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Abstract

In a world that relies increasingly on large amounts of data
and on powerful Machine Learning (ML) models, the veracity
of decisions made by these systems is essential. Adversarial
samples are inputs that have been perturbed to mislead the in-
terpretation of the ML and are a dangerous vulnerability. Our
research takes a first step into what can be an important innova-
tion in cognitive science: we analyzed human’s judgments and
decisions when confronted with targeted (inputs constructed
to make a ML model purposely misclassify an input as some-
thing else) and non-targeted (a noisy perturbed input that tries
to trick the ML model) adversarial samples. Our findings sug-
gest that although ML models that produce non-targeted adver-
sarial samples can be more efficient than targeted samples they
result in more incorrect human classifications than those of tar-
geted samples. In other words, non-targeted samples interfered
more with human perception and categorization decisions than
targeted samples.
Keywords: Adversarial Machine Learning; Human Decision
Making; Adversarial Samples.

Introduction
Machine Learning (ML) models are changing our world: they
are part of search engines, recommendation systems, social
media sites and new forms of social exchange. Autonomous
cars use sensors to “see” the road and use ML models to
make accurate decisions. These models learn discriminative
features of road signs (e.g., a STOP sign) to select appro-
priate actions. Although very powerful, ML and particularly
deep neural network (DNN) models are also severely vulner-
able to adversarial samples: inputs crafted with the intention
of causing misclassification. The consequence is that slight
alterations of the “transfer stimuli” (e.g., a STOP sign with
some noise) can readily result in incorrect recognition.

There are two broad approaches to developing adversarial
stimuli that are capable of misleading ML and DNN models:
targeted and non-targeted. In targeted attacks, minimal mod-
ifications are made to the input stimuli (e.g., images) such
that they will be misclassified by the ML models as another
specific target class (e.g., modify a STOP sign in such a way
that the ML model in an autonomous vehicle interprets it as
a YIELD sign instead). In non-targeted attacks, modifica-
tions are made to the input stimuli but there is no specific
class intended; the goal is to make the model misclassify the
perturbed input to any class/output, different from the actual
class.

Researchers focused on understanding Adversarial Ma-
chine Learning attempt to deal with the fundamental trade-
off of designing algorithms that are computationally effi-
cient while at the same time resist adversarial perturbations
(Goodfellow, Shlens, & Szegedy, 2014; Huang, Joseph, Nel-
son, Rubinstein, & Tygar, 2011; Papernot et al., 2016). An

important recent finding is that adversarial stimuli targeting
one ML model can be successfully transferred to target a
different model due to the shared adversarial stimuli space
(Szegedy et al., 2013; Liu, Chen, Liu, & Song, 2016). Re-
cently, the argument has been made that such transfer is
also possible between machines and humans (Elsayed et al.,
2018). There is, however, limited evidence for this claim
given that it is based on a single task with stimulus presenta-
tion times around 70ms. Thus, it is unclear whether these ef-
fects will generalize to other cognitive tasks and longer delib-
eration times. The question of whether humans can recognize
a stimulus as adversarial is critical to security of automation
systems as it may be possible to allow humans to intervene
on predictions made by a compromised ML model in critical
situations. Hence, it is critical to test the effect of different
adversarial examples generated from different algorithms on
human perception and decisions.

This research extends the comparison of human perfor-
mance on adversarial samples to a wider range of cognitive
tasks than has been studied previously. In Experiment 1, we
test adversarial samples generated using JSMA (Jacobian-
based Saliency Map Attack), a targeted approach proposed
by (Papernot et al., 2016); in Experiment 2 we test adver-
sarial samples generated using FGSM (Fast Gradient Sign
Method), a non-targeted approach proposed by (Goodfellow
et al., 2014). Each experiment involved human classifica-
tion, discrimination, and similarity decisions with targeted
and non-targeted adversarial samples. In the Discussion, we
compare and discuss the results from the two experiments and
their implications for the transferability between machine and
human systems.

