguments that the slow best reply 
strategy is the one that best captures the payoff variability 
effect and that learning among different cognitive strategies 
is unnecessary.  Thus, deviations from maximization in 
repeated binary choice problems can be reproduced without 
pre-defining a set of cognitive strategies and positing 
reinforcement learning as a mechanism for selecting among 
them.  

In what follows, we discuss the example problems we 
have taken from Erev and Barron (2005), and discuss how 
we replicated their behavioral results. Next, we discuss our 
instance-based decision making ACT-R model and the 
results from our model as compared to RELACS results. 
Finally, we discuss some predictions of our model and 
possibilities for unification with models of other tasks. 

The Payoff Variability Effect 
We replicated, with human participants, the payoff 

variability effect using the following three key problems 
from Erev and Barron (2005): 

 
Problem 1.  H 11 points with certainty 
 L 10 points with certainty 
 
Problem 2. H 11 points with certainty 
 L 19 points with probability 0.5 
  1   otherwise 
 
Problem 3. H 21 points with probability 0.5 
  1   otherwise 
 L 10 points with certainty 
 
All three problems required participants to choose between 
a high payoff alternative H (with an expected value of 11 
points) and a low payoff alternative L (with an expected 
value of 10 points).  The problems differed only on the 
variance but not the mean of the two payoff distributions. 

We randomly assigned 60 participants to one of the three 
problems. The undergraduate and graduate students at 
Carnegie Mellon University were paid a flat fee for 
performing the repeated choice task for 400 trials. 

We followed almost identical instructions as in Erev and 
Barron’s experiments: individuals did not receive any 
information about the payoff structure.  They were told their 
task was to select one of the alternatives by clicking on one 
of two unmarked and masked buttons.  They were provided 
with the payoff value of the button they clicked on. 
Individuals were not informed of the trial number. Payoffs 
were drawn from the distribution associated with the 
selected button. 

There are two differences between our methods and Erev 
and Barron’s: (1) we did not use a performance-based 

incentive structure and (2) we ran 400 rather than 200 trials 
to better explore learning effects. 

Figure 1 shows the proportion of maximization (Pmax) 
(H) choices during the 400 trials. The average proportions 
of maximization are very similar to those reported in the 
original experiments: average Pmax for the second 100-
problem block (a.k.a. Pmax2) was 0.82, 0.61 and 0.50 for 
Problem 1, 2, and 3 respectively (compared to .90, .71, .57 
in Erev and Barron’s data). 
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Figure 1: Proportion of maximization over practice 

 
The learning curves shown in Figure 1 demonstrate that, 

as expected, an increase in payoff variability impairs 
maximization. In contrast to data reported by Erev and 
Barron (2005) the Problem 3 learning curve, where the 
alternative with the maximum payoff is risky, shows a 
decrease in the proportion of maximization over time.  

As suggested by Erev and Barron, the difference between 
problems 1 and 3 demonstrates the risk aversion effect and 
the difference between problems 1 and 2 the risk seeking 
effect.  We investigated the risk aversion or certainty effect 
(Kahneman & Tversky, 1979) in this repeated choice task 
by collecting data in the following problem: 

 
Problem 4. Certain 11   points with certainty 
 Risky 21   points with probability 0.5 

1 otherwise 
 
Problem 4 presents participants with a tie, i.e. alternatives 

have the same expected value, but one is risky and the other 
is certain. Using the same methods as in the first 3 
problems, we collected data from 20 participants.  We will 
report detailed findings on that condition in the model 
comparison section. 

One of the challenges for Erev and Barron’s RELACS 
model is that it consistently underpredicts individual 
differences. A particular problem in RELACS seems to be 
the management of memory, as it does not capture the 
interdependency of past experiences.  



Memory management and learning is a strength in ACT-R 
and a particular strength of our instance-based decision-
making models as there are strong constraints on the effect 
that particular past instances would have on a future choice 
(Gonzalez & Quesada, 2004).  As we will demonstrate, our 
ACT-R based models of instance-based decision making 
predict observed individual differences quite accurately. 

ACT-R instance-based decision making model 
One advantage of instance-based learning models is that 
they reduce degrees of freedom in modeling.  The modeler 
does not have to select and implement strategies, or decide 
upon arbitrary criteria on which a decision is made.  Instead, 
the model represents the information immediately available 
to the subject in the most direct form possible, and uses that 
information directly to make its decisions. 

Each decision-making instance in the repeated choice 
paradigm is composed of two elements: the choice being 
made and the payoff immediately received as a result.  
Those two elements of a decision-making instance are 
consciously available to the subject and thus will be 
represented together in declarative form. 

