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Introduction

Conflicts are a natural part of social interactions. Individuals may perceive contradic-

tions between their own interests and those of others. Psychologically, decision makers

strive to enhance their own self-interests while maintaining a sense of fairness and
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Abstract

Traditional economic theory often describes real-world

social dilemmas as abstract games where an individual’s

goal is to maximize economic benefit by cooperating or

competing with others. Despite extensive empirical work,

descriptive models of human behavior in social dilemmas

are lacking in both cognitive realism and predictive

power. This article addresses a central challenge arising

from the success of modeling individuals making deci-

sions from experience: our ability to scale these models

up to explain social interactions. We propose that models

based on the instance-based learning theory (IBLT) will

help us to understand how conflictual social interactions

are influenced by prior experiences of involved individu-

als and by information available to them during the

course of interaction. We present mechanisms by which

IBLT might capture the effects of social interaction with

different levels of information without assuming prede-

fined interaction strategies, but rather by assuming learn-

ing from experience.

This research was supported in part by a grant from the Defense Threat Reduction Agency (DTRA) grant

number: HDTRA1-09-1-0053 to Cleotilde Gonzalez and Christian Lebiere. We thank Hau-yu Wong for

editing this manuscript and Christian Lebiere and Ion Juvina for discussions that contributed to ideas in

this article.

Negotiation and Conflict Management Research

Volume 4, Number 2, Pages 110–128

110 ª 2011 International Association for Conflict Management and Wiley Periodicals, Inc.



obligation to others at the same time. Like many everyday decisions, decisions in situa-

tions of conflict often require a delicate balance between furthering one’s own interests

and those of others. Complicating matters further, these interests must be estimated

from personal experience and limited information about others’ motivations. The study

of decisions from experience (DFE) is an important new shift of attention in decision

sciences away from the traditional study of decisions from description (Hertwig, Barron,

Weber, & Erev, 2004). DFE represents a natural way of studying how humans adapt

and learn to make decisions in the absence of explicitly stated payoffs and probabilities

of obtaining those payoffs. And while classical behavioral decision theory focuses on

violations of rationality assumptions, DFE helps to understand human behavior in natu-

ral environments where one cannot rely on the rationality assumption because of social

complexity (Erev & Haruvy, in press).

Our research addresses a central challenge arising from the success of models of indi-

vidual DFE: scaling these models up to represent the response of decision makers to

social information. We offer a model of individual DFE that can be expanded to

account for the repeated effects of social interactions. We propose that behavior in con-

flict is determined by the availability of relevant social information and by the combined

effects of past experience in similar situations. The presence of information regarding

others’ interests and outcomes will drive attention toward particular beliefs, attitudes,

and motivations, which influence conflict resolution. The model is based on the

instance-based learning theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003), which has

proven to be a robust representation of DFE in individuals.

Our experimental approach to collecting human data against which the model can be

compared is derived from game theory, which often describes real-world social dilem-

mas as abstract games where an individual’s goal is to maximize economic benefit by

cooperating or competing with others. For example, in the well-known Prisoner’s

Dilemma (PD; Axelrod, 1980; Rapoport & Chammah, 1965), each of two players

chooses to ‘‘cooperate’’ or ‘‘defect’’ given information about the payoffs if one or the

other action are chosen by each of the players. In the Iterated Prisoner’s Dilemma

(IPD) where players interact repeatedly, computing the best response to maximize total

payoffs becomes more complex as additional strategic factors come into play, including

the possibility for the other to punish defection or reciprocate cooperation (Rabin,

1993).

In contrast to a purely economic perspective, a behavioral perspective explains how

conflict and cooperation are impacted by social dimensions such as interpersonal rela-

tionships, past encounters, identities, and emotions (Roberts, 1997; Schuster, 2000;

Schuster & Perelberg, 2004); it is important to disentangle the influence of these social

concerns above and beyond monetary outcomes for individuals (e.g., Colman, 2003).

Drawing upon experience in the real world, people may implicitly care about an ongo-

ing relationship and the image they project to others, despite being told to disregard

these factors. That is, people make DFE in social interactions, and feedback may

reinforce some social outcomes and behaviors over others. For example, deviations from

the mutual defection equilibrium in the one-shot PD could result from inherent

altruism, as well as from norms prescribing fairness and kindness. Just as economic
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considerations become more complex in an IPD played for multiple rounds, so too do

social considerations become more complex in repeated interaction.

One important social aspect of conflict relates to the information available to decision

makers, which ranges from no information about interdependence with others to com-

plete information about the actions of others, their influence on the other’s outcomes,

and the cultural identities of others. These informational characteristics influence recip-

rocation, fairness, trust, power, and other social concerns. Not surprisingly, the effects

of these social factors on individual and collective behavior are difficult to capture in

computational models that have oftentimes been designed to account primarily for

individual decisions and outcomes. We organize the information that is expected to

influence social interactions into a Hierarchy of Social Information (hereafter HSI). The

HSI framework helps conceptualize different levels of social information, organize

empirical finding from the literature that demonstrate the influence of social infor-

mation, and propose systematic ways in which IBLT can be extended to capture these

empirical effects. Ultimately, our objective is to develop a generic IBLT model that accu-

rately represents the major influences of social information on cognition and emotion

in conflict and is thus capable of predicting behavior in novel contexts.

