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Abstract. MEDIC is a dynamic decision making simulation incorporating time 
constraints, multiple and delayed feedback and repeated decisions. This tool 
was developed to study cognition and dynamic decision making in medical 
diagnosis.  MEDIC allows one to study several crucial facets of complex 
medical decision making while also being well controlled for experimental 
purposes. Using MEDIC, there is a correct diagnosis for the patient, which 
provides both outcome and process measures of good performance.  MEDIC 
also allows us to calculate cue diagnosticity and probability functions over the 
set of hypotheses that participants are explicitly considering, based on 
assumptions of local (bounded) rationality. MEDIC has served in a series of 
studies aimed at understanding learning in dynamic and real-time medical 
diagnotic situations. In this paper, we outline the tool and highlight results from 
these preliminary studies which set out to measure learning. 
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1   Introduction 

We accomplish long term goals by making multiple decisions over time. Dynamic 
decision making (DDM) is about making decisions in an environment that is changing 
while the decision maker is collecting information about it [1]. Decision makers in 
dynamic environments make multiple decisions that are intended to reach some goal, 
and to keep the system under control within a performance range. 

Consider a medical dynamic decision making problem. A patient presents 
symptoms that indicate possible high blood sugar. Tests indicate high blood sugar and 
low insulin (i.e., hyperglycemia). The physician’s goal is to stabilize the patient’s 
health (keep the blood sugar within an acceptable range). The patient can be 
diagnosed with diabetes (type 1) as the symptoms (cues) develop over time. Once a 
diagnosis is made a treatment is given, for example, to take insulin. Insulin often takes 
a moderate amount of time to have an effect in the body.  
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If the amount of insulin is not well calibrated to the state of the body as it is 
changing, it is possible that the patient would have too much insulin in the body, low 
blood sugar, and suffer a hypoglycemic crisis. At that point, the solution needs to 
come quick, to take some sugar by mouth or drink some orange juice, which often 
have a fast effect on the body. The ideal situation here is to use feedback about the 
patient’s state to keep the system in balance and under control by adding insulin or 
sugar without over or undershooting. However, we often know that the perception of 
feedback about the patient’s state is inaccurate and the control of the system is often 
challenging. 

Work on the psychology of decision making suggests people have difficulty 
managing dynamic systems with multiple feedback processes, time delays, 
nonlinearities, and accumulations [4]. Researchers have found that decision makers 
remain sub-optimal even with repeated trials, unlimited time, and performance 
incentives [3, 5, 6, 7]. We believe that more research is necessary to understand the 
learning process by which individuals improve their decisions after repeated choices 
in dynamic tasks. Learning is the process that modifies a system to improve, more or 
less irreversibly, its subsequent performance of the same task or of tasks drawn from 
the same population [8]. Learning, among other processes (individual differences in 
cognitive capacity, biases in general reasoning strategies, complexity of dynamic 
systems), can help explain much of the variance in human performance on dynamic 
decision tasks. Research in DDM indicates that although individuals may follow very 
diverse strategies they tend to evolve towards better control policies after an extended 
number of practice trials [9, 10]. 

Our research aims at determining how decision makers learn in DDM tasks. In 
particular, this paper describes a dynamic simulation in a medical context, called 
MEDIC and presents three behavioral studies to describe how individuals learn using 
this simulation. 

2   MEDIC: A Dynamic Medical Decision Making and Learning 
Environment 

Decision scientists have typically focused on simple and static laboratory tasks. For 
instance, in the typical laboratory experiment, participants are asked to make 
likelihood judgments or select among a small number of usually experimenter 
provided alternatives. Moreover, participants are often provided with one or a 
sequence of independent choices, where one choice does not influence the next one. 
Rarely, decision making research has used tools that are representative of the 
dynamics of the decision making conditions we experience in the real world. 
Dynamic tools and methods are needed in order to study the dynamics of human 
behavior. One area of study that can lead to significant improvements in medicine, 
specifically medical training, is the development of virtual reality simulators for 
complex medical procedures [11]. 

