
 Convergence and Constraints 1

Running Head: CONVERGENCE AND CONSTRAINTS

Convergence and Constraints Revealed in a Qualitative Model Comparison

Christian Lebiere1, Cleotilde Gonzalez2

1Psychology Department

2Dynamic Decision Making Laboratory

Social and Decision Sciences Department

Carnegie Mellon University

Walter Warwick

MA&D Operation

Alion Science and Technology

Please address all correspondence to:
Christian Lebiere
Psychology Department - Baker Hall 345A
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
Email: cl@cmu.edu
Phone: 412-268-6028

mailto:cl@cmu.edu�

 Convergence and Constraints 2

Abstract

We contrasted and compared independently developed computational models of human

performance in a common dynamic decision-making task. The task, called Dynamic Stocks and

Flows, is simple and tractable enough for laboratory experiments yet exhibits many

characteristics of macrocognition. A macrocognitive model was developed using a

computational instantiation of Recognition-Primed Decision-Making. A microcognitive model

was developed using the ACT-R cognitive architecture. Both models followed an instance-based

learning paradigm and displayed striking similarities, including their constraints, limitations, and

the key breakthrough that enabled satisfactory (though still short of human-like) performance,

suggesting the emergence of a general design pattern. On the basis of this comparison we argue

that while some substantive differences remain, microcognitive and macrocognitive approaches

provide complementary rather than contradictory accounts of human behavior.

Keywords: Macrocognition, Dynamic Decision Making, ACT-R, RPD, Model

comparison

 Convergence and Constraints 3

Introduction

As Hoffman and McNeese (this issue) point out, research in macrocognition is often

presented as a reaction to so-called microcognitive research and its focus on understanding the

“mechanisms of intelligence,” theory building, and well-controlled experimentation. On its face,

this orientation would seem to put macrocognitive research at odds with the long tradition of

computational cognitive modeling that seeks to provide detailed accounts of the invariant

mechanisms that capture the general properties of human cognition (Newell, 1990). Furthermore,

the fact that such models produce quantitative predictions over a range of measures including,

for example, response time, errors, eye movements, and even fMRI activation patterns

(Anderson, 2007), often at very fine-grained time scales, might seem to make them even further

removed from the macrocognitive emphasis on research on complex tasks over long time

intervals and in naturalistic settings.

On deeper inspection, however, this apparent incompatibility turns out to be merely

superficial. Although much of the history of computational cognitive modeling has a

microcognitive flavor, in more recent years there has been a concern that cognitive models

generalize beyond the laboratory to complex, real-world tasks. Similarly, a concern for

quantitative predictions does not preclude the explicit representation of macrocognitive functions

and processes, as the other manuscripts in this special issue demonstrate. A macrocognitive

orientation does, however, put a burden on the computational modeler to explain how those

models relate to the macrocognitive functions and processes they purport to represent; where the

microcognitive modeler can point directly to the computational implementation as a theory of

cognition (i.e., as a “mechanism of intelligence”), the macrocognitive modeler has no such

 Convergence and Constraints 4

luxury. In fact, accounts of macrocognition are often deliberately underdetermined with respect

to mechanism, focusing instead on descriptive accounts of the cognition “in the wild.”

But underdetermination need not be taken as evidence for incompatibility. Quite to the

contrary, we see a complementary relationship between macrocognitive theories and

computational implementations. Macrocognitive theories need candidate mechanisms to be

computationally instantiated in order to generate quantitative, testable predictions (a sine qua non

of scientific validity). Relying on microcognitive architectures to provide such mechanisms,

validated against controlled experiments, is a more promising approach than blinding searching

through a very extensive space of possible computational mechanisms. Conversely,

microcognitive architectures strongly constrain but do not solely determine performance in

complex tasks: they need to be augmented with models that specify how the architectural

mechanisms are applied to the task. While those models can have many origins, including

empirical sources such as cognitive task analysis (e.g., Chipman, Shraagen, & Shalin, 2000), the

limits of knowledge engineering methods are well known (e.g., Studer, Benjamins, & Fensel,

1998) and more systematic approaches are needed. While modeling paradigms can originate

from the architecture itself (e.g., Taatgen, Lebiere, & Anderson, 2006), macrocognitive theories

constitute another potential source, promising both systematicity and empirical grounding. In this

paper we attempt to demonstrate both directions of the complementarity between macrocognitive

theory and computational implementation, revealing the constraints, commonalities, and

differences that result from the two perspectives.

To do this, we have taken a comparative approach, explaining how two different

computational approaches were used to model a task that embodies learning and decision-

making in a complex dynamic environment. Although our approach is clearly related to other

 Convergence and Constraints 5

model comparison efforts (e.g., Erev et al., submitted; Gluck & Pew, 2005; Lebiere & Bothell,

2004; Lebiere, Archer, Best, & Schunk, 2008) we emphasize qualitative understanding of model

development and performance over quantitative measures of goodness-of-fit. The arguments

over using "good fits" as evidence for "good theories" have been a matter of recent controversy

(e.g., Roberts and Pashler, 2000; Cassimatis, Bello, & Langley, 2008). Furthermore, we

emphasize understanding of what did not work in the model development process. Making sense

of what a model or architecture cannot do or what needs to be added to a model to make it work

is valuable not just because it decreases the expectedness of valid prediction, but because it

reveals the work that goes into developing an adequate representation and helps us understand

the relative contribution of modeler, architecture and parameterization in the generation of those

predictions.

We describe below the process by which we went about developing two computational

models. The models were developed completely independently by separate modelers with access

to the same task information using computational architectures rooted in very different traditions.

One model was developed using a "naturalistic" extension of the Micro Saint Sharp task network

simulation environment (Warwick, McIlwaine, Hutton, & McDermott, 2001; Warwick &

Hutchins, 2004). The other model was developed using an instance-based model of decision-

making implemented within the ACT-R cognitive architecture (Anderson & Lebiere, 1998;

Gonzalez, Lerch, & Lebiere, 2003; Gonzalez & Lebiere, 2005).

A qualitative comparison such as the one developed here has several advantages. First, by

focusing attention on the model development, rather than on just the numerical results of a fitting

process, we are reminded that models do far more theoretical work than simply generating

predictions. Second, by applying different modeling approaches to a common problem, we

 Convergence and Constraints 6

provide a concrete context in which to understand both the computational mechanisms and the

effort entailed in developing a model of macrocognitive processes. Even working within a given

architecture, a modeler will have significant freedom in representing the knowledge available,

the procedural strategies applied to the task and the parameterization of the model components or

the architectural mechanisms. Understanding how the modeler proceeds in developing a model

goes a long way toward understanding whether the resulting model corresponds in any

interesting way to macrocognition. Finally, and most importantly, in this model comparison we

will argue that a fair amount of convergence has occurred from two otherwise disparate

modeling approaches. Given the fundamental differences between theories of macrocognition

and microcognitive architectures, the degree of overlap in the approaches is remarkable. We see

the convergence as evidence for a sort of "design pattern" that might prove especially fruitful as

researchers continue to explore computational models of macrocognitve processes.