In what follows, we first review models that explain how individuals make decisions

from experience. We then describe IBLT, the current assumptions and mechanisms of

the theory, and discuss ways that IBLT might be extended to represent different levels

of social information in the HSI.

Models of DFE

Many models have explained individual behavior in DFE. Learning models often

emphasize a weighted adjustment process by which the value of a previously observed

outcome is combined or updated with a newly observed outcome (e.g., Bush & Mosteller,

1955; Erev, Glozman, & Hertwig, 2008; Hertwig, Barron, Weber, & Erev, 2006; March,

1996). Reinforcement models of learning are perhaps even more common in the litera-

ture. These models often assume that choices are reinforced based on immediate feed-

back (Erev & Roth, 1998; Roth & Erev, 1995). Authors of these models make cognitive

or psychological attributions to different parameters of their models. Attributions such

as attention and learning ability are common (Ho, Camerer, & Chong, 2004). More

concretely, many of these models have assumed that individuals have or construct a set

of strategies (Busemeyer & Myung, 1992; Erev & Barron, 2005). For example, Erev and

Barron (2005) proposed a model to capture learning in DFE with partial-feedback and

full-feedback. Reinforcement Learning Among Cognitive Strategies (RELACS) is a

model that was initially proposed to account for learning effects in Roth and Erev

(1995), and then further developed in Erev, Bereby-Meyer, and Roth (1999). RELACS

assumes that the decision maker follows one of the three cognitive strategies or decision

rules in each decision encountered and that the probability of using a strategy is

determined by its frequency of use and the observed payoffs. RELACS has been shown

to accurately replicate human choice behavior in different choice problems (Erev &

Barron, 2005).

Scaling up Instance-Based Learning Theory Gonzalez and Martin

112 Volume 4, Number 2, Pages 110–128



More recently, computational models based on IBLT (Gonzalez et al., 2003) have

been shown to provide robust predictions in a variety of decision-making tasks in which

individuals rely on experience (Lejarraga, Dutt, & Gonzalez, in press). IBLT was origi-

nally developed to explain and predict learning and decision making in real-time,

dynamic decision-making environments. The theory has also been used as the basis for

developing computational models that capture human decision-making behavior in a

wider variety of DFE tasks. These include dynamically complex tasks (Gonzalez &

Lebiere, 2005; Gonzalez et al., 2003; Martin, Gonzalez, & Lebiere, 2004), training para-

digms of simple and complex tasks (Gonzalez, Best, Healy, Bourne, & Kole, 2010;

Gonzalez & Dutt, 2010), simple stimulus–response practice and skill acquisition

tasks (Dutt, Yamaguchi, Gonzalez, & Proctor, 2009), and repeated binary-choice tasks

(Lebiere, Gonzalez, & Martin, 2007; Lejarraga et al., in press). The different applications

of the theory illustrate its generality and ability to capture learning from exploration

and DFE in multiple contexts.

Instance-Based Learning Theory

Instance-based learning theory uses a cognitive information representation called an

instance. An instance consists of three parts: a situation (a set of attributes that define

the decision situation), a decision or action, and an outcome or utility of the decision

in the situation. The different parts of an instance are built through a general decision

process with three steps: (a) characterizing a situation by attributes in the task, (b) mak-

ing a decision based on expected utility, and (c) updating the utility in the feedback

stage. The instances accumulated over time in memory are retrieved and used repeatedly

in future decisions. Their strength in memory, called activation, is reinforced according

to statistical procedures. These statistical procedures were originally developed by

Lebiere (1999) and Anderson and Lebiere (1998) as part of the ACT-R cognitive archi-

tecture, which was used to build most of the existent IBL models (except for the more

recent ones, such as in Lejarraga et al., in press).

In making a choice, IBLT recommends the selection of the alternative with the high-

est blended value, V (Lebiere, 1999), which is computed from all past instances where

the outcome of that alternative was observed. The blended value of alternative j is

defined as:

Vj ¼
Xn

i¼1

pixi ð1Þ

where xi is the value of the observed outcome of alternative j in instance i, and pi is

the probability of retrieving instance i from memory. The blended value of an alterna-

tive is thus the sum of all observed outcomes xi of corresponding instances in memory,

weighted by their probability of their retrieval from memory. In any trial, the probabil-

ity of retrieving instance i from memory is a function of that instance’s activation rela-

tive to the activation of all other instances corresponding to that alternative, given by
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pi ¼
eAi=sP

j eAj=s
ð2Þ

where s is random noise defined as ¼ r�
ffiffiffi
2
p

, and r is a free noise parameter. Noise

in Equation 2 captures the imprecision of recalling instances from memory.