We have developed many tools (microworlds, learning environments, management 
simulators, etc.) for studying DDM [12]. MEDIC is one of those learning 
environments that was created to study DDM in simulated medical diagnosis.  
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The development of MEDIC was inspired by Kleinmuntz’s [13] paradigm to test 
the performance of heuristics in a complex dynamic setting. MEDIC includes all the 
characteristics of a dynamic task described in Kleinmuntz [13]. Using MEDIC we can 
manipulate the statistical structure of the DDM task in a manner commensurate with 
Kleinmuntz’s analysis: task complexity (i.e., number of diseases and symptoms), 
disease base rates, time pressure, test diagnosticity, treatment effectiveness, and 
treatment risk. In addition, we also designed MEDIC to incorporate several dynamic 
factors not considered by Kleinmuntz, including feedback delays in tests and 
treatments, dynamic diagnostic cues (cues that have diagnostic patterns unfolding 
over time), and temporally sensitive symptoms (symptoms that appear at various 
stages in the progression of the disease). Thus, MEDIC simulates realistic 
components to a medical diagnosis task, involving multiple feedback loops and 
possible delays, from the presentation of symptoms to the modification of the 
patient’s health through treatment.  

MEDIC has five phases: 1) presentation of symptoms, 2) generation of a diagnosis, 
3) test of a diagnosis 4) submission of a treatment and 5) analysis of outcome 
feedback. The goal in the task is to diagnose and cure patients who are suffering from 
one disease. The patient is drawn from a population of patients with a configuration of 
symptoms-diseases and diseases-treatments associations. These configurations are 
chosen randomly for each patient. 

The main measure of performance in MEDIC is the health meter. The health meter 
is defined as a percent of health, in a scale from 0 to 100. The value of zero indicates 
death while a value of 100 indicates full recovery. The user of MEDIC can check the 
status of the patient’s health by looking at a graph which continuously monitors the 
patient’s health. MEDIC presents a sequence of patients with an initial health that can 
vary, but was kept around 50 for the studies reported here. Each patient can be fully 
cured if the right treatment is applied for the correct disease according to the 
probabilities defined in the symptoms-diseases and diseases-treatments matrices. 
MEDIC is a real-time DDM task in the sense that the state of the system deteriorates 
unless an action is taken. In this case, the patient’s health decreases steadily with the 
passing of time in the simulation.  

Initially, a new patient is shown with his or her various contextual data (age, 
gender and a picture of the patient). Then, participants are presented with probability 
tables indicating the symptom-disease associations for the patient. According to the 
probabilities of association of a symptom to a disease, participants decide to conduct 
tests that would determine the actual presence or absence of a symptom. However, 
conducting tests for symptoms takes time. Each test is currently configured to return 
results in 30 simulation minutes.  When the test completes, the result of either 
“present” or “absent” will display, and only then can a second test be issued.  
Participants are then asked to make their hypothesis of the probability of the different 
diseases and then they are asked to decide on the most appropriate treatment for the 
hypothesized disease. This is done by selecting the treatment according to the disease-
treatment probability matrix. At the end of each trial (i.e, patient), feedback is 
provided. Feedback indicates the accuracy of each of the actions taken, such as the 
real disease the patient suffers from and the belief assigned to that disease by the 
participant; the correct treatment according to the effectiveness of that treatment for 
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the hypothesized disease. A score structure is defined for participants to associate 
their actions to their effects. This score is a main source of learning and it is explored 
in the initial studies as we will explain below. 

Although MEDIC allows one to study several crucial facets of complex medical 
decision making that are often lost in the laboratory, this simulation is also well 
controlled for experimental purposes. Using MEDIC, we know the correct diagnosis 
of the patient, which gives us the ability to derive both outcome and process measures 
of good performance. Although we cannot develop models that prescribe an optimal 
set of actions, as is the case in many dynamically complex tasks, we can derive 
Bayesian models that provide benchmarks of “good” behavior. Also, at any point in 
time (current information state) we can calculate the probability distribution over the 
diagnostic hypotheses. Moreover, we can assume local (bounded) rationality and 
calculate cue diagnosticity and probability functions over the set of diagnostic 
hypotheses the participants are explicitly considering. The studies investigate the 
learning process in MEDIC from data collected from university students.  

3   Three Learning Studies in MEDIC 

3.1   Study 1: Learning the Probability Associations 

The objective of the first study was to determine whether participants could learn the 
probabilistic associations of symptoms and diseases in order to make a diagnosis and 
provide effective treatment for patients in a simulated dynamic medical decision 
making task.   