We begin by describing the general method we used for our model comparison. Next, we

describe the Dynamic Stocks and Flows (DSF) task and the associated experimental protocol and

resulting human performance data. We argue that the task should be germane to those interested

in understanding macrocognition. We then describe the two different computational models of

human performance in the DSF task, each of which implements an instance-based model of

decision making, but comes from widely different theoretical perspectives. For each model, we

will provide a detailed description of the underlying architectures and their mechanisms along

with a discussion of what went into the process developing the DSF models themselves. Finally,

we will conclude with a discussion of the convergence between the two approaches and what this

might tell us about macrocognition.

 Convergence and Constraints 7

Methodology for Model Development and Comparison

Our model comparison effort was guided by three methodological requirements. First, the

modeling effort should focus on human performance rather than the simulation of the task

environment or the complexities associated with software integration. Past experience has taught

how easily model comparison efforts can be derailed by requirements for modeling or integrating

with high-fidelity simulations of the task environment. Second, the comparison should engage

the core mechanisms of the respective architectures as directly as possible, with a minimum

degree of engineering or data fitting. Finally, the comparison should ultimately reveal deep

similarities and differences in the respective approaches and the extent to which they correspond

to the theories they purport to implement.

We believe the task environment we describe below satisfies the first and second

requirement; it is sufficiently simple and lightweight to be modeled easily but at the same time it

is open-ended, to discourage over-parameterization and over-engineering of the model and to test

its generalization over a broad range of situations, and it is dynamic, to explore emergent

behavior that is not predictable from the task specification. To further discourage over-

engineering of the models, we firewalled the development teams from each other and we

withheld the human performance data until each team was satisfied with its model performance

based solely on a detailed description of the task and one experimental condition. In this way we

hoped to highlight the "best modeling practices" supported by the respective architectures

without inadvertently introducing a common modeling approach or prejudices about the kinds of

behavior the models should produce. Only then did we examine qualitative fits to the data under

original experimental condition and, later, another transfer condition. Finally, to ensure that the

 Convergence and Constraints 8

comparison was hitting on deep similarities and differences, we made the description of the

development processes the focus of the comparison rather than measures of goodness-of-fit.

Though these descriptions might strike some as evidence of "flailing," modeling human

performance is more than just finding the right kind of representation of the task, as if such

representations existed independently waiting only for direct expression in any architecture.

Rather, it is finding the right representation that can be supported by the given architecture. And

it is in this light where the real similarities and differences between architectures are revealed

and the correspondence between macrocognitive theory and computational model is most clearly

assessed.

The DSF Task

The stock management problem (balancing accumulations through the management of

inflows and outflows) is a common process in every-day life that arises at every temporal,

spatial, and organizational scale (Cronin, Gonzalez, & Sterman, 2009). At the firm level, for

example, the capabilities and competitive advantages arise from the accumulation of resources

and knowledge (Dierickx & Cool, 1989; Sterman, 1989). Managers must control their cash flows

to maintain adequate stocks of working capital, and production must be adjusted as sales vary to

sustain sufficient inventory. A simple stock management problem is the one reduced to its most

essential elements: one stock (a resource that accumulates or depletes over time) and flows that

alter the stock (inflows that increases the stock and outflows that decreases the stock).

In the past, researchers investigated the perceptions of simple dynamic systems (Booth

Sweeney & Sterman, 2000; Cronin & Gonzalez, 2007; Cronin et al., 2009; Sterman & Booth

Sweeney, 2002;). A conclusion from these investigations is that even simple stock problems are

unintuitive and difficult, even with a minimal number of variables, and even for highly educated

 Convergence and Constraints 9

people with strong technical backgrounds. Understanding and controlling such systems in the

real world, where the systems themselves are far more complex, the information is far less

certain, and the consequences of action are harder to trace, is more difficult and demands

significant skill. Managing stocks is a dynamically complex problem, that requires detecting

problems, adapting to changing conditions, and deciding between many alternatives courses of

action, thus, reflecting processes directly relevant to macrocognition.

The Dynamic Stocks and Flows (DSF) is a simulation-based tool for studying learning

and decision making in the context of simple stock management problems (Dutt & Gonzalez,

2007; Gonzalez & Dutt, 2007). Although the simulated stock problems are simple in the

traditional sense (i.e., they have few elements to manage), the DSF is still dynamically complex

(Sterman, 2000). The complexity arises from the interaction between the decisions made and the

structure of the environment over time.

The DSF represents the essential elements of every dynamic system: a single stock,

which represents an accumulation of discrete (i.e., units in inventory) or continuous (i.e., water)

units, inflows, which increase the level of the stock, and outflows, which decrease the level of the

stock. The goal of this task is to maintain the stock at a particular level or at least within an

acceptable range. External inflow and outflow increase or decrease the level of stock, both of

which are outside the control of decision makers. Stock levels are also influenced by the user’s

decisions of inflow and outflow, which increase or decrease the level of the stock and are under

the control of the user. Further, the level of the stock at time t depends upon the state of the

system at the previous time t-1, a characteristic of dynamic systems called interdependency

(Edwards, 1962). Also inherent in dynamic systems are feedback loops, where a variable can

affect itself and other variables.

 Convergence and Constraints 10

Figure 1 represents the graphical user interface of DSF. The stock is represented

graphically as a tank. In this version, the stock represents continuous units of the stock as water

in a tank. The markings on the left side of the tank represent the water level in the tank at any

instance of time. There are 4 pipes connecting the tank, as shown in Figure 1. Two pipes labeled

User Inflow and Environment Inflow are located on the input side and increase the level of stock

in the tank; two pipes labeled User Outflow and Environment Outflow are located on the output

side and decrease the level of stock in the tank.

--

INSERT FIGURE 1 HERE

The user must set the inflow or outflow rates (user inflow or user outflow) at each

instance of time, typically to compensate for the environmental inflow and outflow that may

push the stock away from its desired level. The environmental inflow and outflow are external

functions that can be set up by the experimenter. The target level of stock is shown with a red

horizontal line with Goal mentioned on the right side and also in the Goal information box, as

shown in the information section next to the Amount in Tank box.

The user enters the number of units for inflow and outflow in the decision boxes at the

bottom of the screen and hits Submit. Then, the Environment Inflow and Outflow makes an

effect on the stock. The user receives "feedback" about the number of units of Environment

Inflow and Outflow; these appear as numbers in the black boxes during each time period, as

shown in Figure 1. Just after the Environment Inflows and Outflows take place, the system

causes the user specified inflows and outflows to take place. The number of units of user inflow

pops up in a red box next to the User Inflow pipe, while the number of units of user outflow pops

 Convergence and Constraints 11

up in a green box next to the User Outflow pipe. The system also provides feedback by

presenting all values of the flows that occurred in that time period in the Information section

shown in Figure 1.