The activation of each instance in memory depends upon the Activation mechanism

from ACT-R (Anderson & Lebiere, 1998):

Ai ¼ ln
Xn

j¼1

t�d
ji

 !
þ
Xm

j¼1

Wj �ðS� lnðfanjiÞÞ �
Xk

l¼1

Pl �Mli þ Nið0; rÞ ð3Þ

The activation Ai of an instance i reflects the availability of an instance in memory.

The activation is determined by the base-level activation ln
Pn

j¼1 t�d
ji

� �
, the spreading

activation
Pm

j¼1 Wj �ðS� lnðfanjiÞÞ, the partial matching
Pk

l¼1 Pl �Mli, and noise Ni (0, r).

The base-level activation of an instance i reflects its recency and frequency of use in

the past trials/times. n is the total number of previous uses of that instance from

memory (frequency), including when the instance was first created, tji is the time

elapsed since the jth use of the instance i (recency), and d is the memory’s decay rate

(a free parameter with a default value of 0.5). A high value of d (e.g., d > 2.0) means

rapid decay of memory (forgetting easily) and reliance on recent past experiences,

whereas a low value of d means slow decay of memory and reliance on temporally

distant experiences.

The spreading activation reflects the impact of a task situation’s attribute j on the

instance i in memory. m is the total number of attributes in the situation, and Wj repre-

sents the amount of activation from attribute j to instance i. ACT-R assumes there is a

limited total amount of attention W (a free parameter, with value of 1.0 as default),

which gets divided equally among all the m attributes of the situation (thus, the W

parameter is the sum of all Wj; Anderson et al., 2004; Anderson, Reder, & Lebiere,

1996). Thus, the W parameter influences the attention to relevant and irrelevant attri-

butes in the task’s situation (Anderson et al., 1996; Lovett, Reder, & Lebiere, 1999). The

term ðS� lnðfanjiÞÞis called the strength of association. S (a free parameter that can be

set to any value, whose default value of ‘‘nil’’ in ACT-R means not using spreading acti-

vation) is the maximum associative strength, and fanji is the number of instances in

memory in which the attribute j appears as part of the instance’s attributes plus one (as

attribute j is associated with itself in instance i).

The partial matching component represents the mismatch between the attributes of a

situation in the task and the attributes of the instance i in memory. k is the total num-

ber of attributes for a task’s situation that are used to retrieve instance i from memory

(thus, the summation is only computed over those attributes of an instance that corre-

spond to the task’s situation attributes used to retrieve the instance from memory). The

match scale (Pl) reflects the amount of weighting given to the similarity between

attribute l of an instance i in memory and the corresponding situation attribute in a

task. Pl is generally defined to be a negative integer with a common value of )1.0 for all
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attributes k of an instance i (but it could also be a free parameter with different negative

real values for different attributes of an instance i). The Mli term, or match similarity,

represents the similarity between the value l of an attribute in a task’s situation (i.e., the

situation attribute l from the task that is used to retrieve the instance i from memory)

and the value in the corresponding attributes of the instance i in memory. Typically, Mli

is defined using a linear similarity function that assumes Mli to be equal to the absolute

value of the difference between a situation attribute from the task and the correspond-

ing attribute value of an instance. Thus, the
Pk

l¼1 Pl �Mli specification defines the simi-

larity between the task’s current situation attributes to the attributes of potentially

retrievable instances from memory. Finally, the noise component is a Gaussian function

with a mean of 0 and a standard deviation of r.

Scaling up IBLT to Represent Effects of Social Interaction

In conflict situations, the social information that individuals have about their interac-

tion partners can vary dramatically and thus influence both behavior and joint out-

comes. Some conflict situations occur with minimal social information, as in cases

where individuals affect one another’s outcomes without even realizing their interdepen-

dence. The depletion of public goods is an example of low social information: if one

person litters and contributes to pollution, another person living across town might suf-

fer some incremental negative externality in terms of environmental quality, but the first

person might not realize this impact, just as the second person might not be able to tie

their poor outcome to the actions of the culprit. At the opposite end of the spectrum,

some conflict situations occur with substantial levels of social information when individ-

uals know one another’s identities and motivations. An example of this is a husband

who leaves dirty dishes on the counter for his wife to wash. Assuming that the two of

them live alone together, they can attribute positive or negative actions to one another

and put them in the context of their longer-term relationship.