Machine Learning Models and Adversarial
Samples of Handwritten Digits

The FGSM and JSMA models models were developed and
tested to attack a feedforward neural network model that was
trained on the MNIST dataset containing images of handwrit-
ten digits (Yann, Corinna, & Christopher, 1998). These im-
ages are represented as vectors of 784 features (one for each
of the 28x28 = 784 pixels), and each feature corresponding to
a pixel intensity normalized to values between 0 and 1. The
hidden layer neurons in the network each use logistic sigmoid
function as their activation function. Let J(θ,x,y) represent
the loss function used to train the neural network in both al-
gorithms where θ represents the neural network model, x rep-
resents the input and y represents the label/class for x. We
will use these notations to describe the two algorithms.

The Fast Gradient Sign Method (FGSM) used a simple
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and efficient method for finding perturbations where, given
a source image x, each of the 784 features representing the
input is perturbed in the direction of the gradient by mag-
nitude of ε. ε represents the magnitude of the perturbation.
The strength of perturbation at every feature is limited by the
same constant parameter ε and the resultant is a adversarial
stimuli x̃ of the original input x. With even small ε it is pos-
sible to mislead such Deep Neural Networks (DNN) with a
high success rate. Due to the nature of gradient descent on
the loss function, it is not possible for the model to anticipate
the outcome and therefore, the goal is to misclassify adversar-
ial input x̃ as any other class than its correct class (y). Hence,
it is a non-targeted form of attack.

Papernot et al (2016) proposed the Jacobian-based
Saliency Map Attack (JSMA) to generate adversarial sam-
ples to mislead neural network model. This model used an
iterative approach to modify a limited and specific set of fea-
tures (among the 784 features) of the input image (x) for
targeted misclassification. In this approach, an adversarial
saliency map is calculated for the input image which con-
tains the scores for each pixel that reflect how the pixel can
help in achieving the intended target class (ỹ) while reducing
the probability of achieving any other class. Pixels with high
saliency scores are perturbed by ε repeatedly until the model
misclassifies the input as the intended target class. Papernot
et al. (2016) found that a deep neural network can be fooled
with high success (97%) while only requiring small modifi-
cations (4.02%) of the input features of a sample; while hu-
mans identified 97.4% of the adversarial samples correctly
and classified 95.3% of the adversarial samples correctly.

Adversarial Image Generation We quantified the amount
of perturbation introduced by each algorithm by computing
the L1-norm, or pixel-wise (i, j) difference between the un-
perturbed and adversarial image, which more robust to out-
liers than a common alternative, the L2-norm, and directly
represents the total change in luminance between the images:

Dx,x̃ = ∑
i=1

∑
j=1
|xi j− x̃i j| (1)

General Method
In two experiments, we tested the effect of adversarial im-
ages from two algorithms (JSMA: Experiment 1; FGSM: Ex-
periment 2) on human performance within classification, dis-
crimination, and similarity tasks. The general procedure is
outlined below, followed by specific details about the partici-
pants and stimuli for each experiment individually.

Procedure Participants were told they would view “images
of numbers” and be asked to complete three perceptual tasks,
which alternated from trial-to-trial (see Figure 1). In the clas-
sification task, participants freely reported the identity of a
single digit; in the discrimination task, they responded by in-
dicating whether two images showed the “same” or “differ-
ent” digits by clicking a corresponding button; finally, in the
similarity task, participants rated two images, from 0 (“not

similar at all”) to 10 (“identical”) using a sliding bar. Each
trial included a brief instruction reminder, the stimulus im-
age(s), and a response field. Trials were not time constrained,
and responses were recorded when the participant indicated
they were ready to move to the next trial by clicking a red
arrow button.

In the tasks requiring a comparison between two images
(discrimination, similarity), there were three types of stim-
uli. In Source-Source pairs, an unperturbed MNIST image
was paired against itself, which served as a control condi-
tion. The remaining comparisons paired images from dif-
ferent digit classes (0-9) with one another in two ways. In
Source-Adversarial pairs, an unperturbed MNIST digit was
paired with an adversarially modified version of itself. Fi-
nally, in Target-Adversarial pairs, an adversarial image was
compared against an unmodified image from a different class.
In the case of stimuli generated by JSMA, this was the class
that was targeted by the algorithm; for FGSM stimuli, the al-
gorithm operates without targeting a specific output class, so
the comparison image chosen was digit class which the DNN
reported when classifying the adversarial image. Examples
of the three stimulus pairs can be seen in Figure 2.