The user can then begin the next time period (which is shown in a time display box at the

top of the tank) by submitting new inflow and outflow values in the decision boxes and pressing

Submit. Users must do their best to control the water level and maintain it at the targeted value,

given the variable nature of the Environment Inflows and Outflows.

Human performance in DSF

Behavioral data collection using DSF has demonstrated that controlling even this simple

dynamic system can be challenging for humans. Gonzalez and Dutt have collected a variety of

human performance conditions using DSF (Dutt & Gonzalez, 2007; Gonzalez & Dutt, 2007). For

example, Dutt and Gonzalez (2007) presented data from an experiment in which participants

were asked to maintain the level of water in the tank to 4 gallons or within +/- 0.1 gallons from

the goal during all the 100 time periods. The human data came from two conditions defined by

the Environment Inflow function: one condition followed an increasing linear function and the

other condition followed a decreasing linear function over trials. The environment outflow was

constant and set at 0 Gallons/Time Period. Hence, Environment net flow was equal to

Environment Inflow. The initial water level in the tank was fixed in both conditions at 2 gallons.

In the increasing condition the Environment Inflow function increased over the course of 100

time periods from 2 to 10 Gallons/Time Period according to the function: 0.08 * (TimePeriod) +

2. The decreasing condition was exactly opposite, decreasing from 10 to 2 in decrements of 0.08.

In both function there was an equal amount of water flowing into the tank over the course of 100

time periods (which was 604 gallons). The human performance results for the increasing and

 Convergence and Constraints 12

decreasing functions in DSF are presented in Figure 2. These were reported and are discussed in

Dutt and Gonzalez (2007).

--

INSERT FIGURE 2 HERE

In the model comparison exercises presented in this paper, we first implemented the

linear increasing function and then used the same model to predict the results of the linear

decreasing function in Dutt and Gonzalez (2007).

RPD Computational Model of Behavior in the DSF Task

Inspired by Klein’s model of the recognition-primed decision-making (Klein 1989, 1993,

1998), we have extended the available "decision types" in the Micro Saint Sharp task network

modeling environment to include an "RPD" decision type.1 The RPD decision type is intended to

support the representation of an experience-driven decision-making process where courses of

action are the emergent "by-products" of recognition rather than the result of deliberative

analysis or the application of rule-based knowledge. In particular, the RPD decision type

implements computational analogues for three prominent features of Klein’s theoretical model.

First, just as the recognition-primed decision model emphasizes the importance of experience

over the application of fixed, normative strategies, the RPD decision type depends on the

accumulation of experience to shape decision-making performance during a simulation. Second,

just as recognition-primed decision-making was presented as an alternative to analogical and

case-based models of decision-making2, recognition in the RPD decision type draws on the

entirety of experience rather than focusing on any single past episode. Third, just as the course of

action is an immediate "by-product" of situation assessment in Klein’s model3, the RPD decision

 Convergence and Constraints 13

type is, at root, a mechanism for learning associations between situations, courses of action, and

outcomes such that, with enough experience, the model simply reacts to each new situation with

whatever course of action it has come to associate with that situation without engaging in any

deliberative, optimizing or rule-based reasoning.

Computationally, our approach extends Hintzman’s multiple-trace memory model (1984,

1986a, 1986b). The basic idea is to represent a decision maker’s long-term memory as a set of

episodes, each of which represents the situation that prompted a decision (encoded as a cue

vector), the course of action taken (from a fixed set of discrete alternatives), and an outcome

measure of that action (either successful or not). Recognition occurs when a new situation (i.e.,

cue vector) is presented. A "similarity value" is computed between the new situation and the

corresponding portion of each of the remembered episodes. This value is used to determine the

proportional contribution that each and every remembered episode makes to a composite

recollection of courses of action taken in the past and their outcomes. The result is a distribution

of recognition strengths across the available course of action given the new situation. At this

point, the model depends on a fixed selection heuristic (e.g., choosing either the course of action

with the greatest recognition strength or performing a weighted random draw across all

recognized courses of action weighted with respect to recognition strength), and the selected

course of action for that situation is implemented, evaluated, and stored as a new episode in long-

term memory for use in the next decision.

While we defer the technical description of the computational mechanisms to Appendix

A, there are several features of the approach worth noting here. Decision-making episodes are

encoded using bit-strings and similarity values are calculated by taking a dot product between a

cue vector representing the current situation and that portion of each remembered bit string that

 Convergence and Constraints 14

encodes the cue vectors of past situations. In order to ensure a uniform structure for these cue

vectors, the cues that prompt recognition are re-represented internally using discrete

enumerations of the ranges of values they can assume. This approach to representing cues and

calculating similarity values implicitly supports fuzzy matching between "adjacent" cue values

(the closer the value, the more similar the match), but it also has a more serious implication that

determining similarity is a purely syntactic process within the RPD decision type; no matter what

kinds of cues the internal enumerations encode, similarity is calculated bit-by-bit without any

consideration for what those bits represent.

The computational mechanisms that implement the similarity-based recall, the

recognition of a crisp course of action from the distribution of recognition strengths, and the

accumulation of experience are invariant features of the RPD decision type, but the content of

the modeled decision is not. That is, any decision modeled using the RPD decision type in Micro

Saint Sharp will use these same mechanisms, but the cues, courses of action, and outcome

evaluations of those actions must be defined by the modeler. In most cases, the "structure" of the

decision simply falls out from the task. For example, in modeling binary choice in a

categorization task, the cues are simply the dimensions along which the stimuli are given,

courses of action are just the available categories, and outcomes are determined by whether the

membership decision matches the actual membership of the stimulus. The structure of the

dynamic stocks and flows task did not lend itself to such an immediate representation of cues,

courses of action, or outcomes. Moreover, given our overriding interest in model comparison, we

chose to insulate our development efforts as much as possible in the hopes that independent

development would highlight differences in the modeling approaches. Toward this end, we not

only worked separately of each other, but we also chose not to consult verbal protocols from the

 Convergence and Constraints 15

experiment to eliminate the possibility that we would be inadvertently biased toward a common

representation of the task. Instead we relied on our subjective intuitions and computational

experimentation to guide model development. In the case of the RPD decision type, this led to an

iterative development cycle with each stage in the cycle comprising a choice of cues to model, a

scheme for transforming those cues into internal representations, and a specification of the

discrete courses of action the model would choose among and how those choices would be

reinforced.

First, taking what seemed to be the most obvious approach, we modeled the decision as a

choice among fixed adjustments to the stock (e.g., decrease-five-gallons, increase-two-gallons,

etc.) prompted by two cues, the current stock and the current exogenous inflow. The continuous

values of both the current stock and inflow were mapped to enumerations; so, for example, if the

current stock was between 2.5 and 5.0 gallons, the RPD cue would assume the value of "about

right." Initially, each cue was mapped to a five-valued enumeration. Decisions were positively

reinforced whenever they resulted in the current stock that was within a predefined range of the

target stock.