Many models of individual DFE are incapable of representing response to social con-

texts. For example, Erev and Roth (2001) noted that simple reinforcement learning

models predicted the effect of experience in two-person games like the IPD only in situ-

ations where players could not punish or reciprocate. A simple model predicts a

decrease in cooperation over time even though most behavioral experiments demon-

strate an increase in mutual cooperation because of the possibility of reciprocation

(Rapoport & Chammah, 1965; Rapoport & Mowshowitz, 1966). To account for the

effects of reciprocation, Erev and Roth used two explicit modifications to the basic

model: if a player adopts a reciprocation strategy, he will cooperate in the next trial only

if the other player has cooperated in the current trial; the probability that a player con-

tinues with the same strategy will depend on the number of times the reciprocation

strategy was played (Erev & Roth, 2001). Although these tweaks to the model may accu-

rately represent the kind of cognitive reasoning that people actually use in the IPD, they

are unlikely to generalize to other situations with different action sets or outcomes.

Unlike models that require explicit modification to predict human behavior in conflict

situations, we hypothesize that IBL models may offer the potential for generalization even
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in their standard form, without predefined implementations of interaction strategies.

Although most of the tasks modeled according to IBLT are individual tasks, there have

been some initiatives to use IBLT in multiperson games. For example, Gonzalez and

Lebiere (2005) reported a cognitive model of an IPD, initially reported by Lebiere,

Wallach, and West (2000), which assumes instances are stored in memory, including

one’s own action, the other player’s action, and the payoff. The decision is made

according to a set of rules that, given each possible action, retrieves the most likely out-

come from memory and selects the action with the highest payoff. This model was

shown to accurately capture human behavior in the IPD. More recently, IBLT was also

used as the basis for developing computational models that predict human behavior in

more complex multiperson tasks, including a market entry game (Gonzalez, Dutt, &

Lejarraga, in press). This model shares some basic features with IBL models of individ-

ual choice (e.g., Lejarraga et al., in press): weighting of prior outcomes by their proba-

bility of retrieval from memory (i.e., the blending mechanism); dependence on recency

and frequency of past outcomes; and an inertia mechanism that depends upon surprise

as a function of blended outcomes. In presenting a HSI that would influence social

DFE, we propose some ways in which IBLT can account for more nuanced social

aspects of interaction such as reciprocation, fairness, reputation, trust, and power.

Extensions of IBLT on a Hierarchy of Social Information

A basic HSI framework is shown in Figure 1, with each of the rows in the pyramid rep-

resenting a category of interpersonal interaction characterized by the extent of social

information possessed by involved parties. Regardless of the amount of social informa-

tion, though, we assume that each individual knows their own actions, as well as seeing

the outcomes of these actions over time. Each row in the pyramid builds upon the

information available in the previous row. The differences between the categories reflect

several key pieces of social information that can be studied separately to determine their

incremental effects in naturalistic conflict situations. A more refined formulation could

insert categories between those currently shown in Figure 1, as well as splitting the

categories we have provided into further subcategories. We devised the taxonomy in its

current form to offer sufficiently many levels for meaningful differentiation, but few

enough for manageable comparison.

Nonsocial: Knowledge of One’s Own Action-Outcome Pairs

The nonsocial category of information can be thought of as the individual behavior per-

spective, in which motivations for cooperative or competitive actions can be captured

by reinforcement learning of two independent individuals in isolation. Nonetheless, even

the actions that would maximize individual expected utility over time are not entirely

straightforward because of the actual interdependence between individuals, which leads

to shifting probabilities of various outcomes that may be perceived by decision makers

as changes in the environment. Sometimes, these changes may seem completely unpre-

dictable, but other times, decision makers may notice that their own actions influence

the way that probabilities change. Thus, although individuals do not know that
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another’s behavior is affected by their own and vice versa, they may still observe that

their present actions have an impact on their own future outcomes. In the pollution

example mentioned earlier, one person tossing trash on the ground may lead another to

conclude that there is no point in cleaning up after himself since the park remains filthy

in either case and hence lead to a downward spiral of poor behavior. Alternately, if

cleaning up contributes to a social norm of a clean park, then that behavior might be

reinforced over time. In this sense, even if individuals were pure profit maximizers

(against most evidence in the discussion to follow), there would still exist a tension

between short-term gain (e.g., laziness for picking up trash) and long-term gain (e.g., a

clean park where others pick up their trash too).

There have been some efforts to model optimal and actual human response to endog-

enous environmental changes in the absence of social concerns. For instance, Axelrod

(1984) illustrated the purely rational tradeoff between short- and long-term profit maxi-

mization in a competition of computerized strategies playing the IPD against one

another. The best performer on the objective criteria of total payoff was a simple strat-

egy called tit-for-tat, which cooperates initially and then repeats its opponent’s most

recent action. Without ‘‘understanding’’ how it affects its opponent in any cognitive

sense, tit-for-tat capitalizes on the possibility of mutual cooperation if the other is will-

ing, but does not allow itself to be taken advantage of through asymmetrical coopera-

tion. Axelrod characterizes the major benefits of tit-for-tat: it lacks a temptation to

defect first, it retaliates against an opponent’s defection, it is willing to forgive, and it is

not eager to ‘‘beat’’ its opponent. Thus, while tit-for-tat indeed possesses some human-

like characteristics, it may be more effective than humans who rarely follow axiomatic

Cultural:

+ Know
other’s
identity

Descriptive:

+ Know how
actions affect
outcomes

Experiential:

+ Know other’s actions and
outcomes as they occur

Minimal:

+ Know interdependence with
another human

Non-Social:

Know own actions and outcomes as they
occur

Figure 1. Hierarchy of Social Information framework. Each level of the pyramid represents a category of

interaction, with social information compounding from the bottom row (least information) to the top row

(most information). Each interaction type includes all of the information below, as well as one new type of

information.