The basic unit of declarative representation in ACT-R is 
the chunk.  A chunk is a typed structure composed of a 
number of named fields, also called slots.  Each slot usually 
contains another chunk (although it can also be empty or 
contain special values).  Our model contains only a single 
chunk type, choice, with only two slots: decision, which 
holds the decision made by the model, and payoff, which 
holds the payoff awarded after the decision.  For example, a 
chunk encoding the experience that pressing the left button 
resulted in a payoff of 10 would have the following form: 

 
Decision1 
 isa decision 
 choice Left 
 payoff 10 
 
That chunk type serves both as the only type of goal for 

the model, and as the repository of the problem-solving 
experience in long-term declarative memory.  The learning 
of that symbolic information is thus automatically 
accomplished by the architecture as it stores past goals into 
long-term memory. 

The experimental paradigm covered by Erev and Barron 
(2005) includes three feedback conditions.  In the first one 
called minimal information, payoff feedback is given only 
for the choice being made, and encoded as described above.  
In the second condition, called complete feedback, payoff is 
given for the choice made as before, but the payoff that 
would have resulted if the other choice had been made is 
also given.  In that case, the model generates two chunks, 
one for each potential choice and its feedback.  In the third 
condition, called probability learning, no numerical payoff 
feedback is given directly but instead the payoff is translated 
into a relative probability of correct choice, which is then 
relayed to the subject as a correct/incorrect binary feedback.  

In the model, that binary feedback is simply encoded as a 
0/1 payoff and the same modeling approach can then apply. 

How does the model use this information about choices 
and payoffs?  The basic decision-making procedure is the 
same as that used in the model prisoner’s dilemma and other 
2x2 games (Lebiere, Wallach & West, 2000).  The model 
evaluates each option by retrieving its expected payoff from 
memory, selects the one with the highest value, then 
registers the feedback as described above.  This procedure is 
implemented in half-a-dozen generic production rules. 

As in some past instance-based models (e.g. the Paper 
Rocks Scissors model of West & Lebiere, 2001), the 
possible combinations of symbolic information are so few 
(less than a handful in the payoff functions studied here) 
that the key knowledge of the task does not reside at the 
symbolic level but instead in its statistical properties.  
Specifically, the key information is the frequency (and 
recency) of each combination of decision and payoff.  While 
subjects (and the model) could potentially keep track of 
those frequencies explicitly, there is no evidence that they 
do so.  Instead, the architecture automatically learns such 
information in the activation values of the various chunks.  
Specifically, the base-level activation Ai of chunk i is 
determined by the following Bayesian learning formula: 

 

! 

Ai = ln tj
"d

j=1

n

#  Base Level Learning 

 
Each tj is the lag of time since the jth occurrence of chunk 

i.  The architectural parameter d is the decay rate of each 
occurrence, which is set to 0.5 as is (almost) always the case 
in ACT-R models. The power law of practice emerges from 
the log-summation over all references whereas the power 
law of forgetting results from the decay of each reference.  
Just as for chunks, this learning of the statistical properties 
of the symbolic knowledge is accomplished automatically 
by the architecture.  Activation determines the probability of 
retrieving each qualifying chunk according to the following 
equation: 

 

! 

Pi =
e
Ai
t

e
A j

t

j

"
  Boltzmann Equation 

 
This equation, also known as the softmax equation, 

defines retrieval as a noisy process where the probability of 
retrieving a given chunk is proportional to the ratio of its 
activation and a retrieval noise level t.  The noise level 
determines the degree of stochasticity of the retrieval 
process and similar to the decay rate parameter it is left at its 
default value of 0.25. 

However, the retrieval process described above has one 
problem.  If it only retrieves one chunk associated with a 
given choice, it will usually not be sensitive to the 
magnitude of the payoff values.  If one alternative has a 



certain payoff of 11, it will not matter whether the other has 
equally likely payoffs of 1 and 19 (averaging 10) or 1 and 
199 (averaging 100).  It will choose each about half the time 
in both cases, which is clearly not right.  What we want is a 
retrieval procedure that takes into account both the 
frequency (and recency) of each payoff as reflected in its 
activation and the magnitude of the payoff itself.  To that 
effect, Lebiere (1999) introduced a variation of the retrieval 
process called blending that has since been used in many 
instance-based models (e.g. Gonzalez et al., 2003; Wallach 
& Lebiere, 2003).  The key equation controlling blended 
retrieval is the following: 

 

! 