Methods. The first study was conducted with six graduate and undergraduate students 
in a research university. They all came to a laboratory where they were trained in 
MEDIC, and they were asked to diagnose and treat patients for 1 ½ hours. 

Participants were presented with a sequence of patients suffering from one of four 
diseases. The patient and disease associations were selected randomly from one of the 
four diseases according to the base rates (0.25). Each of the patients in the sequence 
had a symptom-disease matrix indicating the probabilistic associations between the 
symptoms and diseases as shown in Table 1. This matrix is seen by participants in the 
top part of the screen in the MEDIC simulation and it was the same for all the patients 
in the sequence. 

Table 1. Probability matrix with disease-symptom associations used in Study 1 

Disease 1 Disease 2 Disease 3 Disease 4  
0.25 0.25 0.25 0.25 Base Rates 
0.5 0.5 0.5 0.5 Symptom 1 
0.9 0.1 0.5 0.5 Symptom 2 
0.9 0.9 0.1 0.1 Symptom 3 
0.5 0.5 0.9 0.1 Symptom 4 
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In this table, diseases 1, 2 3, and 4 presented above each have different associations 
with the four symptoms. It has been found that participants tend to use positive-
testing strategies, suffering from confirmation bias [14,15] and pseudodiagnostic 
selection  [16]. Thus, an expected behavior is the tendency to issue tests (for 
symptoms) that have a high likelihood of confirming a hypothesis. However, 
participants are not restricted in the number or order of tests they can issue. They are 
allowed to run up to four tests to identify the presence or absence of up to four 
symptoms.  

Participants issue tests (which take time to execute while the patient’s health 
decreases) to determine which symptoms are present. After receiving the test results, 
the participant adjusts a “belief meter” to reflect his/her assessment of the probability 
of the disease being present (associations based on the symptom-disease matrix), on a 
scale of 0 (not present), to 1 (certainly present). 

After completing the belief meter for all four diseases, the participant can either 
conduct more tests or administer treatment.  Once a participant has adjusted the belief 
meters to indicate the likelihood of each disease and is finished testing, effective 
treatment must be administered according to disease-treatment probability 
associations defined in another matrix. In this study, the disease-treatment 
probabilities were fully diagnostic, indicating that one and only one treatment could 
be effective for each of the possible diseases. 

 
Scoring methods. Human behavior in MEDIC was measured by calculating a score 
of behavior. We defined three methods of calculating a score. 

Scoring Method 1. In the first method, the score included components that rewarded 
efficient decisions.  A cumulative score was presented to each participant based on 
the following factors: the participant begins with 2000 points for the first patient; if 
the participant administers an effective treatment, the patient’s health is multiplied by 
2 (for an ineffective treatment, no points are added); if the patient dies, the participant 
loses 100 points; each test issued costs 25 points; and points from the belief meter 
were based on the normalized value assigned on the belief meter compared to the 
actual value for the correct disease.  The equation for scoring method 1 is below. 

Score1 = 2000 + (2 * end health if effective treatment OR 0 if ineffective 
treatment OR -100 if patient dies) – (25 * number of tests performed) – 50 – 
(50 * (1 – (actual probability of disease – participants normalized, believed 

probability of that disease) ^2) . 

(1) 

This score replaced the value of 2000 in the equation for the second trial, and so 
on. The actual cumulative score was plotted and compared with (1) the maximum 
possible score, which assumed the patient’s health did not deteriorate, no tests were 
performed and the normalized believed probability exactly matched the actual 
probability for the correct disease; (2) the maximum possible score adjusted for two 
tests, which are necessary to run to provide an accurate diagnostic assessment; (3) a 
neutral score that represented the score per trial if the participant made no decisions, 
meaning that the patient died, no tests were run, and the belief meter was not adjusted; 
and (4) the minimum possible score, which assumed the patient died, all four tests 
were run, and the normalized, believed probability for correct disease was 0. 
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Scoring Method 2. The second performance measure involved a modified score 
equation which emphasized task accuracy.  This method assigned points for correct 
diagnosis (+/- 100 points), correct treatment (+/- 100 points), proportion of life 
preserved, most probabilistic informative testing sequence (i.e. testing for the third 
symptom, and if present test for the second symptom or if absent test for the fourth 
symptom) (+/- 100 points), difference between actual probability and believed 
probability for present disease.  The equation for scoring method 2 is below: 