In the classification task, only a single image was pre-
sented, and it was either an unperturbed MNIST digit (taken
from Source-Source pairs), or an adversarial image (from
Source-Adversarial and Target-Adversarial pairs).

For each task type, participants completed 70 trials for a
total of 210 trials. All participants finished the task within 15
and 30 minutes.

Figure 1: Example images demonstrating the three tasks per-
formed by the subjects in both experiments: the classification
task (top row), the discrimination task (middle row) and the
similarity task (bottom row)
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Figure 2: Examples of the image pairs shown in Experi-
ments 1 (left columns) and Experiment 2 (right columns).
In ‘Source-Source’ pairs, an MNIST digit was compared
with itself; ‘Source-Adversarial’ pairs pitted an unperturbed
MNIST digit against an adversarially-modified version of it-
self; finally ‘Target-Adversarial’ pairs compared an adversar-
ial digit with an MNIST digit from the incorrect class pro-
duced by the DNN when classifying the adversarial image.

Experiment 1
In Experiment 1, we tested human classification, discrimina-
tion, and similarity judgments over images generated using
the JSMA algorithm (targeted attack).

Method
Participants We recruited participants via Amazon’s Me-
chanical Turk, and collected data using Qualtrics (with IRB
approval from Carnegie Mellon University). Participants (n =
300; 113 females; mean age = 34.25 years) first provided in-
formed consent and confirmed normal or corrected-to-normal
vision. Monetary compensation was based on performance
(base pay rate $4, average bonus: $2.71).

Stimuli The image pairs used in Experiment 1 were pro-
duced by the JSMA algorithm, which were selected from a
larger database of image pairs provided by the authors of Pa-
pernot et al.(2016). For each Source-Adversarial and Target-
Adversarial comparison, we selected images with the largest
adversarial distance (see Equation 1). The average distance
for stimuli generated by the JSMA algorithm, among those
tested in this study was 54 pixels (min = 14; max = 100).

Design Due to the large number of comparisons, we cre-
ated three non-overlapping stimulus sets and randomly as-
signed participants to one of three groups. Within each group,
the same stimulus set was used in all three tasks (classi-
fication, discrimination, and similarity). All three stimu-
lus sets included Source-Source comparisons for every digit
(0/0,1/1, ...,9/9). The nine remaining, non-matching com-
parisons for each digit (e.g. 0/1,0/2, ...9/8) were divided
between the three participant groups. For example, Group 1
judged pairs of images comparing an unperturbed ‘0’ against

adversarial images from categories ‘2’, ‘3’, and ‘9’, while
Group 2 compared against ‘4’, ‘5’, and ‘9’, and Group 3
saw ‘1’, ‘6’, and ‘7’. Each of these non-matching pairs was
tested twice, once as a Source-Adversarial pair and once as a
Adversarial-Target pair.

Experiment 2
In order to contextualize the results of Experiment 1 within
the larger adversarial domain, we measured human judgments
on images generated using a different algorithm, “the fast gra-
dient sign method (FGSM)” proposed by Goodfellow et al.
(2014).

Method
Participants We recruited a new sample of participants (n
= 300; 135 female; mean age = 34.72 years) using the same
process as Experiment 1. Average bonus pay was $2.71.

Stimuli We chose images from FGSM with the largest ad-
versarial distance. The range of distances among tested stim-
uli was more limited than in Experiment 1, (mean = 296.1,
min = 78.4, max = 313.6). Due to the non-targeted nature
of the FGSM algorithm, there were few digit classes that,
when perturbed never generated adversarial images that were
misclassified as certain other digits. For example, adversarial
modifications to images portraying the digit, “1”, were never
misclassified as “0”, and the same was true for the pairs,
1/6,4/1,5/1,7/6. In order to prevent biases arising from
participants noticing the absence of these comparisons, we
substituted these missing pairs with least perturbed images
from the JSMA algorithm, and removed responses to these
stimuli from all analyses (a total of 5% of the total trials).