Although straightforward and intuitive, this initial representation of decision-making

within the DSF task was a failure. More specifically, in order to control the stock, the model had

to associate input patterns—i.e., values of the current stock and inflow—with the appropriate

course of actions—i.e., reductions in stock to offset the inflows given the current stock; but the

model was never able to learn those associations and stock would increase monotonically

throughout the trial.

 Convergence and Constraints 16

--

INSERT FIGURE 3 HERE

Initially, we thought that the failure might be rooted in the lack of fine-grained control the

model had over the stock. We speculated that, limited to only coarse corrections, the model

might be missing the target stock so often as to prevent it from receiving enough reinforcement

to learn the appropriate associations between input patterns and outflow actions. Because the

model was never forming stable associations between situations and actions it would, by default,

end up guessing and failing most of the time. So, on the basis of this speculation, we increased

the number of courses of action available to the mode (thereby making each correction more

precise). Similarly, we also increased the granularity of the cues (to make them more diagnostic;

that is, we mapped real-valued inputs to a larger number of enumerated values). And we even

eliminated some courses of action from consideration that we knew would never be appropriate

under the particular instance of the DSF task we were modeling. The hope was that having fewer

"incorrect" options to consider, the model would perform better.

While these changes prevented the monotonic increase, it was clear that the model was

still far from controlling the stock. We then began to reconsider our initial speculation; reversing

our thinking completely, we wondered whether the episode structure was too complex to learn in

a short span of 100 trials. So we simplified the input by reducing the granularity of the cue

enumerations, and even eliminating one cue altogether with the hope that this could make the

associations between input and action easier to learn. But this did not work either. Finally, we

experimented with different reinforcement strategies and some more general parameter settings

 Convergence and Constraints 17

that controlled learning rates within the model. Again, the model was never able to demonstrate

any degree of control over the stock.

Our only real breakthrough came when we changed our basic representational strategy. In

particular, rather than represent inputs and courses of action in absolute terms of specific inflow

amounts, stocks, and outflow adjustments, we defined cues in the relative terms of the degree of

difference from desired stock and courses of action as proportional adjustments to the current

stock (using the previous inflow as the basis of the proportional adjustment and including a

"match" course of action, where the proportion equals 100% of previous inflow). Similarly,

decisions were reinforced whenever the total stock was moved closer to the target stock (rather

than evaluating the outcome in terms of whether the target stock was within a specified window

of the target stock). With these changes, the model was finally able to exhibit some degree of

control over the stock. Still, there were quantitative differences in the model performance when

compared to the human performance. For example, humans were able to learn to control the

stock much more quickly and precisely than the model; but overall, the model exhibited

plausibly human-like performance.

--

INSERT FIGURE 4 HERE

What’s more interesting is to reflect on the steps it took to get to this level of

performance on this particular task and how our approach in general, having been inspired by a

study of macrocognition, compares to the more "microcognitive" approach to instance-based

decision making taken in ACT-R. In hindsight, representing the DSF task in the relative terms

might seem like it should have been the obvious choice from the beginning. Indeed, from the

 Convergence and Constraints 18

perspective of control theory, recognizing differences from target states and reinforcing actions

that return the system to that state are old hat. But coming at the DSF task from with a model of

recognition-primed decision-making in hand, such representations were far from obvious. We

had become accustomed to thinking of decision problems in terms of mapping inputs to outputs,

finding the appropriate association between situations and suitable courses of action. It wasn’t

until very late in this effort that we realized that the DSF would not easily fit that mold and that,

given the constantly changing nature of the environment in the DSF, there would never be a

fixed mapping between situations and actions.4 Any association between the current stock and

the decision to reduce stock by such-and-such a fixed amount (or proportion) would eventually

become obsolete as the rate of inflow changed; that is, any association learned between a

situation and a course of action would eventually need to be unlearned and another, newer

association learned anew as the adjustment required in absolute terms would change over time.

Moreover, it is worth noting that the architecture of the RPD decision type forces us to model

control in essentially categorical terms. Once the modeler enumerates the cues and courses of

action, model performance depends on learning the purely syntactic associations between

patterns of input cues and enumerated courses of action. Even though the cues and courses of

action in this case represent quantities, the internal representations are non-numeric in the sense

that there are no internal mechanisms to support mathematical or other similarly rich

manipulations of them; the model cannot average past inflows, compute differences, or estimate

the impact of particular adjustments.

In this light, the fact that a recognitional model of decision-making can exhibit some

degree of human-like control over the DSF task might seem remarkable. Then again, we might

also take this as evidence that the model is doing something like the actual human subjects, who

 Convergence and Constraints 19

also have a difficult time with the task. The question now is whether the performance of the

model is just an artifact of a well-chosen problem representation or something deeper. This

question came into sharp relief when we ran the very same model we had developed for the

increasing inflow condition of the DSF task under a decreasing condition. Given that nothing

about the inflow condition had been directly represented in the RPD decision, we expected a-

priori that the model performance would be qualitatively similar, under both conditions. That is

not what we found (see Figure 4). While the RPD model again exhibits qualitative similarity to

the human performance data, including the gross overshooting of the target outset early in the

trials, overall it seems to do a much better job controlling the stock in the decreasing condition.

In particular, it lacks the periods of un-learning and relearning that are evident in the increasing

condition. Given that the internal representations are identical, it would seem that only the nature

of the task environment could account for the difference, namely, that in the decreasing inflow

conditions, new inflows are continually perturbing the stock less and less and thus whatever

association was successful before is likely to be successful later. Again, it is not clear whether

credit is due to a useful representation of the problem, or a happy accident of the task

environment. To address that question we now turn to an ACT-R model of the DSF task. As we

will discuss below, the ACT-R model is able to take advantage of a much more expressive

representation of the problem to improve the quality of its control but it shares many of the same,

more general architectural features of an instance-based, recognitional model of decision-

making.

ACT-R Computational Model of Behavior in the DSF Task

ACT-R’s primary architectural commitments are two-fold. At the organizational level

(see Figure 5), the architecture is composed of a set of modules, including perceptual (visual),

 Convergence and Constraints 20

motor (manual), and declarative memory modules (as well as self-standing goal and imaginal

(problem) buffers), coordinated by the procedural (production rules) module through limited-

capacity buffers. Each processing step within a module is massively parallel (e.g., all production

rules in the procedural module are matched at once, as are chunks of information in the

declarative module) while communication between modules is serial and asynchronous (e.g.,

only one request for information retrieval can be sent to declarative memory at a time, and a

single chunk will be returned through the retrieval buffer whenever the retrieval is completed).

Activity in the modules has been correlated with fMRI BOLD response in specific brain regions,

bringing to bear neuroscience constraints on the architectural organization (Anderson, 2007).