Score 2 = 500 +/- 100 +/- 100 + percentage health saved +/- 100 - the absolute 
value of the difference between actual probability of present disease and 

guessed probability of present disease . 
(2) 

This score replaced the value of 500 in the equation for the second trial, and so on. 
The actual cumulative score was plotted and compared with (1) the maximum 
possible score, which assumed correct diagnosis and treatment, no health 
deterioration, most probabilistic testing sequence, and accurate probabilistic 
diagnostic assessment for correct disease on belief scale; and (2) the minimum 
possible score, which assumed incorrect diagnosis and treatment, patient died, any 
testing pattern other than the most probabilistic sequence, 0 believed probability for 
correct disease on belief meter.   

Scoring Method 3. The third method to calculate the score focused more on the 
participants’ comprehension of the cues as they relate to the probability matrices.  
This measure of performance incorporated whether or not the participants correctly 
identified the most probabilistic options by calculating the frequency with which the 
participants identified the most probable disease even if that wasn’t the disease that 
was present, as well as the frequency with which effective treatment was provided for 
the guessed disease, even if the guessed disease wasn’t the correct or most probable 
disease.  Testing behaviors were also investigated.  The goal of this method was to 
identify whether the participants understood the probability matrices. 

In summary, the different scoring methods above would help us best understand 
the strategies by which the different individuals attempted to save the life of the series 
of patients they were presented with, and will allow us to understand their behavior. 

Results. Results using Score 1 were plotted against neutral, minimum, maximum and 
maximum adjusted scores. Examples of two individuals demonstrating best and worst 
performances in this task over the course of the number of patient trials are shown in 
Figure 2. These two examples show typical behavior in this task according to Score 1. 
The bolded line represents each participant’s actual cumulative score. In total, 33% of 
participants performed worse than if they had made no decisions at all in the task, 
similar to Participant 4 below.  The other 77% did not perform much better than the 
neutral score, similar to Participant 6 (Figure 2). 

We then fit the participants’ behavior per trial to a simpler score calculation, Score 
2, hoping this would help reveal why participants performed so poorly in this task. 
Results from the Score2 are shown graphically in Figure 3 below for the same two 
participants that were displayed in Figure 2. Figure 3 displays the participant’s 
recalculated cumulative score (bolded line) as compared to the maximum and 
minimum cumulative scores. 
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Using this modified score calculation it appears that the overall performance of the 
participants is better than using the calculation method in Score 1.  The participants, 
on average, were more accurate than efficient in the task.   

 

 

Fig. 2. Best (participant 6) and worst (participant 4) performances in Study 1 as measured by 
Score1. The graphs show the maximum score, the adjusted maximum score, the neutral score, 
the actual score and the minimum score. Participant 6 does not perform much better than the 
neutral score, and participant 4 performs worse than the neutral score. 

A third method for measuring learning was used on the data collected in the first 
study. This Score 3 helped us identify how participants interpreted the probability 
matrix.  The previous two scoring methods assigned points based on aspects of the 
task that do  not conclusively point to a clear understanding of the probability 
matrices, such as was the treatment effectiveness and how many tests were run.  With 
scoring method 3, we can identify how well a participant used the cues to identify the 
most probable disease instead of just adding or subtracting points for accuracy and 
efficiency.  

Table 2 displays the results for Score 3, these are averages across all patients.  
Since the probabilistic associations between symptoms and diseases have some built 
in ambiguity (none of the symptoms are 100% associated with any of the diseases), 
the goal of this method was to determine whether participants could interpret the 
symptom-disease and treatment-treatment matrices.  The results identify a large 
variability among the six participants in this study. For example, they vary a lot in 
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identifying most probable disease and effective treatment for the chosen disease. 
Some individuals were very inaccurate in identifying the most probable disease as the 
real disease.  Surprisingly, and despite the fact that the disease-treatment matrix was 
fully diagnostic, where one and only one treatment was effective for a particular 
disease, individuals were also ineffective at selecting the treatment with the highest 
probability of success for their hypothesized, most likely disease.  