Gonzalez and Martin Scaling up Instance-Based Learning Theory

Volume 4, Number 2, Pages 110–128 117



principles so systematically. Baker and Rachlin (2001) showed that participants in an

IPD adapt their behavior to reciprocation by a computerized opponent (which can be

thought of a response from one’s environment), but not in an optimal way. Specifically,

people cooperated less than the optimal level when the computer’s reciprocation proba-

bility was at an intermediate level and not made explicit. The authors described this as

a failure to effectively trade off immediate payoff for greater payoff in future rounds

(Baker & Rachlin, 2001).

Behavior in the nonsocial category is already well described by IBL models, as well as

by other existent reinforcement learning algorithms. Given that one IBL model repre-

sents an individual, two identical versions of an IBL model would need to be created to

act as a pair and interacting repeatedly in the case where two individuals interact. In the

IPD, two identical models are created and decisions are made by using the mechanism

described earlier. Interaction of these two models may occur under different informa-

tional conditions, which are expected to have different effects on the model’s behavior.

When the only information available is one’s own actions and outcomes, the two mod-

els are expected to act independently, each representing instances with the action taken

and the outcome obtained. The model parameters (e.g., d, r) representing the recency

of information and noise may act independently for each of the two simulated model

participants in the IPD. Thus, the main prediction is that in the absence of any social

information, IBL make decisions that depend exclusively on cognitive parameters at the

individual level, including the frequency and recency of information from memory.

As we will see in the following sections, people may disobey strict payoff maximiza-

tion in other ways when social information increases, and make it more difficult for a

simple IBL model to capture these deviations.

Minimal: Knowledge of Human Interaction

With the exception of very conventional economists, most social scientists find it unsur-

prising that one fundamental type of social information available in an interac-

tion—namely that one interacts with another human being—impacts the way people

behave. Nonetheless, it is worth surveying research indicating the precise ways in which

behavior with this knowledge has been shown to deviate from behavior without it. With

regard to our theoretical framework, this is the distinction that we expect to observe in

moving from the nonsocial category to the minimal category of interaction. Consider-

ations of fairness and altruism on the positive side, as well as injustice or retribution on

the negative, arise only in interaction where it is known that one has a human partner.

For instance, Blount (1995) showed that playing with a human instead of a robot leads

to more seemingly irrational rejections of low ultimatum game offers. While not a direct

comparison of our nonsocial and minimal interaction categories where participants do

not know the other’s outcomes, these findings are suggestive that many noneconomic

factors will come into play as soon as people believe they have some interdependence

with others.

Differences in the nonsocial and minimal categories may be rooted in different neuro-

logical responses to other humans, as opposed to robots or random processes of nature.

Several groups of researchers have shown differential brain activation when participants
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believed they interacted with other humans versus computerized algorithms (Gallagher,

Jack, Roepstorff, & Frith, 2002; McCabe, Houser, Ryan, Smith, & Trouard, 2001; Rilling,

Sanfey, Aronson, Nystrom, & Cohen, 2004). These findings strongly suggest that one’s

own actions and outcomes are not the only variables encoded in the experience of

events. When especially favorable or unfavorable outcomes are realized partly as a result

of one’s own choices, it will make a difference whether the unexplained variance can be

attributed to the intentions of another person. The fundamental attribution error—de-

fined as ‘‘the tendency for attributers to underestimate the impact of situational factors

and to overestimate the role of dispositional factors in controlling behavior’’ (Ross,

1977, p. 183)—has been well documented in many social contexts. It may be particu-

larly relevant here when the payoffs to the other person cannot be observed and put

into perspective, allowing an individual’s imagination to run wild with illusions that the

other is achieving huge payoffs or even going out of their way to cause harm.

For example, in an empirical study of behavior in a variant of the IPD, Baker and

Rachlin (2002) found that participants learned to cooperate at high rates when they

knew they played against a probabilistic tit-for-tat algorithm, but not when they were

led to believe that the algorithm was another human being. Although the false belief

should have made no material difference to profit maximizing choices, the difference in

cooperation can be accounted for by social considerations. It seems reasonable to specu-

late that participants fell prey to the attribution error when they were led to believe

there was another human player (Ross, 1977). Since these participants knew nothing of

the other’s payoffs, it was easy to sustain an illusion that the other set out to cause

harm ruthlessly or greedily. Believing that the other player was a human led to less

cooperation because the downside risk of being taken advantage of was over-weighted

relative to the possible upside of sustained cooperation. In another context, adding

information about interdependence with others may have the reverse effect of enhanced

cooperation.