While we will not discuss the neuroscience underpinnings of cognitive performance any further,

it does illustrate how cognitive architectures can integrate constraints from other levels of

description, from neural models to macrocognitive models (Jilk, Lebiere, O'Reilly, & Anderson,

2008). The second level of architectural commitments concerns the representations and processes

taking place in each module, and in particular the declarative memory module and the procedural

module. ACT-R’s approach is a hybrid combination of a simple, constrained symbolic

representation (chunks in declarative memory, production rules in the procedural module)

together with subsymbolic selection mechanisms that adapt to the statistical structure of the task

and its environment. The former underlies our ability to perform almost any task and quickly

learn novel combinations of knowledge while the latter captures the soft, adaptive nature of

human performance including both its abilities (e.g., generalization) and its limitations (e.g.,

forgetting). A tight integration of those two very different types of abilities is necessary to

account for the full range of human cognition (Anderson & Lebiere, 2003).

 Convergence and Constraints 21

--

INSERT FIGURE 5 HERE

A number of modeling paradigms have emerged to apply the ACT-R architecture to

various classes of problems (e.g., Taatgen, Lebiere, & Anderson, 2006). In our model, we

adopted the instance-based learning approach that we previously applied to a broad range of

decision-making tasks (e.g., Gonzalez et al., 2003; Gonzalez & Lebiere, 2005; Wallach &

Lebiere, 2003). Modeling a broad range of tasks using not only the same architectural

mechanisms but also the same techniques and parameters is a key unifying attribute of cognitive

architectures. It also imposes stronger constraints on the model’s predictiveness than a model

developed and parameterized tabula rasa to fit the task and data. The logic of the model is

straightforward: extract a small number of decision attributes from the full problem

representation, set up a goal to make a decision based on those attributes, and attempt to retrieve

and generalize a previous decision made in a similar situation. To bootstrap the system, we used

a first-order heuristic rule that attempted to resolve the discrepancy between the current and

desired water levels. This heuristic is both simple and optimal in the absence of knowledge

regarding the future external inputs and outputs, as is the case for a subject starting the

experiment. To avoid introducing an additional parameter arbitrating between the rule-based and

instance-based decision strategies, we decided to initialize the system with a few instances

extracted from that rule (e.g., if the stock is 5 gallons less than the target level, set the inflow

level to 5) rather than represent the rule itself, thus preserving the purely instance-based nature of

the model.

 Convergence and Constraints 22

Given this basic task strategy, the structure and mechanism of the cognitive architecture

put very strong constraints upon the resulting performance. The production rules to implement

the instance-based strategy are few and straightforward (basically just a couple of rules to set up

the decision goal, request the instance-based retrieval, and perform the action), so the key

determinant of performance is the retrieval of past instances from declarative memory. Other

than the initial chunks extracted from the heuristic rule to bootstrap the process, each memory

instance chunk is created automatically from each accomplished decision-making goal. The

activation of each chunk, reflecting processes such as recency and decay, will determine its

availability. In particular, more recent memory items will be more salient and thus more recent

experience favored, a significant difference from the RPD model. However, from there the

processes are substantially similar. Activation is modulated by the degree of match between the

current situation and the memory chunk as reflected in the similarity of their values in a process

called partial matching. The value(s) returned by the memory retrieval process do not correspond

to those of a single memory chunk but instead reflect a blending process (Lebiere, 1999) that

returns the best consensus value over all memory chunks, weighted by their probability of

retrieval according to a softmax process. Details of this process and equations are included in

Appendix B.

Given the basic instance-based strategy and those architectural constraints, the one

remaining degree of freedom in defining the model is the choice of relevant attributes used in

making and representing each decision. That is not a surprise since the relevant attributes are not

known to subjects either, and different subjects (or the same subject at different times) might

well pay attention to different attributes. As for the RPD model, we were surprised at how rich

the space of choices was compared to past experience with other similarly simple control

 Convergence and Constraints 23

systems. As a reminder, the ACT-R model was developed by a different modeler, independently

and in parallel to the RPD model, and the representation explorations for each model were not in

any way informed by those of the other model. In our first-pass model, we specified these three

components to the decision-making goal (and therefore to the instance chunks that those goals

will become when completed): the discrepancy between current and target water levels, the

action to be taken as the difference between user inflow and outflow, and the outcome of that

action in terms of remaining discrepancy (i.e., deviation from target water level) after the action

took place. All those quantities were readily available from the display and did not represent

significant cognitive work to integrate in the current goal. The decision-making procedure was as

follows: perform a memory retrieval using the discrepancy (attribute 1) as the cue determining

the similarity of past instances to the current situation. The blending process alluded to above

returns, given that cue, the consensus value of the other two attributes: the suggested action

(attribute 2) and expected outcome (attribute 3). The model then corrects the suggested action by

the expected outcome (i.e., remaining discrepancy) and puts it directly into effect (i.e., without

any mediating process such as for the RPD model). If the resulting action is positive, the model

specifies the user input level to that amount and leaves the user output level to 0, and vice versa

if the action amount was negative. The action taken and its (almost) immediate outcome are

recorded in the decision goal chunk together with the original cue (the original discrepancy),

which is then cleared and enters long-term memory as a decision instance.

The performance of the first model is displayed in Figure 6a in terms of the current water

level as a function of trial. The target water level is 4 and the average of 16 model runs (as many

as the number of subjects in the experiment) of 100 trials is displayed. On the positive side, the

model reproduces quite well the initial overshooting of the target level from the starting value of

 Convergence and Constraints 24

2 to about 7, followed by a gradual decrease to the target level of 4 in about 10 trials. This initial

overshooting results because the model’s backup heuristic (as encoded in the initial instances)

assumes no environmental inputs or outputs and instead simply attempts to bridge the gap

between current and desired level. The environmental input starting at a value of 2 leads to the

excess water level until the model gradually learns that its action leads to a positive outcome

(i.e., excess water), which leads to a gradual correction as those instances get stronger and more

numerous and come to dominate the blending process that produces recommended action and

expected outcome. However, after that initial correction the water level starts to drift steadily

upward to end up at about 8 units (i.e., 4 above the desired level) by the end of the 100 trials.

This drift results because the model consistently underestimates the amount of environmental

input. Since that amount keeps steadily increasing with each trial, the model’s knowledge of the

system residing in the individual control instances is bound to produce an estimate biased in the

past, just like an estimate of the size of computer memory based on a sample of five-year-old

computers is bound to underestimate its current value. This effect can be modulated (e.g., by

increasing the rate of memory decay) but cannot be eliminated through parameter variations. It is

a fundamental implication of the model representation.

--

INSERT FIGURE 6 HERE

The opposite phenomenon happens with decreasing linear environmental inflows (see

Figure 6b): ACT-R brings the system down to the desired stock but then the water level keeps

drifting down, constantly overestimating the expected environmental inflow. Note however the

 Convergence and Constraints 25

correspondence with the human data in both the magnitude and duration of the initial overshoot,

both about twice as large as for the increasing environmental inflow condition.

