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Abstract 

We contrasted and compared independently developed computational models of human 

performance in a common dynamic decision-making task. The task, called Dynamic Stocks and 

Flows, is simple and tractable enough for laboratory experiments yet exhibits many 

characteristics of macrocognition. A macrocognitive model was developed using a 

computational instantiation of Recognition-Primed Decision-Making. A microcognitive model 

was developed using the ACT-R cognitive architecture. Both models followed an instance-based 

learning paradigm and displayed striking similarities, including their constraints, limitations, and 

the key breakthrough that enabled satisfactory (though still short of human-like) performance, 

suggesting the emergence of a general design pattern. On the basis of this comparison we argue 

that while some substantive differences remain, microcognitive and macrocognitive approaches 

provide complementary rather than contradictory accounts of human behavior. 

 

Keywords: Macrocognition, Dynamic Decision Making, ACT-R, RPD, Model 

comparison  
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Introduction 

As Hoffman and McNeese (this issue) point out, research in macrocognition is often 

presented as a reaction to so-called microcognitive research and its focus on understanding the 

“mechanisms of intelligence,” theory building, and well-controlled experimentation. On its face, 

this orientation would seem to put macrocognitive research at odds with the long tradition of 

computational cognitive modeling that seeks to provide detailed accounts of the invariant 

mechanisms that capture the general properties of human cognition (Newell, 1990). Furthermore, 

the fact that such models produce quantitative predictions over a range of measures including, 

for example, response time, errors, eye movements, and even fMRI activation patterns 

(Anderson, 2007), often at very fine-grained time scales, might seem to make them even further 

removed from the macrocognitive emphasis on research on complex tasks over long time 

intervals and in naturalistic settings. 

On deeper inspection, however, this apparent incompatibility turns out to be merely 

superficial. Although much of the history of computational cognitive modeling has a 

microcognitive flavor, in more recent years there has been a concern that cognitive models 

generalize beyond the laboratory to complex, real-world tasks. Similarly, a concern for 

quantitative predictions does not preclude the explicit representation of macrocognitive functions 

and processes, as the other manuscripts in this special issue demonstrate. A macrocognitive 

orientation does, however, put a burden on the computational modeler to explain how those 

models relate to the macrocognitive functions and processes they purport to represent; where the 

microcognitive modeler can point directly to the computational implementation as a theory of 

cognition (i.e., as a “mechanism of intelligence”), the macrocognitive modeler has no such 
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luxury. In fact, accounts of macrocognition are often deliberately underdetermined with respect 

to mechanism, focusing instead on descriptive accounts of the cognition “in the wild.”  

But underdetermination need not be taken as evidence for incompatibility. Quite to the 

contrary, we see a complementary relationship between macrocognitive theories and 

computational implementations. Macrocognitive theories need candidate mechanisms to be 

computationally instantiated in order to generate quantitative, testable predictions (a sine qua non 

of scientific validity). Relying on microcognitive architectures to provide such mechanisms, 

validated against controlled experiments, is a more promising approach than blinding searching 

through a very extensive space of possible computational mechanisms. Conversely, 

microcognitive architectures strongly constrain but do not solely determine performance in 

complex tasks: they need to be augmented with models that specify how the architectural 

mechanisms are applied to the task. While those models can have many origins, including 

empirical sources such as cognitive task analysis (e.g., Chipman, Shraagen, & Shalin, 2000), the 

limits of knowledge engineering methods are well known (e.g., Studer, Benjamins, & Fensel, 

1998) and more systematic approaches are needed. While modeling paradigms can originate 

from the architecture itself (e.g., Taatgen, Lebiere, & Anderson, 2006), macrocognitive theories 

constitute another potential source, promising both systematicity and empirical grounding. In this 

paper we attempt to demonstrate both directions of the complementarity between macrocognitive 

theory and computational implementation, revealing the constraints, commonalities, and 

differences that result from the two perspectives. 

To do this, we have taken a comparative approach, explaining how two different 

computational approaches were used to model a task that embodies learning and decision-

making in a complex dynamic environment. Although our approach is clearly related to other 
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model comparison efforts (e.g., Erev et al., submitted; Gluck & Pew, 2005; Lebiere & Bothell, 

2004; Lebiere, Archer, Best, & Schunk, 2008) we emphasize qualitative understanding of model 

development and performance over quantitative measures of goodness-of-fit. The arguments 

over using "good fits" as evidence for "good theories" have been a matter of recent controversy 

(e.g., Roberts and Pashler, 2000; Cassimatis, Bello, & Langley, 2008). Furthermore, we 

emphasize understanding of what did not work in the model development process. Making sense 

of what a model or architecture cannot do or what needs to be added to a model to make it work 

is valuable not just because it decreases the expectedness of valid prediction, but because it 

reveals the work that goes into developing an adequate representation and helps us understand 

the relative contribution of modeler, architecture and parameterization in the generation of those 

predictions. 

We describe below the process by which we went about developing two computational 

models. The models were developed completely independently by separate modelers with access 

to the same task information using computational architectures rooted in very different traditions. 

One model was developed using a "naturalistic" extension of the Micro Saint Sharp task network 

simulation environment (Warwick, McIlwaine, Hutton, & McDermott, 2001; Warwick & 

Hutchins, 2004). The other model was developed using an instance-based model of decision-

making implemented within the ACT-R cognitive architecture (Anderson & Lebiere, 1998; 

Gonzalez, Lerch, & Lebiere, 2003; Gonzalez & Lebiere, 2005). 

A qualitative comparison such as the one developed here has several advantages. First, by 

focusing attention on the model development, rather than on just the numerical results of a fitting 

process, we are reminded that models do far more theoretical work than simply generating 

predictions. Second, by applying different modeling approaches to a common problem, we 
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provide a concrete context in which to understand both the computational mechanisms and the 

effort entailed in developing a model of macrocognitive processes. Even working within a given 

architecture, a modeler will have significant freedom in representing the knowledge available, 

the procedural strategies applied to the task and the parameterization of the model components or 

the architectural mechanisms. Understanding how the modeler proceeds in developing a model 

goes a long way toward understanding whether the resulting model corresponds in any 

interesting way to macrocognition. Finally, and most importantly, in this model comparison we 

will argue that a fair amount of convergence has occurred from two otherwise disparate 

modeling approaches. Given the fundamental differences between theories of macrocognition 

and microcognitive architectures, the degree of overlap in the approaches is remarkable. We see 

the convergence as evidence for a sort of "design pattern" that might prove especially fruitful as 

researchers continue to explore computational models of macrocognitve processes. 