The Minimal category of the HSI is expected to elicit different strengths and types of

emotion than the nonsocial category because of players’ awareness that their own

actions affect other people and that other people’s actions affect them. Although

instance representations of an IBL model in the minimal category information category

would be identical to that of the nonsocial category, the statistical mechanisms of the

model are expected to have different effects in the model’s predictions. We predict that

a higher activation (Equation 3) would be necessary to highlight negative outcomes

more than positive outcomes, because the negative outcomes would indicate that the

counterpart defects on the PD. The effect of negative outcomes can be highlighted in

IBL models through several mechanisms. First, given that blending includes the outcome

directly and the selection of alternatives is based on those that have the highest blended

value (see Equation 1), we would expect the model to be sensitive to the sign and mag-

nitude of the outcome. Second, it is possible that people remember losses better than

gains even in minimal social settings (e.g., recall instances of the other’s defection better

than instances of their cooperation). If this is the case, then the activation of instances

with losses would be higher than the activation of instances with gains. The activations

of those instances can be manipulated in several ways (see Equation 3); for example, by

Gonzalez and Martin Scaling up Instance-Based Learning Theory

Volume 4, Number 2, Pages 110–128 119



reducing the value of the decay (d) parameter for losses, which will result in slow for-

getting compared to gains.

Thus, the main prediction is that with knowledge of human interaction but absence

of the other’s outcomes and influence on one’s outcomes, IBL decisions would be influ-

enced by the emotional impact that positive or negative outcomes would have on our

perception of the other’s cooperation or defection. These effects could be captured by

the explicit manipulation of the memory parameters that influence the memory for

positive or negative outcomes.

Experiential: Knowledge of the Other’s Actions and Outcomes

Taking as a given that an individual realizes their interdependence with another human

being, there is evidence suggesting that behavior will also be affected by knowledge

about the other person’s particular actions and outcomes. In moving from the minimal

social information category to the experiential social information category of the HSI

framework, we expect to observe this distinction. This type of social information might

encourage reasoning about the intentions behind the other’s actions. On the one hand,

this could further reduce the fundamental attribution error (Ross, 1977), whereby indi-

viduals might assume that the other has ill intentions rather than reasonable motives.

Once the other’s actions and payoffs are seen, it can be more easily acknowledged that

the other faces a limited set of options and tradeoffs similar to one’s own. Particularly,

in cases of symmetric action sets and payoffs between two actors, as are most commonly

used in the PD, the similarity of the other’s predicament can be better related to one’s

own upon seeing their actions and outcomes. This type of empathy could lead to

greater cooperation in such interactions.

On the other hand, people may be especially sensitive to asymmetrically unfavorable

outcomes when they are able to directly compare their own outcomes with those of

another person. For example, Silverstein et al. (1998) found that making choices for

four sequential trials before learning the other’s actions impeded tendencies toward

mutual defection in an IPD. The authors suggest that immediate discovery of the

other’s action can cause people to succumb to the fear or impulse to defect more so

than when they only discover the other’s actions after several of their own decisions

have been made. With directionally similar results in another setting, Erev and Rapo-

port (1998) showed in a laboratory study that entry into a competitive market

increased relative to the social optimum when players saw others’ payoffs. This is con-

sistent with an account where individuals’ reference points for their own payoffs are

influenced by the payoffs of others. A desire for equity can also explain in large part

why people consistently offer more than the minimal amount to others in the ultima-

tum game, and why low offers are rejected (Fehr & Schmidt, 1999). These authors

conclude that either fair or selfish types can prevail, depending on the strategic envi-

ronment and opportunity for some people to punish others with antisocial behavior.

Despite the contrasting empirical evidence that information about others’ actions and

payoffs can lead to either more or less cooperation, this type of information will gen-

erally induce a greater sense of accountability since it is more difficult to misconstrue

one another’s intentions.
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The experiential category of the HSI framework will be more challenging for IBL to

model. As before, two identical versions of an IBL model would be created to act as a

pair and interacting repeatedly. Given that this layer includes social comparisons and

fairness concerns; however, we expect that the representation of information in an

instance will need to be changed. For example, individuals involved in conflict might

explicitly represent the outcomes of others in addition to their own experienced out-

comes. The question of how these outcomes are represented and how they are stored in

memory is an open question. It is possible that the ‘‘Situation’’ in an instance would

include not only each person’s choice and outcome, but also the other person’s choice

and outcome. This would create a dependency as the content of own and other’s actions

and outcomes are different for each model. It is also possible that the utility represented

in an instance is formed by the comparison of the outcomes experienced; the difference

between the own and the other’s outcome for example. If so, individuals may have a

nonlinear representation for the difference between their own outcome and the outcome

of another person, likely with a discontinuity at zero and steeper slope below zero. It is

also cognitively plausible that the decay of instances in memory (determined by the d

parameter) depends on these relative outcomes, so this presents another candidate for

an IBL model extension that may be required to capture the experiential condition.