Design We divided the 10×10 stimuli in the same manner
as in Experiment 1, though the exact distribution of stimu-
lus pairs was randomized, such that e.g. Group 1 performed
comparisons of digit, ‘1’ against ‘2’, ‘4’, and ‘6’. As before,
each group was tested on self-comparisons for all digits and
against three non-self comparisons.

Results
We first examined participants’ accuracy in the classification
task. In Experiment 1, participants correctly reported the pre-
sented digit on 95.5% of classification trials. In Experiment
2, the average accuracy decreased to 90.2% (see Table 1). A
generalized linear, mixed effects model predicting the num-
ber of errors 1 between unperturbed (Source) and adversar-
ial (Adversarial, Target) images, and across experiments, re-
vealed a significant main effect of Perturbation, F(1,1796) =
290.21, p <.001, as well as a significant main effect of Exper-
iment, F(1,1796) = 25.574, p < .001. These results are con-
sistent with the human performance data reported in Papernot
et al. (2016), which showed that human classification of ad-
versarial stimuli remains near ceiling, and we generalize this

1binomial model, link = logit; models fit using MATLAB func-
tion, fitglme, using the Laplacian fitting method
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finding to a novel adversarial algorithm. The difference in ac-
curacy when comparing across the two algorithms suggests
that FGSM was more successful in confusing human judg-
ments, perhaps due to the larger amount of perturbation, or
the more global pattern of pixel changes.

Table 1: Classification Accuracy

Experiment 1 Experiment 2
Unperturbed 96.8% 97.8%
Adversarial 94.2% 82.7%

Total 95.5% 90.2%

We next examined whether participants would correctly
identify pairs of images showing the ‘same’ or ‘different’
digits, in spite of the adversarial modifications, in the Dis-
crimination task. Overall accuracy was at 99.1% in Experi-
ment 1, and 96.6% in Experiment 2 (see Table 2). A gener-
alized, linear mixed-effects model over Trial Type (Source-
Source, Source-Adversarial, Target-Adversarial) and Exper-
iment (Experiment 1, Experiment 2) showed a significant
main effects of Trial Type, F(2,1794) = 71.937, p < .001.
There was also a main effect of Experiment, F(1,1794)
= 17.76, p < .001, and a significant 2-way interaction,
F(2,1794) = 43.818, p < .001. These results were driven
primarily by better performance for the adversarial com-
parisons (Source-Adversarial, Target-Adversarial) in Exper-
iment 1 than in Experiment 2, with no difference in Source-
Source trials. This is consistent with the pattern of results
found in the classification task, which showed that perfor-
mance on images produced by the FGSM algorithm tended
to be worse than over those generated by JSMA; furthermore,
this is a novel demonstration that adversarial images can per-
turb human judgments in tasks other than Classification.

Table 2: Discrimination Accuracy

Experiment 1 Experiment 2
Source-Source 99.9% 99.9%

Source-Adversarial 97.9% 95.0%
Target-Adversarial 99.7% 94.8%

Total 99.1% 96.6%

In the similarity task, we examined whether there were
differences across the Experiments or image Type, using a
linear mixed-effects model. Similarity ratings were signifi-
cantly different across Trial Types; F(2,1794) = 13,881, p <
.001. This difference was mostly in the Source-Adversarial
and Target-Adversarial comparisons (see Figure 4). There
was not a significant main effect of Experiment, F(1,1794)
= .712, p > .05, but the interaction between Trial Type and
Experiment was significant, F(2,1794) = 46.627, p < .001.
This latter effect was due to the reversal in the two adver-
sarial comparisons: while the ratings in Target-Adversarial

pairs remained lower than the other comparisons, the addi-
tional noise introduced by FGSM seems to have made the
adversarial image appear more similar to the intended target
category than the procedure adopted by JSMA.