We begin by describing the general method we used for our model comparison. Next, we 

describe the Dynamic Stocks and Flows (DSF) task and the associated experimental protocol and 

resulting human performance data. We argue that the task should be germane to those interested 

in understanding macrocognition. We then describe the two different computational models of 

human performance in the DSF task, each of which implements an instance-based model of 

decision making, but comes from widely different theoretical perspectives. For each model, we 

will provide a detailed description of the underlying architectures and their mechanisms along 

with a discussion of what went into the process developing the DSF models themselves. Finally, 

we will conclude with a discussion of the convergence between the two approaches and what this 

might tell us about macrocognition.  
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Methodology for Model Development and Comparison 

Our model comparison effort was guided by three methodological requirements. First, the 

modeling effort should focus on human performance rather than the simulation of the task 

environment or the complexities associated with software integration. Past experience has taught 

how easily model comparison efforts can be derailed by requirements for modeling or integrating 

with high-fidelity simulations of the task environment. Second, the comparison should engage 

the core mechanisms of the respective architectures as directly as possible, with a minimum 

degree of engineering or data fitting. Finally, the comparison should ultimately reveal deep 

similarities and differences in the respective approaches and the extent to which they correspond 

to the theories they purport to implement. 

We believe the task environment we describe below satisfies the first and second 

requirement; it is sufficiently simple and lightweight to be modeled easily but at the same time it 

is open-ended, to discourage over-parameterization and over-engineering of the model and to test 

its generalization over a broad range of situations, and it is dynamic, to explore emergent 

behavior that is not predictable from the task specification. To further discourage over-

engineering of the models, we firewalled the development teams from each other and we 

withheld the human performance data until each team was satisfied with its model performance 

based solely on a detailed description of the task and one experimental condition. In this way we 

hoped to highlight the "best modeling practices" supported by the respective architectures 

without inadvertently introducing a common modeling approach or prejudices about the kinds of 

behavior the models should produce. Only then did we examine qualitative fits to the data under 

original experimental condition and, later, another transfer condition. Finally, to ensure that the 
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comparison was hitting on deep similarities and differences, we made the description of the 

development processes the focus of the comparison rather than measures of goodness-of-fit. 

Though these descriptions might strike some as evidence of "flailing," modeling human 

performance is more than just finding the right kind of representation of the task, as if such 

representations existed independently waiting only for direct expression in any architecture. 

Rather, it is finding the right representation that can be supported by the given architecture. And 

it is in this light where the real similarities and differences between architectures are revealed 

and the correspondence between macrocognitive theory and computational model is most clearly 

assessed. 

The DSF Task 

The stock management problem (balancing accumulations through the management of 

inflows and outflows) is a common process in every-day life that arises at every temporal, 

spatial, and organizational scale (Cronin, Gonzalez, & Sterman, 2009). At the firm level, for 

example, the capabilities and competitive advantages arise from the accumulation of resources 

and knowledge (Dierickx & Cool, 1989; Sterman, 1989). Managers must control their cash flows 

to maintain adequate stocks of working capital, and production must be adjusted as sales vary to 

sustain sufficient inventory. A simple stock management problem is the one reduced to its most 

essential elements: one stock (a resource that accumulates or depletes over time) and flows that 

alter the stock (inflows that increases the stock and outflows that decreases the stock). 

In the past, researchers investigated the perceptions of simple dynamic systems (Booth 

Sweeney & Sterman, 2000; Cronin & Gonzalez, 2007; Cronin et al., 2009; Sterman & Booth 

Sweeney, 2002;). A conclusion from these investigations is that even simple stock problems are 

unintuitive and difficult, even with a minimal number of variables, and even for highly educated 
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people with strong technical backgrounds. Understanding and controlling such systems in the 

real world, where the systems themselves are far more complex, the information is far less 

certain, and the consequences of action are harder to trace, is more difficult and demands 

significant skill. Managing stocks is a dynamically complex problem, that requires detecting 

problems, adapting to changing conditions, and deciding between many alternatives courses of 

action, thus, reflecting processes directly relevant to macrocognition. 

The Dynamic Stocks and Flows (DSF) is a simulation-based tool for studying learning 

and decision making in the context of simple stock management problems (Dutt & Gonzalez, 

2007; Gonzalez & Dutt, 2007). Although the simulated stock problems are simple in the 

traditional sense (i.e., they have few elements to manage), the DSF is still dynamically complex 

(Sterman, 2000). The complexity arises from the interaction between the decisions made and the 

structure of the environment over time. 

The DSF represents the essential elements of every dynamic system: a single stock, 

which represents an accumulation of discrete (i.e., units in inventory) or continuous (i.e., water) 

units, inflows, which increase the level of the stock, and outflows, which decrease the level of the 

stock. The goal of this task is to maintain the stock at a particular level or at least within an 

acceptable range. External inflow and outflow increase or decrease the level of stock, both of 

which are outside the control of decision makers. Stock levels are also influenced by the user’s 

decisions of inflow and outflow, which increase or decrease the level of the stock and are under 

the control of the user. Further, the level of the stock at time t depends upon the state of the 

system at the previous time t-1, a characteristic of dynamic systems called interdependency 

(Edwards, 1962). Also inherent in dynamic systems are feedback loops, where a variable can 

affect itself and other variables.  
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Figure 1 represents the graphical user interface of DSF. The stock is represented 

graphically as a tank. In this version, the stock represents continuous units of the stock as water 

in a tank. The markings on the left side of the tank represent the water level in the tank at any 

instance of time. There are 4 pipes connecting the tank, as shown in Figure 1. Two pipes labeled 

User Inflow and Environment Inflow are located on the input side and increase the level of stock 

in the tank; two pipes labeled User Outflow and Environment Outflow are located on the output 

side and decrease the level of stock in the tank. 