V = min P
i
" 1# Sim V ,V

i( )( )
i

$
2

   Blending Equation 

 
The equation states that the value V returned by retrieval 

is the one that best satisfies the constraints offered by all 
matching chunks i weighted by their probability of retrieval 
Pi as computed in the Boltzmann equation above.  
Satisfying chunk constraints is defined in terms of 
minimizing the dissimilarity (i.e. maximizing the similarity) 
between the consensus answer V and the actual answer Vi 
contained in chunk i.  This process is applicable to all 
domains, discrete and continuous, as long as a similarity 
metric is defined over those values.  As such it can be seen 
as an implementation of the generalized Bayesian 
framework of Tenenbaum & Griffiths (2001) or an 
approximation of the generalization capabilities of 
connectionist architectures based on distributed 
representations (e.g. O’Reilly & Munakata, 2000).  In 
practice, we define linear similarity values over payoffs, 
which result in the retrieval process averaging their values 
weighted by activation. 

A final point concerns the initialization of the model.  If 
the model started with no expectations of the payoffs, it 
would start by deciding randomly, but then as soon as one 
payoff had been experienced for each choice, it would 
happily take the best indefinitely.  To trigger exploration at 
the start, we initialized the model with a single chunk for 
each decision encoding high initial expectations (payoff of 
1000).  That initial value will quickly get overwhelmed by 
actual experience as it decays and is never reinforced, but it 
results in an initial period of exploration that corresponds 
well to human subjects without the need to arbitrarily define 
a specific strategy to that effect. 

Results and Comparison  
Our model fits the data quite well using Erev and 

Barron’s (2005) primary measure of performance, namely 
the probability of maximization in the second block of 100 
problems (Pmax2)..  That measure for problems 1, 2 and 3 
is 0.91, 0.65 and 0.53 respectively for our model, as 
compared to 0.90, 0.71 and 0.57 for Erev and Barron’s data 
and 0.82, 0.61 and 0.50 for our data.   The variation between 
data and model is substantially smaller than the variations 

between data sets, suggesting the substantial role played by 
individual differences. 

To examine individual differences, we have plotted in 
Figure 2 the distribution of the probability of maximization 
for each 100-trial block for individual subjects (and model 
runs) within each of five intervals: 0-20%, 20-40%, 40-
60%, 60-80% and 80-100%.  For reasons of space, we have 
selected problems 2 (Figure 2a) and 4 (Figure 2b) as the 
most interesting for display.  Focusing for now on problem 
2, one can see that the distribution of probabilities ranges 
across the highest 4 categories, a range well-reproduced by 
our model.  One could argue that it is too well reproduced, 
with the highest category over-represented compared to the 
data.  However, in Erev & Barron’s data (which only report 
distribution figures for the second block), the two highest 
categories (60-80% and 80-100%) dominate with many 
fewer subjects in the 40-60% category than for our data.  
This would seem to explain the discrepancy between the 
values of Pmax2 observed by Erev and Barron and us (0.71 
vs. 0.61).  In this respect, our model fits comfortably 
between the two data sets, but it is again a reminder to be 
careful when comparing to aggregate data across subjects. 
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Figure 2: Individual differences for problems 2 (left) and 
problem 4 (right). Within each panel human data (left) and 
model data (right) distribution of maximization probability 

are shown, aggregated in 20% increments. 
 

We now consider how deviations from maximization 
emerge from our model and in particular the source of the 
payoff variability effect.  For problem 1, with deterministic 
payoffs, maximization is simply a matter of quickly 
overcoming the high initial expectations through the 
exploration phase.  Alternative H consistently returns the 
highest payoff.  Thus blending consistently produces a 
higher expected value for alternative H.  For problem 2, 
with variable payoffs for alternative L, blending combines 



the distinct payoffs of 1 and 19 for alternative L to produce 
random fluctuations in expected value.  Although blending 
will tend to average the two payoffs of alternative L to 10 if 
they are of equal activation, the noise of the activation 
process and the random distribution of L payoffs will tend 
to make activations unequal, pushing the average on either 
side of 10, and sometimes higher than 11, which leads to 
lapses in maximization.  The same happens with Problem 3, 
except that alternative H averaging 11 is now the one with 
the noisy distribution, and the model does reproduce the 
tendency to select it less frequently than it does in Problem 
2, indicating risk aversion.  This brings us to problem 4, the 
risk aversion problem, where this symmetry argument 
would suggest that both options would be chosen equally 
often on average.  However, on average both subjects and 
model tend to prefer the certain option, roughly 55% of the 
time.  This risk aversion effect (and the difference in Pmax2 
between Problems 2 and 3) arises from a subtle interaction 
in the dynamics of the task illustrated in Figure 3. 