 

 

Fig. 3. Performance in Study 1 for two participants measured by Score 2. The graphs show the 
maximum possible score, the actual score, and the minimum possible score. 

Table 2. Performance in Study 1 measured by Score 3  – Diagnosis and treatment behavior 

 Indicated Highest 
Probability on Belief 

Meter for Most 
Probable Disease (%) 

Chose Effective Treatment for 
the Disease where Highest 

Probability was Indicated on 
Belief Meter (%) 

Participant 1 79.2 96.2 
Participant 2 89.0 75.6 
Participant 3 96.6 94.3 
Participant 4 75.0 91.1 
Participant 5 64.4 72.9 
Participant 6 30.8 33.3 
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Fig. 4. Performance in Study 1 measured by Score 3 

Figure 4 displays the highly variable testing behavior for the six participants. Two 
of the participants used all 4 tests more than 75% of the trials, whereas two 
participants used 2 tests for 75% of the trials, and two others used two tests for about 
half of the trials.   

These results are interesting, especially since the test for symptom one does not 
provide beneficial information, as the symptom is equally associated with all four 
diseases at 0.5. 

Conclusions. We analyzed three different score measures to investigate learning in 
MEDIC. In the first method, task efficiency was rewarded more heavily.  The second 
method rewarded accuracy.  And the final method rewarded comprehension.  
Performing highly in one of the score calculation methods does not guarantee high 
performance in another. The different scores allowed us to investigate human 
behavior at different levels of detail. Most participants did not demonstrate learning, 
despite the fact that they were allowed extensive practice and despite the full 
information they were given (both, the symptom-disease probability matrix was given 
as well as the disease-treatment matrix). The probability matrices were displayed and 
made fully available to them and they were provided with complete feedback on their 
behavior. In fact, some of our participants did worse than if they would have made no 
decisions in the task. 

The first score calculation method identified an overall poor performance by all of 
the participants, who at best performed slightly better than if they had made no 
decisions in the task.  In other words, the decisions that the participants made were 
not wholly efficient.  However, after recalculating the score using the second method, 
performance appeared much better.  This suggests that the participants were able to 
optimize accuracy better than efficiency in the task.  The final score calculation 
method, which demonstrated probabilistic comprehension, showed that not all of the 
participants selected the most probable diseases and treatments, suggesting that 
participants had difficulty in interpreting the probability matrices. Each score 
calculation method highlights different learning strategies for the task.    

Finally, there was notable variability in testing patterns between subjects. This 
variability inspired the manipulations to MEDIC for the second pilot study, described 
below. 
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3.2   Study 2: Learning Probability with Less Ambiguity and Time Constraints 

The objective of the second study was to determine whether participants could learn 
the probabilistic associations of symptoms to diseases in order to make a diagnosis 
and provide effective treatment for patients in a simulated dynamic medical decision 
making task, this time without any probabilistic ambiguity and time constraints. 
 
Methods. Most methodological procedures stayed as in Study 1. Thus, here we 
describe the part of the methods that differed from that first study. Nine participants, 
graduate and undergraduate students, from a research university were recruited to 
completed this study. Each participant was asked to diagnose and treat multiple 
patients for one hour in a modified version of MEDIC; it was modified from the first 
study to remove the time constraints with both testing delay and decreasing patient 
health. We also modified the ambiguous associations between symptoms and diseases 
to include probabilities of either 1 or 0, reducing the ambiguity of the symptom-
disease association. The relationships used in this study are shown in Table 3. Given 
that the Disease-Treatment matrix was fully diagnostic, we removed the treatment 
section. Thus, the task ended with the participant’s diagnosis. The feedback provided 
included a tally of correct diagnoses and total number of patients seen. According to 
this new association matrix, the best testing strategy included a total of 2 tests. 
Participants issuing more than 2 tests would be following a suboptimal strategy, and 
would be demonstrating a complete lack of understanding of probability relationships. 

Table 3. Probability matrix with disease-symptom associations used in Study 2 

Disease 1 Disease 2 Disease 3 Disease 4  
0.25 0.25 0.25 0.25 Base Rates 

0 0 1 1 Symptom 1 
1 0 0 1 Symptom 2 
1 1 0 0 Symptom 3 
0 1 1 0 Symptom 4 

Performance was measured using a score presented to the participant.  This score 
was a tally of correct diagnoses and total number of patients seen. 