------------------------------------------ 

INSERT FIGURE 1 HERE 

------------------------------------- 

The user must set the inflow or outflow rates (user inflow or user outflow) at each 

instance of time, typically to compensate for the environmental inflow and outflow that may 

push the stock away from its desired level. The environmental inflow and outflow are external 

functions that can be set up by the experimenter. The target level of stock is shown with a red 

horizontal line with Goal mentioned on the right side and also in the Goal information box, as 

shown in the information section next to the Amount in Tank box. 

The user enters the number of units for inflow and outflow in the decision boxes at the 

bottom of the screen and hits Submit. Then, the Environment Inflow and Outflow makes an 

effect on the stock. The user receives "feedback" about the number of units of Environment 

Inflow and Outflow; these appear as numbers in the black boxes during each time period, as 

shown in Figure 1. Just after the Environment Inflows and Outflows take place, the system 

causes the user specified inflows and outflows to take place. The number of units of user inflow 

pops up in a red box next to the User Inflow pipe, while the number of units of user outflow pops 
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up in a green box next to the User Outflow pipe. The system also provides feedback by 

presenting all values of the flows that occurred in that time period in the Information section 

shown in Figure 1.  

The user can then begin the next time period (which is shown in a time display box at the 

top of the tank) by submitting new inflow and outflow values in the decision boxes and pressing 

Submit. Users must do their best to control the water level and maintain it at the targeted value, 

given the variable nature of the Environment Inflows and Outflows. 

Human performance in DSF 

Behavioral data collection using DSF has demonstrated that controlling even this simple 

dynamic system can be challenging for humans. Gonzalez and Dutt have collected a variety of 

human performance conditions using DSF (Dutt & Gonzalez, 2007; Gonzalez & Dutt, 2007). For 

example, Dutt and Gonzalez (2007) presented data from an experiment in which participants 

were asked to maintain the level of water in the tank to 4 gallons or within +/- 0.1 gallons from 

the goal during all the 100 time periods. The human data came from two conditions defined by 

the Environment Inflow function: one condition followed an increasing linear function and the 

other condition followed a decreasing linear function over trials. The environment outflow was 

constant and set at 0 Gallons/Time Period. Hence, Environment net flow was equal to 

Environment Inflow. The initial water level in the tank was fixed in both conditions at 2 gallons. 

In the increasing condition the Environment Inflow function increased over the course of 100 

time periods from 2 to 10 Gallons/Time Period according to the function: 0.08 * (TimePeriod) + 

2. The decreasing condition was exactly opposite, decreasing from 10 to 2 in decrements of 0.08. 

In both function there was an equal amount of water flowing into the tank over the course of 100 

time periods (which was 604 gallons). The human performance results for the increasing and 
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decreasing functions in DSF are presented in Figure 2. These were reported and are discussed in 

Dutt and Gonzalez (2007). 

------------------------------------------ 

INSERT FIGURE 2 HERE 

------------------------------------- 

In the model comparison exercises presented in this paper, we first implemented the 

linear increasing function and then used the same model to predict the results of the linear 

decreasing function in Dutt and Gonzalez (2007).  

RPD Computational Model of Behavior in the DSF Task 

Inspired by Klein’s model of the recognition-primed decision-making (Klein 1989, 1993, 

1998), we have extended the available "decision types" in the Micro Saint Sharp task network 

modeling environment to include an "RPD" decision type.1 The RPD decision type is intended to 

support the representation of an experience-driven decision-making process where courses of 

action are the emergent "by-products" of recognition rather than the result of deliberative 

analysis or the application of rule-based knowledge. In particular, the RPD decision type 

implements computational analogues for three prominent features of Klein’s theoretical model. 

First, just as the recognition-primed decision model emphasizes the importance of experience 

over the application of fixed, normative strategies, the RPD decision type depends on the 

accumulation of experience to shape decision-making performance during a simulation. Second, 

just as recognition-primed decision-making was presented as an alternative to analogical and 

case-based models of decision-making2, recognition in the RPD decision type draws on the 

entirety of experience rather than focusing on any single past episode. Third, just as the course of 

action is an immediate "by-product" of situation assessment in Klein’s model3, the RPD decision 
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type is, at root, a mechanism for learning associations between situations, courses of action, and 

outcomes such that, with enough experience, the model simply reacts to each new situation with 

whatever course of action it has come to associate with that situation without engaging in any 

deliberative, optimizing or rule-based reasoning.  

Computationally, our approach extends Hintzman’s multiple-trace memory model (1984, 

1986a, 1986b). The basic idea is to represent a decision maker’s long-term memory as a set of 

episodes, each of which represents the situation that prompted a decision (encoded as a cue 

vector), the course of action taken (from a fixed set of discrete alternatives), and an outcome 

measure of that action (either successful or not). Recognition occurs when a new situation (i.e., 

cue vector) is presented. A "similarity value" is computed between the new situation and the 

corresponding portion of each of the remembered episodes. This value is used to determine the 

proportional contribution that each and every remembered episode makes to a composite 

recollection of courses of action taken in the past and their outcomes. The result is a distribution 

of recognition strengths across the available course of action given the new situation. At this 

point, the model depends on a fixed selection heuristic (e.g., choosing either the course of action 

with the greatest recognition strength or performing a weighted random draw across all 

recognized courses of action weighted with respect to recognition strength), and the selected 

course of action for that situation is implemented, evaluated, and stored as a new episode in long-

term memory for use in the next decision. 

While we defer the technical description of the computational mechanisms to Appendix 

A, there are several features of the approach worth noting here. Decision-making episodes are 

encoded using bit-strings and similarity values are calculated by taking a dot product between a 

cue vector representing the current situation and that portion of each remembered bit string that 
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encodes the cue vectors of past situations. In order to ensure a uniform structure for these cue 

vectors, the cues that prompt recognition are re-represented internally using discrete 

enumerations of the ranges of values they can assume.  This approach to representing cues and 

calculating similarity values implicitly supports fuzzy matching between "adjacent" cue values 

(the closer the value, the more similar the match), but it also has a more serious implication that 

determining similarity is a purely syntactic process within the RPD decision type; no matter what 

kinds of cues the internal enumerations encode, similarity is calculated bit-by-bit without any 

consideration for what those bits represent.  