One way to learn to control a system that is constantly drifting is to represent knowledge

of that system in relative rather than absolute terms. This insight is intuitively appealing, since

many of our everyday experiences in controlling complex systems (e.g., driving a car) are

expressed in relative terms as well (e.g., turn the steering wheel clockwise to move the car to the

right). In this case, that means that while future levels of environmental inputs will constantly

keep changing, one thing that is constant under the simple function of linearly increasing

environmental inputs, hence presumably easily learnable, is its rate of increase. To be able to

learn that information regarding the system dynamics, one needs to represent information about

the system in relative rather than absolute terms. We tried a number of variations that led to

similar outcomes. The version whose performance is displayed in Figure 7a still represents the

current situation as the discrepancy between current and desired level, but represents the action

in terms of change in user-controlled flow (rather than absolute difference in input and output)

and represents the outcome in terms of change in water level (as opposed to absolute difference

to target level). The decision procedure is otherwise unchanged. The model now has a more

stable sense of the system dynamics and is able to keep the water level relatively steady around

the desired level. Oscillations remain that reflect the stochasticity and dynamism of its

knowledge base in declarative memory as well as the robustness of the control process: as the

water level gradually drifts away from the desired value, the model slowly corrects it and brings

it back in line. A similar pattern can be observed for the decreasing input condition in Figure 7b.

However, the model is now in a sense too good because it does not display much if any of the

initial overshooting, and then too briefly. It seems that the right model might be a combination of

 Convergence and Constraints 26

an initial absolute representation combined with a gradual switch to a relative representation.

One reason why the subjects would initially prefer an absolute representation is that it is

cognitively easier as it is all directly available on the external screen. In contrast, to be able to

maintain the relative representation in the second model requires additional cognitive work in

terms of maintaining internally between trials the previous action and outcome in order to be

able to estimate the difference. Thus it seems reasonable to speculate that subjects will not go to

these lengths until they have a sense that they cannot control the system using an absolute

representation and that they need to switch to a more demanding relative representation in order

to be successful. Modeling that switch in representation is a future challenge of our modeling

efforts. Achieving that type of effect is usually less difficult than avoiding the introduction of

myriad free parameters in the metacognitive process controlling representation, where the

modeler often gets out of the model exactly what has been put in. Thus the true challenge is to

find a way to affect this change of representation in a way as controlled and parameter-free as the

accumulation and application of knowledge.

--

INSERT FIGURE 7 HERE

Qualitative Model Comparisons and Conclusion

We presented two computational models, coming from distinct architectures and

modeling approaches, to model human behavior in a common dynamic task, controlling the

accumulation of a stock given an inflow and an outflow. The first computational model is an

instantiation of macrocognitive processes, specifically recognition-primed decision-making,

 Convergence and Constraints 27

while the other model is based on a traditional microcognitive framework, the ACT-R cognitive

architecture.

One striking result of our model comparison is the degree to which those seemingly

different modeling approaches have independently converged toward computational

architectures with considerable similarities (see Table 1). Both approaches rely on a "flat"

representation of individual traces as cues-action-outcome; that is, there is no internal complexity

to the trace, no composite representations smuggled in as “individual” cues, no pointers to other

data structures, and no implicit hierarchical relationship among the traces themselves. Both

approaches relay on a similarity-based recall mechanism operating in parallel over the entire

store of traces. And both approaches employ a "blending" process in which multiple traces

contribute to the course of action. Although it might seem that this convergence might have been

recognized a priori, without a common task to which the architectures can be applied it is far too

easy to dismiss differences and overlook commonalities between modeling approaches. To

paraphrase the cliché, modelers are often separated by a common language. In this case, the

model comparison revealed that the independent implementation of the instance-based decision-

making paradigm has overcome what might appear to be the more fundamental division between

macrocognitive and microcognitive approaches.

Even more striking is that the resulting models themselves were so similar. Even though

each approach implements a model of instance-based decision making, the similarity between

the models was not preordained. Just as people can adopt widely different strategies to a task

using the same basic cognitive mechanisms, so too can modelers develop highly distinct models,

even using the same framework. For example, as we demonstrated above, the choice of relative

versus absolute representation had a profound impact on model performance under both

 Convergence and Constraints 28

approaches and it is a choice that would not seem to be constrained by the architectures. And yet

both modeling teams followed the same development trajectory, starting with the simpler

absolute representation, concluding that it could not generate the desired behavior, both in terms

of functional control of the task and in terms of matching human behavior, and generalizing to

the more complex but powerful relative representation. We offer this as anecdotal evidence

against the common perception that a computational model reflects only the skill of the modeler.

To those who might still view this convergence as a happy accident, we would argue that it is

worth noting that an instance-based approach is likely not the first choice a modeler might make

in representing the human performance in the DSF task. Indeed, the mechanisms that support

similarity-based recall and action are relatively lightweight compared to those that might be used

to sense, estimate, act, and adjust. And to the extent that thinking along these lines dictates a

modeling solution, we would argue that the architecture constrains the modeler.

Despite all of these striking similarities, however, there were also real differences that

emerged from our model comparison. For instance, there is a statistical learning mechanism in

ACT-R that allows recency effects to impact performance; no such mechanism exists in the RPD

decision type. There is also an important difference in the internal representations the

architectures employ. The ACT-R model uses numerical representations for cues and courses of

action that allow both inflow and adjustments to be given as continuous quantities. The RPD

decision type represents cues and courses of action as discrete enumerations and thus depends on

the modeler to "bin" values appropriately. Finally, ACT-R supports the implementation of any

user-defined similarity function, whereas the RPD decision uses a fixed similarity function that

depends on a specific cue-encoding scheme (see Appendix A below for details). Each of these

differences carries significant theoretical weight.

 Convergence and Constraints 29

One could argue that this model comparison has failed because it has not rendered a

verdict as to which side of these differences is right and which is wrong, or because the models

do not fit the data well enough. But that was never the point. Rather, our intent was to illuminate

general features of computational approaches to macrocognition, rather than to validate a single

theoretical viewpoint or achieve a perfect fit to a specific data set. In this respect, the comparison

has been a success insofar as it provides two independent examples of instance-based approaches

to decision making being used to simulate performance and thus suggest a candidate "design

pattern" for computational approaches to macrocognition. The comparison also provides specific

examples of computational mechanisms and brings a level of specificity to the question of what

is at stake in accepting one or another putative representation of macrocognition. Finally, and

perhaps most importantly, this comparison reminds us that computational cognitive modeling is

a powerful tool for understanding human performance, and that differences between specific

frameworks adopted to pursue that goal are often exaggerated.

Acknowledgements

This research was partially supported by the Army Research Laboratory (award

DAAD19-01-2-0009). We would like to thank Varun Dutt for his work on the development and

data collection with the DSF task.