One possible explanation for this finding is that the dis-
tance between adversarial and source images was larger for
FGSM than JSMA, so we followed up by examining the
impact of adversarial distance on similarity rating. Due to
the limited range of distances of tested stimuli created us-
ing the FGSM algorithm, we focused the analysis on Source-
Adversarial pairs generated by JSMA. Adversarial Distance
(see equation 1) for Source-Adversarial image pairs did not
significantly predict human performance on the classification
or discrimination tasks, (both F’s < 3.5, p’s > .05), but there
was a significant negative relationship, β = −.021(.002), in
the similarity task, F(1,88) = 86.382, p < .001 (see Figure 3).
Participants rated images with more distortions as less simi-
lar than those with fewer. The JSMA algorithm was designed
to find the minimal perturbations necessary to produce mis-
classifications by the deep neural network model (DNN), and
thus remain relatively undetected by human observers. This
finding is critical because it demonstrates that, while perfor-
mance on classification would appear to suggest that human
observers fail to detect the adversarial changes, these explicit
ratings of similarity reveals that, not only do observers notice
the changes, their responses are tightly mapped to the amount
of change introduced by the algorithm. This more sensitive
measure likely provides a better means of evaluating the effi-
cacy of adversarial models in evading human detection.

Figure 3: The amount of perturbation (Adversarial Distance)
was significantly related to participants’ similarity ratings
over Source-Adversarial image pairs in Experiment 1

Finally, in order to assess whether performance on one task
(e.g. similarity) could be used to predict performance in the
other tasks, we correlated performance across the three tasks
within each experiment. In Experiment 1, individual perfor-
mance in the classification and discrimination tasks was sig-
nificantly correlated, r(298) = 0.511, p < .001. Due to the
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stark differences in ratings as a function of trial type in the
similarity task, we ran separate correlations for each stimulus
type: Source-Adversarial similarity scores were significantly
correlated with classification performance, r(298) = .152, p <
.01, and marginally related to discrimination, r(298) = .112,
p = .053. Target-Adversarial performance was likewise cor-
related between similarity, r(298) = -.129, p < .05, and dis-
crimination, r(298) = -.131, p < .05. Finally, Source-Source
similarity judgments were only related to discrimination per-
formance, r(298) = .272, p < .001.

In Experiment 2, individual performance in the classifi-
cation and discrimination tasks was significantly correlated,
r(298) = 0.839, p < .001. Separate correlations by stimu-
lus type in the similarity task showed that Target-Adversarial
judgments were significantly negatively correlated with clas-
sification performance, r(298) = -.328, p < .001, and re-
lated to discrimination, r(298) = -.471, p < .001. Source-
Adversarial performance was correlated between similarity,
r(298) and discrimination, r(298) = .129, p < .05.

Together, these results suggest that the different tasks rely
on similar perceptual representations, and that individuals’
performance on one task could be used to predict their abil-
ities in the other domains. If, for example, a subject rates
adversarial images as particularly dissimiliar to their unper-
turbed counterparts, they may be less prone to incorrectly
classify the image, and therefore be less vulnerable to these
types of perturbations, making the collection of explicit simi-
larity ratings an important tool for assessing the risk posed by
adversarial images.

Figure 4: Mean similarity ratings across Experiments 1 (blue)
and 2 (red), separated by the image pair shown to subjects.

General Discussion
Current research on AML claims that humans are insensi-
tive to the perturbations introduced in adversarial samples;
however, these claims are not based on evidence from em-
pirical research. This study represents the systematic attempt
to test humans susceptibility to adversarial stimuli, and the
results suggest that previous claims may have been over-
stated. Although adversarial stimuli are very effective in fool-

ing ML models with incorrect classifications hovering be-
tween 97% and 99.9% (Papernot et al., 2016; Goodfellow et
al., 2014), human performance reveals much greater variation
depending on task (classification, discrimination, similarity)
and model (FGSM, JSMA). The key question emerging from
these results is how to interpret this performance.

Our main point is that lack of sensitivity to adversarial
stimuli does not necessarily imply that humans are unable
to detect these perturbations. Similarity judgments between
stimuli revealed significant differences between unperturbed
and perturbed images (source-adversarial, adversarial-target)
and the magnitude of these differences was scaled to the cal-
culated distance between the stimuli. Likewise, participants
were very good at discriminating the image of a digit from
its adversarial target, even though the adversarial target was
classified by humans as representing the same number as the
unperturbed image.