The computational mechanisms that implement the similarity-based recall, the 

recognition of a crisp course of action from the distribution of recognition strengths, and the 

accumulation of experience are invariant features of the RPD decision type, but the content of 

the modeled decision is not. That is, any decision modeled using the RPD decision type in Micro 

Saint Sharp will use these same mechanisms, but the cues, courses of action, and outcome 

evaluations of those actions must be defined by the modeler. In most cases, the "structure" of the 

decision simply falls out from the task. For example, in modeling binary choice in a 

categorization task, the cues are simply the dimensions along which the stimuli are given, 

courses of action are just the available categories, and outcomes are determined by whether the 

membership decision matches the actual membership of the stimulus. The structure of the 

dynamic stocks and flows task did not lend itself to such an immediate representation of cues, 

courses of action, or outcomes. Moreover, given our overriding interest in model comparison, we 

chose to insulate our development efforts as much as possible in the hopes that independent 

development would highlight differences in the modeling approaches. Toward this end, we not 

only worked separately of each other, but we also chose not to consult verbal protocols from the 
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experiment to eliminate the possibility that we would be inadvertently biased toward a common 

representation of the task. Instead we relied on our subjective intuitions and computational 

experimentation to guide model development. In the case of the RPD decision type, this led to an 

iterative development cycle with each stage in the cycle comprising a choice of cues to model, a 

scheme for transforming those cues into internal representations, and a specification of the 

discrete courses of action the model would choose among and how those choices would be 

reinforced. 

First, taking what seemed to be the most obvious approach, we modeled the decision as a 

choice among fixed adjustments to the stock (e.g., decrease-five-gallons, increase-two-gallons, 

etc.) prompted by two cues, the current stock and the current exogenous inflow. The continuous 

values of both the current stock and inflow were mapped to enumerations; so, for example, if the 

current stock was between 2.5 and 5.0 gallons, the RPD cue would assume the value of "about 

right." Initially, each cue was mapped to a five-valued enumeration. Decisions were positively 

reinforced whenever they resulted in the current stock that was within a predefined range of the 

target stock. 

Although straightforward and intuitive, this initial representation of decision-making 

within the DSF task was a failure. More specifically, in order to control the stock, the model had 

to associate input patterns—i.e., values of the current stock and inflow—with the appropriate 

course of actions—i.e., reductions in stock to offset the inflows given the current stock; but the 

model was never able to learn those associations and stock would increase monotonically 

throughout the trial.  
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------------------------------------------ 

INSERT FIGURE 3 HERE 

------------------------------------- 

Initially, we thought that the failure might be rooted in the lack of fine-grained control the 

model had over the stock. We speculated that, limited to only coarse corrections, the model 

might be missing the target stock so often as to prevent it from receiving enough reinforcement 

to learn the appropriate associations between input patterns and outflow actions. Because the 

model was never forming stable associations between situations and actions it would, by default, 

end up guessing and failing most of the time. So, on the basis of this speculation, we increased 

the number of courses of action available to the mode (thereby making each correction more 

precise). Similarly, we also increased the granularity of the cues (to make them more diagnostic; 

that is, we mapped real-valued inputs to a larger number of enumerated values). And we even 

eliminated some courses of action from consideration that we knew would never be appropriate 

under the particular instance of the DSF task we were modeling. The hope was that having fewer 

"incorrect" options to consider, the model would perform better. 

While these changes prevented the monotonic increase, it was clear that the model was 

still far from controlling the stock. We then began to reconsider our initial speculation; reversing 

our thinking completely, we wondered whether the episode structure was too complex to learn in 

a short span of 100 trials. So we simplified the input by reducing the granularity of the cue 

enumerations, and even eliminating one cue altogether with the hope that this could make the 

associations between input and action easier to learn. But this did not work either. Finally, we 

experimented with different reinforcement strategies and some more general parameter settings 
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that controlled learning rates within the model. Again, the model was never able to demonstrate 

any degree of control over the stock. 

Our only real breakthrough came when we changed our basic representational strategy. In 

particular, rather than represent inputs and courses of action in absolute terms of specific inflow 

amounts, stocks, and outflow adjustments, we defined cues in the relative terms of the degree of 

difference from desired stock and courses of action as proportional adjustments to the current 

stock (using the previous inflow as the basis of the proportional adjustment and including a 

"match" course of action, where the proportion equals 100% of previous inflow). Similarly, 

decisions were reinforced whenever the total stock was moved closer to the target stock (rather 

than evaluating the outcome in terms of whether the target stock was within a specified window 

of the target stock). With these changes, the model was finally able to exhibit some degree of 

control over the stock. Still, there were quantitative differences in the model performance when 

compared to the human performance. For example, humans were able to learn to control the 

stock much more quickly and precisely than the model; but overall, the model exhibited 

plausibly human-like performance. 

------------------------------------------ 

INSERT FIGURE 4 HERE 

------------------------------------- 

What’s more interesting is to reflect on the steps it took to get to this level of 

performance on this particular task and how our approach in general, having been inspired by a 

study of macrocognition, compares to the more "microcognitive" approach to instance-based 

decision making taken in ACT-R. In hindsight, representing the DSF task in the relative terms 

might seem like it should have been the obvious choice from the beginning. Indeed, from the 
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perspective of control theory, recognizing differences from target states and reinforcing actions 

that return the system to that state are old hat. But coming at the DSF task from with a model of 

recognition-primed decision-making in hand, such representations were far from obvious. We 

had become accustomed to thinking of decision problems in terms of mapping inputs to outputs, 

finding the appropriate association between situations and suitable courses of action. It wasn’t 

until very late in this effort that we realized that the DSF would not easily fit that mold and that, 

given the constantly changing nature of the environment in the DSF, there would never be a 

fixed mapping between situations and actions.4 Any association between the current stock and 

the decision to reduce stock by such-and-such a fixed amount (or proportion) would eventually 

become obsolete as the rate of inflow changed; that is, any association learned between a 

situation and a course of action would eventually need to be unlearned and another, newer 

association learned anew as the adjustment required in absolute terms would change over time. 