Descriptive: Knowledge of the Complete Interaction Structure

Another distinction that should be largely immaterial to behavior from at least an eco-

nomic standpoint is the way that people discover their own and another’s outcomes.

Given a relatively small set of possible actions, the long-run behavior should be similar

whether or not these outcomes were described from the outset of interaction if people

eventually experience all possible outcomes. Yet, the reason for including this difference

in our HSI framework is a distinction between the experiential and descriptive catego-

ries supported by existing research showing that the discovery process does influence

interactive behavior. Most notably, whether or not individuals possess a full description

of the interaction structure can affect the subjective impact of outcomes to them, and

therefore, preferences for some actions over others. For example, Rapoport, Guyer, and

Gordon (1976) demonstrated greater levels of overall cooperation in an IPD where a

complete payoff matrix was displayed to participants than when they simply learned

which outcomes corresponded to each set of actions by themselves and their opponents

through trial-and-error.

Furthermore, we argue that ongoing visibility of the interaction structure can assist in

putting briefly painful or joyful outcomes in the broader context of mutual interdepen-

dence. Thus, compared to the experiential interaction category where recent outcomes

tend to generate a strong emotional impact, reactions to both positive and negative out-

comes could be moderated in the descriptive category where the outcome is seen as

merely one encounter within a long-term relationship. Particularly in symmetric games

where individuals can see that others face a dilemma similar to their own, the presence

of descriptive social information can aid in taking the other’s perspective and behaving

as one would wish the other to behave. Beyond this, descriptive reminders may induce

an individual to engage in second-order reasoning about how their own actions will be
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perceived by others. The sense that one’s counterpart is reacting to one’s own actions

may, in itself, lead to a feeling of empowerment that voluntarily directs the course of

interaction toward mutual cooperation rather than conflict escalation.

The descriptive category, where the sets of outcomes from all actions are known

ahead of time and observed continually, will require different assumptions in the IBL

model. For example, it is possible that initial instances including descriptive information

of the outcomes are created in human memory. These initial instances could be inserted

into the model to create human-like expectations of long-term dependencies. An IBL

model may also require the inclusion of foregone payoffs in the utility calculation to

capture the availability of this information in the descriptive category. It is difficult to

measure in laboratory experiments and therefore will be difficult to model whether peo-

ple may also compare their experienced outcomes with foregone outcomes or instead

treat the foregone outcomes as if they had been experienced from making the opposite

choice. More generally, we expect that people engaged in descriptive interaction will be

able to reason somewhat more strategically about the extended consequences of their

own and others’ behavior. If this is so, it will be reflected in behavior (e.g., higher levels

of cooperation in the IPD), which will only be adequately fit by a variation of the IBL

model that similarly incorporates descriptive social information.

Cultural: Knowledge of the Other’s Identity

The identity of one’s interaction partner is not a neutral piece of information, either

from a strategic or an emotional standpoint. In moving from the descriptive category to

the cultural category of interaction in our HSI framework, several dimensions of identity

might be strategically relevant. The mere knowledge of demographic characteristics or

the group membership of another person might shape expectations about their likelihood

of engaging in certain actions. Early work on cross-cultural interaction, for instance,

tended to focus on classifying differences in attitudes, beliefs, and values across cultures

(Hofstede, 1983). With much effort dedicated to this line of inquiry, there have been

some differences in interaction styles established on the basis of observable characteristics

like gender (Babcock & Laschever, 2003) and country of origin (Buchan, Croson, &

Dawes, 2002). Of course, unless individuals are personally acquainted, there is a strong

likelihood of drawing false conclusions about inherent behavioral proclivities based on

stereotypes. Perhaps, more common than actual persistent differences in interaction ten-

dencies between groups is the triggering or situational activation of group stereotypes

that lead to a self-fulfilling prophesy in behavior (Kray, Thompson, & Galinsky, 2001;

Riley Bowles, Babcock, & McGinn, 2005). In fact, more fundamental individual differ-

ences in social motive and punitive capability may be unrelated to group membership

(De Dreu, Giebels, & Van de Vliet, 1998). Power dynamics may also come into play if

individuals recognize their status with respect to others. Galinsky, Magee, Inesi, and

Gruenfeld (2006) observed that greater power can impede perspective taking and hence

may lead individuals to ignore the harm or benefit they cause to others.