Results. Table 4 shows each participants performance using the score presented to 
each participant, which was the total number of correct diagnoses and the total 
number of trials.  Under unambiguous probabilities and no time constraints, all nine 
participants were able to consistently identify the correct disease. 

We then analyzed the testing frequency, as we expected to find a clear and 
consistent pattern of testing procedures, with a maximum of two tests per participant. 
Unlike the first study, fewer participants relied on running all four tests, but there was 
still a considerable amount of variability between subjects who ran 2 versus 3 tests for 
most of the trials. In this study we also analyzed the range of probabilities individuals 
indicated for the correct disease when making the diagnosis.  Since all ambiguity had  
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been removed from the task, the correct disease was 100% likely to be present. 
However, 100% was not what participants indicated and surprisingly, ranges varied 
from .30 to .98. Table 5 displays the results. 

Table 4. Performance in Study 2 measured by AVERAGE frequency of correct diagnoses 
ACROSS TRIALS 

 Number of Trials Correct Diagnosis (%) 
Participant 1 244 242 (99.2) 
Participant 2 161 161 (100.0) 
Participant 3 201 201 (100.0) 
Participant 4 211 209 (99.1) 
Participant 5 207 206 (99.5) 
Participant 6 195 193 (99.0) 
Participant 7 170 160 (94.1) 
Participant 8 267 259 (97.0) 
Participant 9 232 230 (99.1) 

Total 1888 1861 (98.6) 

Table 5. Pilot Study 2-Measuring learning – Guessed probability for correct disease 

 Average Guessed 
Probability for 
Correct Disease 

Range of Guessed 
Probability for 

Correct Disease 
Participant 1 0.97 0.91-0.98 
Participant 2 0.96 0.82-0.98 
Participant 3 0.49 0.30-0.98 
Participant 4 0.97 0.97-0.98 
Participant 5 0.91 0.80-0.97 
Participant 6 0.97 0.88-0.98 
Participant 7 0.97 0.97-0.98 
Participant 8 0.95 0.55-0.98 
Participant 9 0.84 0.69-0.98 

Total 0.85 0.30-0.98 

Conclusions. Diagnostic accuracy improved from Study1 to Study 2, where the task 
was over simplified by reducing all the uncertainty in the symptom-disease 
probabilities and the time constraints. Despite a clear improvement in accuracy with 
these simplifications, testing patterns were still variable.  Individuals were still 
suboptimal in their testing patterns and in their perception of the probability of the 
correct disease after testing for symptoms. With these results in mind, modifications 
were made for a third study described below. 

3.3   Study 3: Monetary Incentives 

Given that participants are suboptimal learners even in the simplest possible diagnosis 
task, with unambiguous probabilities and no time constraints, we hypothesized that 
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the only possible explanation left for this performance was motivation. The third 
study was designed to provide participants with a monetary incentive in the task in 
order to demonstrate whether participants could learn the probabilistic associations of 
symptoms to diseases while using the optimal testing strategy and having accurate 
probability assessments. Participants were assigned to one of two conditions that 
could earn a bonus.  In one condition, a bonus was earned for running two tests, since 
using the unambiguous probabilities from Study 2 require only two tests to be run in 
order to make an accurate diagnosis.  In the second condition, a bonus was earned by 
accurately assessing the probabilities of all four diseases each trial. 

Methods. This study was identical to the second pilot study, with the exception being 
the score now represented dollars earned.  Nine graduate and undergraduate students 
were part of this study.  The participants were split into 2 conditions.  Both conditions 
incorporated financial incentives of $0.02 per trial to reduce variability while 
maintaining the level of diagnostic accuracy seen in the second pilot study. 

In one condition, which contained 5 participants, a bonus was earned for the ideal 
testing behavior, which with the unambiguous probability matrix (the same as in  
Study 2) meant that only two tests were necessary to have complete confidence in a 
diagnosis. 

In the other condition, which contained 4 participants, a bonus was earned for 
assigning accurate probabilities on the belief scale for all four diseases.  With the 
probability matrix the same as Study 2, the correct disease had a probability of 1, and 
the other three had a probability of 0. 