Moreover, it is worth noting that the architecture of the RPD decision type forces us to model 

control in essentially categorical terms.  Once the modeler enumerates the cues and courses of 

action, model performance depends on learning the purely syntactic associations between 

patterns of input cues and enumerated courses of action. Even though the cues and courses of 

action in this case represent quantities, the internal representations are non-numeric in the sense 

that there are no internal mechanisms to support mathematical or other similarly rich 

manipulations of them; the model cannot average past inflows, compute differences, or estimate 

the impact of particular adjustments. 

In this light, the fact that a recognitional model of decision-making can exhibit some 

degree of human-like control over the DSF task might seem remarkable. Then again, we might 

also take this as evidence that the model is doing something like the actual human subjects, who 
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also have a difficult time with the task. The question now is whether the performance of the 

model is just an artifact of a well-chosen problem representation or something deeper. This 

question came into sharp relief when we ran the very same model we had developed for the 

increasing inflow condition of the DSF task under a decreasing condition. Given that nothing 

about the inflow condition had been directly represented in the RPD decision, we expected a-

priori that the model performance would be qualitatively similar, under both conditions. That is 

not what we found (see Figure 4). While the RPD model again exhibits qualitative similarity to 

the human performance data, including the gross overshooting of the target outset early in the 

trials, overall it seems to do a much better job controlling the stock in the decreasing condition. 

In particular, it lacks the periods of un-learning and relearning that are evident in the increasing 

condition. Given that the internal representations are identical, it would seem that only the nature 

of the task environment could account for the difference, namely, that in the decreasing inflow 

conditions, new inflows are continually perturbing the stock less and less and thus whatever 

association was successful before is likely to be successful later. Again, it is not clear whether 

credit is due to a useful representation of the problem, or a happy accident of the task 

environment. To address that question we now turn to an ACT-R model of the DSF task. As we 

will discuss below, the ACT-R model is able to take advantage of a much more expressive 

representation of the problem to improve the quality of its control but it shares many of the same, 

more general architectural features of an instance-based, recognitional model of decision-

making. 

ACT-R Computational Model of Behavior in the DSF Task 

ACT-R’s primary architectural commitments are two-fold. At the organizational level 

(see Figure 5), the architecture is composed of a set of modules, including perceptual (visual), 
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motor (manual), and declarative memory modules (as well as self-standing goal and imaginal 

(problem) buffers), coordinated by the procedural (production rules) module through limited-

capacity buffers. Each processing step within a module is massively parallel (e.g., all production 

rules in the procedural module are matched at once, as are chunks of information in the 

declarative module) while communication between modules is serial and asynchronous (e.g., 

only one request for information retrieval can be sent to declarative memory at a time, and a 

single chunk will be returned through the retrieval buffer whenever the retrieval is completed). 

Activity in the modules has been correlated with fMRI BOLD response in specific brain regions, 

bringing to bear neuroscience constraints on the architectural organization (Anderson, 2007). 

While we will not discuss the neuroscience underpinnings of cognitive performance any further, 

it does illustrate how cognitive architectures can integrate constraints from other levels of 

description, from neural models to macrocognitive models (Jilk, Lebiere, O'Reilly, & Anderson, 

2008). The second level of architectural commitments concerns the representations and processes 

taking place in each module, and in particular the declarative memory module and the procedural 

module. ACT-R’s approach is a hybrid combination of a simple, constrained symbolic 

representation (chunks in declarative memory, production rules in the procedural module) 

together with subsymbolic selection mechanisms that adapt to the statistical structure of the task 

and its environment. The former underlies our ability to perform almost any task and quickly 

learn novel combinations of knowledge while the latter captures the soft, adaptive nature of 

human performance including both its abilities (e.g., generalization) and its limitations (e.g., 

forgetting). A tight integration of those two very different types of abilities is necessary to 

account for the full range of human cognition (Anderson & Lebiere, 2003). 
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------------------------------------------ 

INSERT FIGURE 5 HERE 

------------------------------------- 

A number of modeling paradigms have emerged to apply the ACT-R architecture to 

various classes of problems (e.g., Taatgen, Lebiere, & Anderson, 2006). In our model, we 

adopted the instance-based learning approach that we previously applied to a broad range of 

decision-making tasks (e.g., Gonzalez et al., 2003; Gonzalez & Lebiere, 2005; Wallach & 

Lebiere, 2003). Modeling a broad range of tasks using not only the same architectural 

mechanisms but also the same techniques and parameters is a key unifying attribute of cognitive 

architectures. It also imposes stronger constraints on the model’s predictiveness than a model 

developed and parameterized tabula rasa to fit the task and data. The logic of the model is 

straightforward: extract a small number of decision attributes from the full problem 

representation, set up a goal to make a decision based on those attributes, and attempt to retrieve 

and generalize a previous decision made in a similar situation. To bootstrap the system, we used 

a first-order heuristic rule that attempted to resolve the discrepancy between the current and 

desired water levels. This heuristic is both simple and optimal in the absence of knowledge 

regarding the future external inputs and outputs, as is the case for a subject starting the 

experiment. To avoid introducing an additional parameter arbitrating between the rule-based and 

instance-based decision strategies, we decided to initialize the system with a few instances 

extracted from that rule (e.g., if the stock is 5 gallons less than the target level, set the inflow 

level to 5) rather than represent the rule itself, thus preserving the purely instance-based nature of 

the model. 
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Given this basic task strategy, the structure and mechanism of the cognitive architecture 

put very strong constraints upon the resulting performance. The production rules to implement 

the instance-based strategy are few and straightforward (basically just a couple of rules to set up 

the decision goal, request the instance-based retrieval, and perform the action), so the key 

determinant of performance is the retrieval of past instances from declarative memory. Other 

than the initial chunks extracted from the heuristic rule to bootstrap the process, each memory 

instance chunk is created automatically from each accomplished decision-making goal. The 

activation of each chunk, reflecting processes such as recency and decay, will determine its 

availability. In particular, more recent memory items will be more salient and thus more recent 

experience favored, a significant difference from the RPD model. However, from there the 

processes are substantially similar. Activation is modulated by the degree of match between the 

current situation and the memory chunk as reflected in the similarity of their values in a process 

called partial matching. The value(s) returned by the memory retrieval process do not correspond 

to those of a single memory chunk but instead reflect a blending process (Lebiere, 1999) that 

returns the best consensus value over all memory chunks, weighted by their probability of 

retrieval according to a softmax process. Details of this process and equations are included in 

Appendix B. 