 Convergence and Constraints 30

References

Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York,

NY: Oxford University Press.

Anderson, J. R., & Lebiere, C. L. (2003). The Newell test for a theory of cognition. Behavioral

& Brain Sciences, 26, 587-637.

Booth Sweeney, L., & Sterman, J. D. (2000). Bathtub dynamics: Initial results of a systems

thinking inventory. System Dynamics Review, 16(4), 249-286.

Cassimatis, N., Bello, P., & Langley, P. (2008). Ability, breadth and parsimony in computational

models of higher-order cognition. Cognitive Science, 32(8) 1304-1322.

Chipman, S. F., Schraagen, J. M., & Shalin, V. (2000). Cognitive Task Analysis. Mahwah, NJ:

Lawrence Earlbaum Associates.

Cronin, M., & Gonzalez, C. (2007). Understanding the building blocks of system dynamics.

System Dynamics Review, 23(1), 1-17.

Cronin, M., Gonzalez, C., & Sterman, J. D. (2009). Why don't well-educated adults understand

accumulation? A challenge to researchers, educators and citizens. Organizational

Behavior and Human Decision Processes, 108, 116-130.

Dierickx, I., & Cool, K. (1989). Asset stock accumulation and sustainability of competitive

advantage. Management Science, 35(12), 1504-1511.

Dutt, V., & Gonzalez, C. (2007). Slope of inflow impacts dynamic decision making. Paper

presented at the 25th International Conference of the System Dynamics Society.

Edwards, W. (1962). Dynamic decision theory and probabilistic information processing. Human

Factors, 4, 59-73.

 Convergence and Constraints 31

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S., Hau, R., Hertwig, R., Stewart, T., West, R.,

& Lebiere, C. (submitted). A choice prediction competition, for choices from experience

and from description. Journal of Behavioral Decision Making.

Gluck, K., & Pew, R. (2005). Modeling human behavior with integrated cognitive architectures.

Mahwah, NJ: Erlbaum.

Gonzalez, C., & Dutt, V. (2007). Learning to control a dynamic task: A system dynamics

cognitive model of the slope effect. Paper presented at the 8th International Conference

on Cognitive Modeling, Ann Arbor, MI.

Gonzalez, C., & Lebiere, C. (2005). Instance-based cognitive models of decision making. In D.

Zizzo & A. Courakis (Eds.), Transfer of knowledge in economic decision making. New

York: Palgrave McMillan.

Gonzalez, C., Lerch, F. J., & Lebiere, C. (2003). Instance-based learning in dynamic decision

making. Cognitive Science 27(4), 591-635.

Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory. Behavior

Research Methods, Instruments & Computers, 16, 96-101.

Hintzman, D. L. (1986a). Judgments of frequency and recognition memory in a multiple-trace

memory model. Eugene, OR: Institute of Cognitive and Decision Sciences.

Hintzman, D. L. (1986b). "Schema abstraction" in a multiple-trace memory model.

Psychological Review, 93(4), 411-428.

Jilk, D. J., Lebiere, C., O'Reilly, R. C., & Anderson, J. R. (2008). SAL: An explicitly pluralistic

cognitive architecture. Journal of Experimental & Theoretical Artificial Intelligence,

20(3), 197-218.

 Convergence and Constraints 32

Klein, G. (1989). Recognition-primed decisions. In W. B. Rouse (Ed.), Advances in man-

machine systems research (pp. 47-92). Greenwich, CT: JAI Press.

Klein, G. (1993). Naturalistic decision making: Implications for design. Wright-Patterson Air

Force Base, OH: Crew System Ergonomics Information Analysis Center.

Klein, G. (1998). Sources of power: How people make decisions. Cambridge, MA: The MIT

Press.

Lebiere, C. (1999). Blending. In Proceedings of the Sixth Annual ACT-R Workshop. George-

Mason University, Fairfax, Virginia.

Lebiere, C., Archer, R., Best, B., & Schunk, D. (2008). Modeling pilot performance with an

integrated task network and cognitive architecture approach. In D. Foyle & B. Hooey

(Eds.), Human performance modeling in aviation. Mahwah, NJ: Erlbaum.

Lebiere, C., & Bothell, D. (2004). Competitive modeling symposium: Pokerbot World Series.

In Proceedings of the 2004 International Conference on Cognitive Modeling. Mahwah,

NJ: Erlbaum.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing.

Psychological Review, 107, 358-367.

Sterman, J. D. (1989). Modeling managerial behavior: Misperceptions of feedback in a dynamic

decision making experiment. Management Science, 35(3), 321-339.

Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world.

Cambridge, MA: McGraw Hill.

Sterman, J. D., & Booth Sweeney, L. (2002). Cloudy skies: Assessing public understanding of

global warming. Systems Dynamics Review, 18(2), 207-240.

 Convergence and Constraints 33

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: Principles and

methods. Data and Knowledge Engineering (DKE), 25(1-2), 161-197.

Taatgen, N., Lebiere, C., & Anderson, J. R. (2006). Modeling paradigms in ACT-R. In R. Sun

(Ed.), Cognition and multi-agent interaction: From cognitive modeling to social

simulation. New York: Cambridge University Press.

Wallach, D. & Lebiere, C. (2003). Conscious and unconscious knowledge: Mapping to the

symbolic and subsymbolic levels of a hybrid architecture. In L. Jimenez (Ed.), Attention

and implicit learning. Amsterdam, Netherlands: John Benjamins Publishing Company.

Warwick, W., & Hutchins, S. (2004). Initial comparisons between a "naturalistic" model of

decision making and human performance data. In Proceedings of the 13th Conference on

Behavior Representation in Modeling and Simulation.

Warwick, W., McIlwaine, S., Hutton, R. J. B., & McDermott, P. (2001). Developing

computational models of recognition-primed decision making. In Proceedings of the 10th

Conference on Computer Generated Forces.

 Convergence and Constraints 34

Appendix A: RPD Process Equations

Here we describe the encoding scheme for cue enumerations, the calculation of similarity

values and the calculation of recognition strengths across courses of action.

First, suppose a cue is represented using n values. Internally, the first enumerated value

would be encoded with n-1 "1"s, the last value with n "-1"s and the mth of n values with n-m "-

1"s and the remaining n-1 leading bits of "1"s.

Now, let p be a vector of cues that define a situation and let t be a single remembered

decision making episode, where pi and ti are the ith bits of the probe and episode respectively.

Suppose the cue vector requires k bits to encode, then the similarity value, sp,t, between p and t is

given by:

 sp,t =
k
1

i

k

i
i tp∑

−

=

1

0

The resulting similarity value will be between –1 and 1. The closer the similarity value is

to 1, the greater the similarity is between the current situation and episode; a similarity value of 1

indicates a perfect, cue-by-cue match between probe and trace. A similarity value of -1 indicates

a perfect cue-by-cue mismatch. As we describe below, a similarity value of -1 would result in a

row subtracting strength for recognition. To some, this might seem like an intuitively appropriate

analogue for computing the impact of completely dissimilar situation on recognition. To us,

however, the symmetry of the calculation was less intuitive. So, rather than have negative

similarity values subtracting from recognition, we simply round those value to zero, where they

make no contribution, positively or negatively, on recognition.