More important than identity information that has some de facto strategic relevance

to predicting others’ behavior, the identity of another person might affect the degree to

which one feels altruism or aggression toward him. An extensive literature details
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in-group favoritism or the tendency to bestow disproportionate rewards on similar oth-

ers and disproportionate punishments on dissimilar others. There may be an evolution-

ary basis for in-group bias: at one point in human history, one’s own survival was

closely intertwined with that of kin group members (Trivers, 1971). If in-group favorit-

ism has been biologically hard wired, it might manifest as favoritism and empathy

toward those who share interests other than survival. Decreasing social distance between

interaction partners, for example, leads to more generous offers in the dictator game,

arising from social norms of reciprocity (Hoffman, McCabe, & Smith, 1996) or from

‘‘other-regardedness independent of any norms of social exchange’’ (Bohnet & Frey,

2006, p. 335). Such parochial altruism is a robust finding from laboratory studies (e.g.,

Intergroup PD experiments in Halevy, Bornstein, & Sagiv, 2008), naturally occurring

groups (e.g., indigenous tribes in Papua New Guinea documented by Bernhard, Fischb-

acher, & Fehr, 2006), and randomized groups that develop strong identifications (e.g.,

Swiss army platoons in Goette, Huffman, & Meier, 2006). In sum, knowing the identity

of an interaction partner may affect one’s own actions based on logical inferences about

what actions the other will take, as well as altering one’s own actions based on altruistic

or punitive motives directed at the other.

Based on the important behavioral distinctions between the cultural category and

those below it in the HSI framework, this may prove to be the most challenging layer of

social information to translate into IBLT. For instance, attention and memory may be

triggered differently for individuals depending on the identity traits of their interaction

partners relative to their own. This can be incorporated into an IBL model through the

similarity metrics in Equation 3. Previous instances in which people interacted with oth-

ers similar to a current interaction partner will be more strongly activated. Sometimes,

this might lead to the formation of stereotypes where it is expected that people will

behave like others with whom they share observable identity traits. Another way to

include the effects of in-group favoritism in an IBL model is to capture the way individ-

uals experience the outcomes of others similar or dissimilar to themselves. The out-

comes of another can be included as outcomes for oneself in an instance, as if the

individual feels a counterpart’s joy or pain. At this stage, these are merely speculations

about how IBLT—which has proven to be versatile for a range of individual and several

multiplayer decision tasks—may be more extensively applied to modeling the impacts of

various levels of social information that we have laid out in the HSI framework.

Conclusions

Given the complexities of real-world conflict that cannot be completely captured by other

cognitive models, we propose IBLT as one promising new approach. DFE have rarely

been studied in social contexts (Erev & Haruvy, in press), and this new approach and shift

from the classical decisions from description will bring new light onto our understanding

of general conflict resolution research. Because models generated using IBLT have been

successful in describing DFE in a variety of tasks, we argue that IBLT will also offer

flexibility for representing nuances of social information. In individual choice tasks, IBL

models are able to fit human behavior without depending on assumptions about either
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rationality (i.e., expected utility maximization) or interpretations of descriptive informa-

tion (e.g., weighting of probabilities in a fully defined gamble). Instead, the model’s deci-

sions emerge naturally and implicitly from the way instances are encoded and retrieved

from memory, similar to the way that we believe people process information in the real

world. Our objective in using IBLT here is to push its capabilities a step further to encom-

pass social information that decision makers encounter in interaction with others.

The Hierarchy of Social Information aims to characterize the levels of information

that have been shown to impact behavior in conflict situations and thus puts forth a

clear challenge for the behaviors that we would like IBL models to encompass. The HSI

framework assumes that individual actions and outcomes within social interaction are

influenced by the amount and type of information available to decision makers. The

distinct categories range from one in which individuals possess no information about

their interdependence with others, to one in which individuals have complete informa-

tion about the actions of others, their influence on each other’s outcomes, and the iden-

tities of others. A large body of existing research indicates that behavior differs

significantly in moving from one category to the next, and yet these differences have

not been systematically tested in either experiments or cognitive models. We discuss

how these informational characteristics may influence reciprocation, fairness, trust,

power, and other social considerations, especially as individuals are better able to per-

ceive the intentions of others and to reason about how their own intentions might be

perceived. By offering a clear separation of varying degrees of social information, the

HSI framework allows the formulation of hypotheses about how cognitive and emo-

tional processing will shift as higher degrees of information become available, how this

information will induce behavioral differences in the laboratory, and how this informa-

tion can be represented in IBL models without altering their defining components.

Describing and predicting social behavior computationally is a current research chal-

lenge with many unanswered questions: How can we account for nonmonetary incen-

tives such as fairness, trust, reciprocation, and power? Do social effects need to be

explicitly represented in models that correctly predict behavior? How do individual cog-

nitive constraints influence the use of social information? How do we scale our behav-

ioral measures and models from the individual level to the social level? The HSI

framework we present can help to organize research comparing decision making across

informational categories, so that we have a clear set of behavioral results that we would

like to better understand. In addition, we propose that IBLT might offer a fruitful

approach to modeling empirical differences in conflicts across the HSI, based on the

robustness of IBL models for fitting individual choice tasks and the ease of generalizing

core mechanisms to new situations.
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