Given the basic instance-based strategy and those architectural constraints, the one 

remaining degree of freedom in defining the model is the choice of relevant attributes used in 

making and representing each decision. That is not a surprise since the relevant attributes are not 

known to subjects either, and different subjects (or the same subject at different times) might 

well pay attention to different attributes. As for the RPD model, we were surprised at how rich 

the space of choices was compared to past experience with other similarly simple control 
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systems. As a reminder, the ACT-R model was developed by a different modeler, independently 

and in parallel to the RPD model, and the representation explorations for each model were not in 

any way informed by those of the other model. In our first-pass model, we specified these three 

components to the decision-making goal (and therefore to the instance chunks that those goals 

will become when completed): the discrepancy between current and target water levels, the 

action to be taken as the difference between user inflow and outflow, and the outcome of that 

action in terms of remaining discrepancy (i.e., deviation from target water level) after the action 

took place. All those quantities were readily available from the display and did not represent 

significant cognitive work to integrate in the current goal. The decision-making procedure was as 

follows: perform a memory retrieval using the discrepancy (attribute 1) as the cue determining 

the similarity of past instances to the current situation. The blending process alluded to above 

returns, given that cue, the consensus value of the other two attributes: the suggested action 

(attribute 2) and expected outcome (attribute 3). The model then corrects the suggested action by 

the expected outcome (i.e., remaining discrepancy) and puts it directly into effect (i.e., without 

any mediating process such as for the RPD model). If the resulting action is positive, the model 

specifies the user input level to that amount and leaves the user output level to 0, and vice versa 

if the action amount was negative. The action taken and its (almost) immediate outcome are 

recorded in the decision goal chunk together with the original cue (the original discrepancy), 

which is then cleared and enters long-term memory as a decision instance. 

The performance of the first model is displayed in Figure 6a in terms of the current water 

level as a function of trial. The target water level is 4 and the average of 16 model runs (as many 

as the number of subjects in the experiment) of 100 trials is displayed. On the positive side, the 

model reproduces quite well the initial overshooting of the target level from the starting value of 
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2 to about 7, followed by a gradual decrease to the target level of 4 in about 10 trials. This initial 

overshooting results because the model’s backup heuristic (as encoded in the initial instances) 

assumes no environmental inputs or outputs and instead simply attempts to bridge the gap 

between current and desired level. The environmental input starting at a value of 2 leads to the 

excess water level until the model gradually learns that its action leads to a positive outcome 

(i.e., excess water), which leads to a gradual correction as those instances get stronger and more 

numerous and come to dominate the blending process that produces recommended action and 

expected outcome. However, after that initial correction the water level starts to drift steadily 

upward to end up at about 8 units (i.e., 4 above the desired level) by the end of the 100 trials. 

This drift results because the model consistently underestimates the amount of environmental 

input. Since that amount keeps steadily increasing with each trial, the model’s knowledge of the 

system residing in the individual control instances is bound to produce an estimate biased in the 

past, just like an estimate of the size of computer memory based on a sample of five-year-old 

computers is bound to underestimate its current value. This effect can be modulated (e.g., by 

increasing the rate of memory decay) but cannot be eliminated through parameter variations. It is 

a fundamental implication of the model representation. 

------------------------------------------ 

INSERT FIGURE 6 HERE 

------------------------------------- 

The opposite phenomenon happens with decreasing linear environmental inflows (see 

Figure 6b): ACT-R brings the system down to the desired stock but then the water level keeps 

drifting down, constantly overestimating the expected environmental inflow. Note however the 
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correspondence with the human data in both the magnitude and duration of the initial overshoot, 

both about twice as large as for the increasing environmental inflow condition.  

One way to learn to control a system that is constantly drifting is to represent knowledge 

of that system in relative rather than absolute terms. This insight is intuitively appealing, since 

many of our everyday experiences in controlling complex systems (e.g., driving a car) are 

expressed in relative terms as well (e.g., turn the steering wheel clockwise to move the car to the 

right). In this case, that means that while future levels of environmental inputs will constantly 

keep changing, one thing that is constant under the simple function of linearly increasing 

environmental inputs, hence presumably easily learnable, is its rate of increase. To be able to 

learn that information regarding the system dynamics, one needs to represent information about 

the system in relative rather than absolute terms. We tried a number of variations that led to 

similar outcomes. The version whose performance is displayed in Figure 7a still represents the 

current situation as the discrepancy between current and desired level, but represents the action 

in terms of change in user-controlled flow (rather than absolute difference in input and output) 

and represents the outcome in terms of change in water level (as opposed to absolute difference 

to target level). The decision procedure is otherwise unchanged. The model now has a more 

stable sense of the system dynamics and is able to keep the water level relatively steady around 

the desired level. Oscillations remain that reflect the stochasticity and dynamism of its 

knowledge base in declarative memory as well as the robustness of the control process: as the 

water level gradually drifts away from the desired value, the model slowly corrects it and brings 

it back in line. A similar pattern can be observed for the decreasing input condition in Figure 7b. 

However, the model is now in a sense too good because it does not display much if any of the 

initial overshooting, and then too briefly. It seems that the right model might be a combination of 
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an initial absolute representation combined with a gradual switch to a relative representation. 

One reason why the subjects would initially prefer an absolute representation is that it is 

cognitively easier as it is all directly available on the external screen. In contrast, to be able to 

maintain the relative representation in the second model requires additional cognitive work in 

terms of maintaining internally between trials the previous action and outcome in order to be 

able to estimate the difference. Thus it seems reasonable to speculate that subjects will not go to 

these lengths until they have a sense that they cannot control the system using an absolute 

representation and that they need to switch to a more demanding relative representation in order 

to be successful. Modeling that switch in representation is a future challenge of our modeling 

efforts. Achieving that type of effect is usually less difficult than avoiding the introduction of 

myriad free parameters in the metacognitive process controlling representation, where the 

modeler often gets out of the model exactly what has been put in. Thus the true challenge is to 

find a way to affect this change of representation in a way as controlled and parameter-free as the 

accumulation and application of knowledge. 