 Convergence and Constraints 35

Courses of action are encoded using a different scheme in the bit-string. We use what is,

essentially, a monadic notation for encoding courses of action. For example, the first of five

enumerated course of action would be encoded as "00001," the third as "00100" etc. This

notation is useful because distribution of recognition strengths is computed COA-by-COA where

the similarity value of each episode is multiplied with the associated COA bit. More formally, let

ci be the recognition strength of the ith course of action, then its value is given by:

ci = jj

n

j
ji rat∑

=1

where tji is the bit in the jth remembered episode corresponding to the ith course of action,

aj is the activation value for that episode and rj is the success value of the situation-COA pair (the

value of n will grow as the model accumulates experience).

The activation value aj is just the similarity value of the jth episode raised to some integer

power. By “accelerating” the similarity value in this way the contribution a given episode makes

becomes a non-linear function of its similarity value and, thus, a high similarity will result in that

episode making a disproportionately greater contribution of its associated course of action to the

distribution of recognition strengths. In this way we can represent differences in the specificity of

the recognition process.

The result, rj, is a records the outcome of the associated course of action as either positive

(encoded as "1") or negative (encoded as "-1"). In this way, successful outcomes increase

recognition strength for the associated course of action, while unsuccessful outcomes decrease

the recognition strength for the associated course of action.

 Convergence and Constraints 36

Appendix B: ACT-R Process Equations

Access to a chunk is determined by its activation, which is a quantity defined by the

following equation:

Ai = t j
−d −

j=1

n

∑ 1− Sim cue,value()()
cue
∑

The first term determines the base-level activation of a chunk as a function of past

references and captures both the power law of learning and the power law of forgetting, while

the second term reduces the activation of a chunk according to the degree to which it

(mis)matches the required pattern, i.e. the current situation. Usually, the process results in the

retrieval of the single chunk with the highest activation after noise is added, which makes it a

stochastic process with probabilities of retrieval described by the Boltzmann (softmax) equation

where t is a temperature parameter that is a function of the noise level:

Pi = e
Ai

t e
A j

t

j
∑

However, for domains in which a continuous estimate needs to be generated, the process

is generalized to return a consensus value of the entire set of chunks according to the blending

equation (Lebiere, 1999; Gonzalez et al., 2003):

V = min Pi ⋅ 1 − Sim V,Vi()()
i

∑
2

This states that the value V retrieved is the value that minimizes the dissimilarity with

actual values Vi in each chunk i, weighted by the probability Pi of retrieving that chunk as

defined above. If the values Vi are numerical and the similarity function Sim(V, Vi) is linear,

then the process is equivalent to a probability-weighted averaging. In general, this provides a

similarity-based blending process similar to that observed in neural networks. The three

 Convergence and Constraints 37

equations above, combined with the automatic learning of new instance chunks from previous

problem solving episodes, determine directly the outcome of the instance-based process given

the prior history. All architectural parameters such as rate of memory decay d or noise level t

were left at the default value that we used in our prior instance-based models, and the similarity

function Sim was likewise set at the usual linear scaling function traditionally used between

quantitative values such as in this case levels of water.

 Convergence and Constraints 38

Footnotes

1 Micro Saint Sharp normally supports three different models of decision making:

"tactical" decisions, in which the branching at the task network level is determined by user-

defined Boolean conditions, probabilistic decisions, where the branching is determined by user

defined probability distributions, and "multiple" decisions, which allow parallel execution of

downstream tasks.

2 Cf. Klein (1998).

3 Klein (1998) actually describes three variants of the recognition-primed decision: one

version is the simple match, discussed here while the two other versions describe the role of

diagnosis and "story building" in decision making.

4 Compare this to what goes on in any categorization task. Even when a decision space is

complicated, typically the hyperplanes that partition the space are fixed.

 Convergence and Constraints 39

Table 1

Comparison of components of ACT-R and RPD models

 ACT-R Model RPD Model

Cues-action-outcome chunk Cues-action-outcome trace

Chunk activation: frequency/recency Trace activation determined by similarity

Matching reflects cue similarities Recognition reflects cue similarities using

transformed representation

Blending retrieval reflects all chunks Recall draws on every past trace

Continuous action with opt. correction Discrete course of actions

Outcome recorded in decision chunk Outcome with respect to “success criterion”

recorded in trace

 Convergence and Constraints 40

Figure Captions

Figure 1. The Dynamic Stocks and Flow (DSF) simulation. The center of the screen shows a

water tank carrying 1 gallon of water. The markings on the left side of the tank represent

the water level in the tank at any instance of time. The Goal (Gallons) at 4.00 gallons

refers to the level to maintain in each time period of the simulation run. The Amount in

Tank (Gallons) at 2.00 gallons refers to water level that the tank will have at the end of

the current time period. A participant in this experiment enters the Inflow value in Enter

the number of Inflow (units/second) and the outflow in Enter the number of Outflow

(units/second) and press the Submit button.

Figure 2. Human data performing in (a) increasing and (b) decreasing linear Inflow function in

DSF – Data originally reported by Gonzalez and Dutt (2007).

Figure 3. Model performance on the DSF task using absolute representation within the RPD

decision type. Performance is given as an average of current stock per trial over 16 runs

for each environmental inflow condition: (a) increasing and (b) decreasing. The target

stock is 4 in each condition.

Figure 4. Model performance on the DSF task using relative representation within the RPD

decision type. Performance is given as an average of current stock per trial over 16 runs

for each environmental inflow condition: (a) increasing and (b) decreasing. The target

stock is 4 in each condition.

Figure 5. ACT-R architectural diagram including main architectural modules and buffers, and

communication processes.

 Convergence and Constraints 41

Figure 6. Model performance of an average of 16 runs with absolute representation for (a)

increasing and (b) decreasing environmental inflow. Performance is displayed as current

stock level for each of 100 trials with desired stock level being 4.

Figure 7. Model performance of an average of 16 runs with relative representation for (a)

increasing and (b) decreasing environmental inflow. Performance is displayed as current

stock level for each of 100 trials with desired stock level being 4.

	Running Head: CONVERGENCE AND CONSTRAINTS
	Convergence and Constraints Revealed in a Qualitative Model Comparison
	Abstract
	Introduction

	Methodology for Model Development and Comparison
	The DSF Task

	Human performance in DSF
	RPD Computational Model of Behavior in the DSF Task
	ACT-R Computational Model of Behavior in the DSF Task

	Qualitative Model Comparisons and Conclusion
	References
	Appendix B: ACT-R Process Equations
	Footnotes
	Figure Captions