Presumably, machine learning models would also discrim-
inate between adversarial and unperturbed stimuli, but this
is because they would classify the two stimuli as different
numbers (i.e., source and adversarial target). By contrast, hu-
mans discriminate the stimuli not because they classify them
differently, but because they detect featural differences cor-
responding to texture density or contrast or discontinuities in
the contour, to name just a few candidates. It is often risky
to draw parallels between ML models, such as DNNs and
human information processing because we still know so little
about how neural networks work. These adversarial examples
simply demonstrate the fragility of these ML models. This
is why drawing direct comparisons between human cogni-
tion and neural networks and anthropomorphizing them may
be unfair (Gershman, Horvitz, & Tenenbaum, 2015; Chollet,
2017).

It is noteworthy that we observed a significant difference
between the two forms of attack (targeted vs non-targeted)
in terms of their ability to produce human recognizable ad-
versarial images. We found that humans are less accurate in
classifying adversarial images generated by FGSM, a non-
targeted form of attack, compared to human performance on
the same task with images generated by JSMA, a targeted
form of attack. In other words, non-targeted perturbation
of pixel intensities interfered more with human perception
and classification decisions. This performance difference was
significantly reduced when participants made judgments on
adversarial images during the discrimination task. As such,
these results demonstrate that the more effective adversarial
model results in poorer classification and discrimination by
humans, which represents a disadvantage when trying to de-
tect adversarial stimuli.

Of course, it is premature to generalize from these prelim-
inary findings that the FGSM algorithm is more effective in
fooling machines than humans, because the conclusions de-
pend to a large extent on the specific information processing
task administered to humans. Although our results revealed
that performance in some of these tasks is correlated, the cor-

455



relations were generally very small accounting for no more
than 25% of the variance and in most cases much less. We
thus conclude that a complete testing of human performance
with adversarial stimuli will require a broad range of tasks
assessing different perceptual and cognitive skills.

It should also be noted that these adversarial stimuli were
generated with the primary goal of making ML and DNN
models to misclassify and do not take into account the hu-
man in the loop (yet). Does integrating human feedback with
ML solve the problem of adversarial perturbations? This is
a question for future research. While humans may not be
highly susceptible to these specific adversarial samples they
may be susceptible to attacks that exploit gaps and limitations
in human cognition. For example, we are easily fooled by op-
tical illusions and easily fooled by spear phishing emails. Re-
cent work by Elsayed and colleagues have produced a small
set of adversarial examples that fool ML and humans alike
(Elsayed et al., 2018). However, the limitation of their study
is that they restricted exposure time to 70ms followed by a
mask, which inhibits much of the higher-level processing that
is typically available to humans. Moreover, this study did not
explicitly test whether humans would correctly classify the
stimuli when the decision space was much greater. Such at-
tacks that fool both ML and humans alike can have more se-
vere repercussions. Hence it is critical to study the effect of
adversarial algorithms on both ML and humans.

Much work still needs to be done in studying the interac-
tion between human and machine intelligence. Our current
work is limited to simple, black and white images, in a do-
main where we all have significant knowledge of the stim-
uli (i.e., hand-written numbers). We know, however, that
adversarial attacks are considerably more difficult to con-
duct in practice. Images are more naturalistic (color, shape,
sizes), distance and movement change the visual view consid-
erably, and information may be presented in different modes
(e.g.vision, voice). Furthermore, context information is avail-
able in practice. Although current AML research is only in its
infancy, the speed at which this is advancing suggests that we
need to try to keep pace with malicious applications of this
technology in order to understand how to protect our systems
from possible attacks. As we continue to progress toward the
future, it is safe to assume that the ML models, for example,
those used in autonomous cars, will become more sophisti-
cated and robust than the ones currently available to protect
against adversaries. Thus, it is important to best understand
the vulnerability of these algorithms as well as how humans
can defend against them, because we have observed that even
the most sophisticated algorithms can be fooled even with
small perturbations. It is equally important to understand the
extent to which humans can be fooled with adversarial sam-
ples before we advocate for supervised learning by humans
(Veeramachaneni, Arnaldo, Korrapati, Bassias, & Li, 2016).
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