------------------------------------------ 

INSERT FIGURE 7 HERE 

------------------------------------- 

Qualitative Model Comparisons and Conclusion 

We presented two computational models, coming from distinct architectures and 

modeling approaches, to model human behavior in a common dynamic task, controlling the 

accumulation of a stock given an inflow and an outflow. The first computational model is an 

instantiation of macrocognitive processes, specifically recognition-primed decision-making, 
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while the other model is based on a traditional microcognitive framework, the ACT-R cognitive 

architecture.  

One striking result of our model comparison is the degree to which those seemingly 

different modeling approaches have independently converged toward computational 

architectures with considerable similarities (see Table 1). Both approaches rely on a "flat" 

representation of individual traces as cues-action-outcome; that is, there is no internal complexity 

to the trace, no composite representations smuggled in as “individual” cues, no pointers to other 

data structures, and no implicit hierarchical relationship among the traces themselves. Both 

approaches relay on a similarity-based recall mechanism operating in parallel over the entire 

store of traces. And both approaches employ a "blending" process in which multiple traces 

contribute to the course of action. Although it might seem that this convergence might have been 

recognized a priori, without a common task to which the architectures can be applied it is far too 

easy to dismiss differences and overlook commonalities between modeling approaches. To 

paraphrase the cliché, modelers are often separated by a common language. In this case, the 

model comparison revealed that the independent implementation of the instance-based decision-

making paradigm has overcome what might appear to be the more fundamental division between 

macrocognitive and microcognitive approaches. 

Even more striking is that the resulting models themselves were so similar. Even though 

each approach implements a model of instance-based decision making, the similarity between 

the models was not preordained. Just as people can adopt widely different strategies to a task 

using the same basic cognitive mechanisms, so too can modelers develop highly distinct models, 

even using the same framework. For example, as we demonstrated above, the choice of relative 

versus absolute representation had a profound impact on model performance under both 



 Convergence and Constraints 28 

approaches and it is a choice that would not seem to be constrained by the architectures. And yet 

both modeling teams followed the same development trajectory, starting with the simpler 

absolute representation, concluding that it could not generate the desired behavior, both in terms 

of functional control of the task and in terms of matching human behavior, and generalizing to 

the more complex but powerful relative representation. We offer this as anecdotal evidence 

against the common perception that a computational model reflects only the skill of the modeler. 

To those who might still view this convergence as a happy accident, we would argue that it is 

worth noting that an instance-based approach is likely not the first choice a modeler might make 

in representing the human performance in the DSF task. Indeed, the mechanisms that support 

similarity-based recall and action are relatively lightweight compared to those that might be used 

to sense, estimate, act, and adjust. And to the extent that thinking along these lines dictates a 

modeling solution, we would argue that the architecture constrains the modeler. 

Despite all of these striking similarities, however, there were also real differences that 

emerged from our model comparison. For instance, there is a statistical learning mechanism in 

ACT-R that allows recency effects to impact performance; no such mechanism exists in the RPD 

decision type. There is also an important difference in the internal representations the 

architectures employ. The ACT-R model uses numerical representations for cues and courses of 

action that allow both inflow and adjustments to be given as continuous quantities. The RPD 

decision type represents cues and courses of action as discrete enumerations and thus depends on 

the modeler to "bin" values appropriately. Finally, ACT-R supports the implementation of any 

user-defined similarity function, whereas the RPD decision uses a fixed similarity function that 

depends on a specific cue-encoding scheme (see Appendix A below for details). Each of these 

differences carries significant theoretical weight. 
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One could argue that this model comparison has failed because it has not rendered a 

verdict as to which side of these differences is right and which is wrong, or because the models 

do not fit the data well enough. But that was never the point. Rather, our intent was to illuminate 

general features of computational approaches to macrocognition, rather than to validate a single 

theoretical viewpoint or achieve a perfect fit to a specific data set. In this respect, the comparison 

has been a success insofar as it provides two independent examples of instance-based approaches 

to decision making being used to simulate performance and thus suggest a candidate "design 

pattern" for computational approaches to macrocognition. The comparison also provides specific 

examples of computational mechanisms and brings a level of specificity to the question of what 

is at stake in accepting one or another putative representation of macrocognition. Finally, and 

perhaps most importantly, this comparison reminds us that computational cognitive modeling is 

a powerful tool for understanding human performance, and that differences between specific 

frameworks adopted to pursue that goal are often exaggerated. 
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Appendix A: RPD Process Equations 

Here we describe the encoding scheme for cue enumerations, the calculation of similarity 

values and the calculation of recognition strengths across courses of action.  

First, suppose a cue is represented using n values. Internally, the first enumerated value 

would be encoded with n-1 "1"s, the last value with n "-1"s and the mth of n values with n-m "-

1"s and the remaining n-1 leading bits of "1"s. 

Now, let p be a vector of cues that define a situation and let t be a single remembered 

decision making episode, where pi and ti are the ith bits of the probe and episode respectively. 

Suppose the cue vector requires k bits to encode, then the similarity value, sp,t, between p and t is 

given by: 

  sp,t = 
k
1

i

k

i
i tp∑

−

=

1

0

 

The resulting similarity value will be between –1 and 1. The closer the similarity value is 

to 1, the greater the similarity is between the current situation and episode; a similarity value of 1 

indicates a perfect, cue-by-cue match between probe and trace. A similarity value of -1 indicates 

a perfect cue-by-cue mismatch. As we describe below, a similarity value of -1 would result in a 

row subtracting strength for recognition. To some, this might seem like an intuitively appropriate 

analogue for computing the impact of completely dissimilar situation on recognition. To us, 

however, the symmetry of the calculation was less intuitive. So, rather than have negative 

similarity values subtracting from recognition, we simply round those value to zero, where they 

make no contribution, positively or negatively, on recognition. 
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Courses of action are encoded using a different scheme in the bit-string. We use what is, 

essentially, a monadic notation for encoding courses of action. For example, the first of five 

enumerated course of action would be encoded as "00001," the third as "00100" etc. This 

notation is useful because distribution of recognition strengths is computed COA-by-COA where 

the similarity value of each episode is multiplied with the associated COA bit. More formally, let 

ci be the recognition strength of the ith course of action, then its value is given by: 

ci = jj

n

j
ji rat∑

=1

 

where tji is the bit in the jth remembered episode corresponding to the ith course of action, 

aj is the activation value for that episode and rj is the success value of the situation-COA pair (the 

value of n will grow as the model accumulates experience).  