Each participant was asked to complete 200 trials.  Only one of the nine 
participants was unable to finish, but completed 107 of 200 trials. 

Results. Table 6 contains a summary of each participant’s performance based on 
diagnostic accuracy.  Although several participants did not perform as well as others, 
overall the performance was better when individuals earned a bonus for the ideal  
 

Table 6. Performance in Study 3 measured by frequency of correct diagnoses. This table 
presents the averages across patient trials. 

  Number of 
Trials 

Percent of 
Trials with 

Correct 
Diagnosis 

Percent of 
Trials with 

Bonus Earned 

 

Participant 1 200 100% 97%  
Participant 2 200 95% 85%  
Participant 3 200 100% 100%  
Participant 4 200 99% 98%  
Participant 5 200 93% 90%  

Testing 
Bonus 

Total 1000 97% 94%  
Participant 6 107 70% 0%  
Participant 7 200 100% 93%  
Participant 8 200 100% 95%  
Participant 9 200 57% 0%  

Diagnostic 
Probabilistic 

Accuracy 
Bonus 

Total 707 83% 53%  
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testing behavior compared to the participants which earned a bonus for determining 
the correct probability of the real disease. Surprisingly, 2 out of 4 participants did not 
earn a bonus for any trial in this second condition. 

Both testing behavior and guessed probabilities were analyzed. Providing a 
financial incentive for optimal testing frequency in this study led to less variability in 
testing volume.  The participants learned that only two tests were necessary, likely by 
receiving $0.02 cents when the testing strategy was ideal.  However, when the 
financial incentive was not provided for testing strategy, but instead for diagnostic 
probabilistic accuracy, testing variability was similar to the results seen in Study 2.  
This suggests that the participants can properly interpret the provided probability 
matrices, but are willing to run excessive tests in the absence of a financial incentive.  

Conclusions. Interestingly, earning a bonus for the ideal testing behavior of two tests 
greatly reduced the variability of testing behavior between participants earning the 
same bonus.  However, diagnostic probabilistic accuracy did not seem to experience 
the same decrease in variability when a bonus could be earned. 

4   Discussion 

MEDIC was developed to study learning in a complex dynamic setting. Many aspects 
of the simulation can be manipulated, allowing for a variety of experiments. 
Simulations can be run with or without time constraints, with different levels of 
feedback, with varying symptoms, tests, diseases and treatments.  MEDIC is an 
important step toward the development of a tool for training and/or reference by 
medical professionals in decision-making tasks.  

The potential applications of MEDIC can be classified into two broad categories: 
(1) to study cognitive processes underlying physicians’ learning of symptoms as they 
relate to infectious diseases, and, (2) to understand behavior so as to design and 
implement decision support technology that would assist dynamic decision making 
under time constraints.  Studies that examine cognitive processes focus on 
understanding the factors that affect hypothesis generation. As described in the 
studies reported here, decision making using MEDIC can be studied by manipulating 
the probability matrix that relates symptoms to diseases as well as the types of 
feedback provided to physicians. 

The studies that we ran with MEDIC and that are reported in this paper, 
demonstrate that even in the simplest possible conditions, with no time constraints 
and no ambiguity in the symptom-disease probabilities, participants with a high level 
of education are unable to perform optimally. We also showed that incentives played 
a key role in their effort and attention they put in to finding the best testing strategy 
and the determining the appropriate probabilities of the different diseases. The 
question is then: How can we improve performance in real-world medical diagnosis 
tasks, where there are immense complexities, time constraints and lack of motivation? 

MEDIC allows one to study several crucial facets of complex medical decision-
making that are often lost in the laboratory, while also being well controlled for 
experimental purposes. Using MEDIC, we know the correct diagnosis of the patient, 
which gives us the ability to derive both outcome and process measures of good 
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performance. Overall, MEDIC provides the necessary paradigm to test the dynamics 
of hypothesis generation; it also provides data to support the design of medical 
diagnosis technology that would compensate for deficiencies underlying human 
cognition under conditions of high workload. We aim at continuing to study the 
effects of probability uncertainty, time constraints, and feedback on medical 
diagnosis, and we think MEDIC will support this goal. 
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