 

 
Figure 3: Emergence of risk aversion effect 

 
The blue dashed line represents the (constant) expected 

value of the certain alternative while the red line represents 
the expected value of the risky alternative.  On average, the 
expected values of the two alternatives are equal and they 
indeed start that way.  Each star of a given color (red or 
blue) indicates an experienced payoff for the associated 
choice.  After the start, the risky alternative provides some 
lucky payoffs (e.g. 21), which raises its expected value and 
leads to its selection more often.  Luck even outs quickly 
however as a series of poor payoffs (e.g., 1) lowers its 
expected value to less than 11, which in turn leads to 
selection of the certain alternative most of the time.  The 
key insight is that this bias toward certain payoffs leaves the 
risky alternative fewer opportunities to bring its average 
back to the level of the certain alternative, meaning that this 
interval where the certain alternative is selected most of the 
time is longer than the previous interval when the risky 
alternative was selected most often.  This asymmetry is the 
source of the risk aversion effect in our model and its 
preference for certainty. 

One prediction of this explanation arises from its origin in 
the base-level learning equation that reflects the occurrence 
of events into the activation of decision chunks and then 

into the expected outcomes of the respective choices.  As 
experience accumulates, the impact of recent events in 
activation fluctuations will be gradually overcome by the 
increasingly long history.  One would therefore expect risk 
aversion to disappear with practice, a prediction confirmed 
by Figure 4, which plots the probability of choosing the 
certain alternative with practice (in terms of blocks of 10 
trials).  In the initial exploration period, both model and 
subjects choose the certain alternative about 50% of the 
time.  By around trial 50 the certain alternative is chosen 
over 60% of the time as the payoffs statistics are quickly 
learned, but the bias to select certain payoffs then gradually 
declines back to 50% as the increasingly long history 
overcomes short-term fluctuations.  Figure 2b (right) 
illustrates this learning process across blocks of 100 trials as 
a quickly learned propensity to choose the certain 
alternative gradually reverts to the mean. 
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Figure 4: Time course of risk aversion effect 

 
As we mentioned previously, one strong aspect of our 

model over RELACS is that it makes constrained 
predictions about the probability of making a given decision 
as a function of the recent history of choices and payoff 
outcomes.  To study those probabilities, we used a 
methodology called model-tracing (Anderson et al, 1995) to 
force the model to make the same decisions as each human 
subject, thereby giving them the same context in which to 
make each decision.  We can then directly compare each 
decision for model and subjects, as reported in Table 1.  
Columns 2 and 3 report the Pmax values for each subject 
and the model tracing its decisions.  Columns 4 and 5 report 
the minimum and maximum probability of matching 
decisions given those base probabilities.  Column 6 report 
the average prediction probability of agreement assuming 
that decisions are randomly distributed given those base 
probabilities while column 7 reports the actual probability 
of agreement.  For all subjects but S8, the actual probability 
is higher than the predicted probability, establishing that the 
model is capturing some of the short-term factors used by 
the subjects in their decisions. 



Table 1:  Model tracing by subject 
 

ID Subj Model Min Max Pred Actual 
S9 0.585 0.365 0.050 0.780 0.477 0.575 
S8 0.458 0.258 0.285 0.800 0.521 0.505 
S7 0.660 0.323 0.017 0.662 0.443 0.458 
S6 0.338 0.237 0.425 0.900 0.585 0.605 
S5 0.470 0.228 0.302 0.758 0.516 0.537 
S4 0.517 0.250 0.233 0.733 0.491 0.603 
S3 0.448 0.263 0.290 0.815 0.525 0.560 
S2 0.672 0.310 0.018 0.637 0.434 0.482 
S20 0.422 0.260 0.318 0.838 0.537 0.588 
S1 0.615 0.335 0.050 0.720 0.462 0.490 
S19 0.182 0.195 0.623 0.987 0.694 0.698 
S18 0.585 0.352 0.063 0.768 0.475 0.482 
S17 0.703 0.307 0.010 0.605 0.422 0.525 
S16 0.207 0.210 0.583 0.998 0.670 0.728 
S15 0.632 0.263 0.105 0.630 0.437 0.445 
S14 0.080 0.105 0.815 0.975 0.832 0.870 
S13 0.455 0.263 0.282 0.807 0.521 0.552 
S12 0.708 0.355 0.062 0.647 0.440 0.502 
S11 0.738 0.420 0.157 0.682 0.462 0.497 
S10 0.412 0.247 0.340 0.835 0.544 0.575 

Conclusion 
Our goal in this modeling effort is to reach for breadth as 

well as depth from a constrained computational basis in a 
cognitive architecture in general and a theory of memory in 
particular.  We primarily illustrated depth in this paper by 
showing how our model can account for aggregate choice 
and individual differences as well as new data on learning 
and short-term choice interdependency.  In the future, we 
aim to emphasize breadth by unifying this model with 
existing models of other choice and control paradigms as 
well as extend its applicability to related paradigms.  
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