The activation value aj is just the similarity value of the jth episode raised to some integer 

power. By “accelerating” the similarity value in this way the contribution a given episode makes 

becomes a non-linear function of its similarity value and, thus, a high similarity will result in that 

episode making a disproportionately greater contribution of its associated course of action to the 

distribution of recognition strengths. In this way we can represent differences in the specificity of 

the recognition process. 

The result, rj, is a records the outcome of the associated course of action as either positive 

(encoded as "1") or negative (encoded as "-1"). In this way, successful outcomes increase 

recognition strength for the associated course of action, while unsuccessful outcomes decrease 

the recognition strength for the associated course of action. 
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Appendix B: ACT-R Process Equations 

Access to a chunk is determined by its activation, which is a quantity defined by the 

following equation: 

 

Ai = t j
−d −

j=1

n

∑ 1− Sim cue,value( )( )
cue
∑

 

The first term determines the base-level activation of a chunk as a function of past 

references and captures both the power law of learning and the power law of forgetting, while 

the second term reduces the activation of a chunk according to the degree to which it 

(mis)matches the required pattern, i.e. the current situation. Usually, the process results in the 

retrieval of the single chunk with the highest activation after noise is added, which makes it a 

stochastic process with probabilities of retrieval described by the Boltzmann (softmax) equation 

where t is a temperature parameter that is a function of the noise level: 

 

Pi = e
Ai

t e
A j

t

j
∑

 

However, for domains in which a continuous estimate needs to be generated, the process 

is generalized to return a consensus value of the entire set of chunks according to the blending 

equation (Lebiere, 1999; Gonzalez et al., 2003): 

V = min Pi ⋅ 1 − Sim V,Vi( )( )
i

∑
2

 

This states that the value V retrieved is the value that minimizes the dissimilarity with 

actual values Vi in each chunk i, weighted by the probability Pi of retrieving that chunk as 

defined above. If the values Vi are numerical and the similarity function Sim(V, Vi) is linear, 

then the process is equivalent to a probability-weighted averaging. In general, this provides a 

similarity-based blending process similar to that observed in neural networks. The three 



 Convergence and Constraints 37 

equations above, combined with the automatic learning of new instance chunks from previous 

problem solving episodes, determine directly the outcome of the instance-based process given 

the prior history. All architectural parameters such as rate of memory decay d or noise level t 

were left at the default value that we used in our prior instance-based models, and the similarity 

function Sim was likewise set at the usual linear scaling function traditionally used between 

quantitative values such as in this case levels of water. 
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Footnotes 

1 Micro Saint Sharp normally supports three different models of decision making: 

"tactical" decisions, in which the branching at the task network level is determined by user-

defined Boolean conditions, probabilistic decisions, where the branching is determined by user 

defined probability distributions, and "multiple" decisions, which allow parallel execution of 

downstream tasks. 

2 Cf. Klein (1998). 

3 Klein (1998) actually describes three variants of the recognition-primed decision: one 

version is the simple match, discussed here while the two other versions describe the role of 

diagnosis and "story building" in decision making. 

4 Compare this to what goes on in any categorization task. Even when a decision space is 

complicated, typically the hyperplanes that partition the space are fixed. 
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Table 1 

Comparison of components of ACT-R and RPD models 

 ACT-R Model     RPD Model 

Cues-action-outcome chunk    Cues-action-outcome trace 

Chunk activation: frequency/recency   Trace activation determined by similarity 

Matching reflects cue similarities Recognition reflects cue similarities using 

transformed representation 

Blending retrieval reflects all chunks   Recall draws on every past trace 

Continuous action with opt. correction  Discrete course of actions 

Outcome recorded in decision chunk Outcome with respect to “success criterion” 

recorded in trace 
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Figure Captions 

Figure 1. The Dynamic Stocks and Flow (DSF) simulation. The center of the screen shows a 

water tank carrying 1 gallon of water. The markings on the left side of the tank represent 

the water level in the tank at any instance of time. The Goal (Gallons) at 4.00 gallons 

refers to the level to maintain in each time period of the simulation run. The Amount in 

Tank (Gallons) at 2.00 gallons refers to water level that the tank will have at the end of 

the current time period. A participant in this experiment enters the Inflow value in Enter 

the number of Inflow (units/second) and the outflow in Enter the number of Outflow 

(units/second) and press the Submit button. 

Figure 2. Human data performing in (a) increasing and (b) decreasing linear Inflow function in 

DSF – Data originally reported by Gonzalez and Dutt (2007). 

Figure 3. Model performance on the DSF task using absolute representation within the RPD 

decision type. Performance is given as an average of current stock per trial over 16 runs 

for each environmental inflow condition: (a) increasing and (b) decreasing. The target 

stock is 4 in each condition. 

Figure 4. Model performance on the DSF task using relative representation within the RPD 

decision type. Performance is given as an average of current stock per trial over 16 runs 

for each environmental inflow condition: (a) increasing and (b) decreasing. The target 

stock is 4 in each condition. 

Figure 5. ACT-R architectural diagram including main architectural modules and buffers, and 

communication processes. 
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Figure 6. Model performance of an average of 16 runs with absolute representation for (a) 

increasing and (b) decreasing environmental inflow. Performance is displayed as current 

stock level for each of 100 trials with desired stock level being 4. 

Figure 7. Model performance of an average of 16 runs with relative representation for (a) 

increasing and (b) decreasing environmental inflow. Performance is displayed as current 

stock level for each of 100 trials with desired stock level being 4. 
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