
Gonzalez, C.; Ben-Asher, N.; Oltramari, A.; Lebiere, C.  (2014). Cognition and Technology. In Kott, C., Wang, A. 

& R. Erbacher (eds.), Cyber defense and situational awareness. ISBN 978-3-319-11390-6. Springer International 

Publishing Switzerland 2014. DOI 10.1007/978-3-319-11391-3 

 

Cognition and Technology 

 

Cleotilde Gonzalez, Noam Ben-Asher, Alessandro Oltramari, and Christian Lebiere
 

 

 

 

1 Introduction 

As the previous chapters emphasized, the human cognition – and the technology necessary to 

support it – are central to Cyber Situational Awareness. Therefore, this chapter focuses on 

challenges and approaches to integration of information technology and computational 

representations of human situation awareness. To illustrate these aspects of CSA, the chapter 

uses the process of intrusion detection as a key example. We argue that effective development of 

technologies and processes that produce CAS in a way properly aligned with human cognition 

calls for cognitive models – dynamic and adaptable computational representations of the 

cognitive structures and mechanisms involved in developing SA and processing information for 

decision making.  While visualization and machine learning are often seen among the key 

approaches to enhancing CSA, we point out a number of limitations in their current state of 

development and applications to CSA. The current knowledge gaps in our understanding of 

cognitive demands in CSA include the lack of a theoretical model of cyber SA within a cognitive 

architecture; the decision gap, representing learning, experience and dynamic decision making in 

the cyberspace; and the semantic gap, addressing the construction of a common language and a 

set of basic concepts about which the security community can develop a shared understanding. 

 

Far from being downgraded to interconnected computer technologies that constitute its physical 

substratum, cyberspace can be seen as a communication infrastructure built by humans to access 

and share information in real-time by means of a variety of interfaces and languages. In this 

regard, “cyberspace is defined as much by the cognitive realm as by the physical or digital” 

(Singer and Friedman 2014). The centrality of cognition in the cyber world is clearly illustrated 

in the process of detection, where a human analyst (i.e., a defender) is responsible for protecting 

client networks from illegal intrusions and hostile activity (i.e., cyber attack) that would 

jeopardize the integrity of its information and infrastructure. The detection process may be seen 

as analogous to the Data-Information-Knowledge-Wisdom (DIKW) hierarchical model that is 

central for information and knowledge management (Rowley 2007). In the DIKW model, often 

depicted as a pyramid, a hierarchical process is proposed where data is transformed into 

information, information into knowledge, and knowledge into wisdom.  

Figure 1 illustrates this process for Detection. The existence of multiple and diverse 

sensors result in a large amount of network activity data. Cyber security tools (e.g., Intrusion 

Detection Systems, IDS) are meant to organize and structure network activity to make it relevant, 

meaningful and useful to support traffic monitoring and to minimize the damage that an attack 

can cause. Cyber security technologies provide ways to facilitate and protect an analyst from the 

cognitive challenges that the cyber world presents. For example, it does so by reducing, filtering 

and organizing large amounts of network events and by preprocessing events to help reduce the 
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information workload of the human analyst. These technologies would help in improving the 

analyst‟s Situation Awareness (SA): an accurate perception of the elements in the network within 

a volume of time and space, the comprehension of their meaning, and the projection of their 

future status (Endsley 1988). However, SA is rarely integrated into technology that would 

combine information with understanding and capability. Although there are multiple critical 

technologies to support an analyst in intrusion detection, they are often static and do not adapt to 

the analyst's state of mind and SA. Furthermore, SA is not an end in itself but rather the means 

by which analysts can make informed decisions in these complex, fast moving situations. SA is a 

precondition to make accurate intrusion detection decisions.  

 

 
Fig. 1 The Detection Process 

 

To properly design dynamic, adaptive technologies that support the detection process, 

one needs a strong, quantitative, validated model of the human cognitive processes. Otherwise, 

the result is often a system that works at counter-purposes with the human user, such as the 

infamous Microsoft paperclip that constantly changed the ordering of information in menus in a 

futile attempt to optimize physical movements at the greater cognitive cost to the user of 

constantly having to relearn a new interface. 

Cognitive models are dynamic and adaptable computational representations of the 

cognitive structures and mechanisms involved in developing SA and processing information for 

decision making. Cognitive modeling technologies have been developed in the context of the 

cognitive sciences, which rely on theories of mind that allow for the construction of generative 
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models to be eventually tested against behavioral, physiological, and neural data. The advantage 

of cognitive models
1
 resides in their ability to dynamically learn from experience, to adjust to 

new inputs, environments, and tasks in similar ways as humans do, and to predict performance in 

situations that haven‟t been encountered and for which data is not yet available. In this regard, 

cognitive models differ from purely statistical approaches, such as machine learning, that are 

often capable of evaluating only stable, long-term sequential dependencies from existing data but 

fail to account for the dynamics of human cognition, including learning processes and short-term 

sequential dependencies (Lebiere et al. 2003; West and Lebiere 2001).  

Cognitive models are often built within a cognitive architecture. Cognitive architectures 

are computational representations of unified theories of cognition (Newell 1990). They represent 

the invariant mechanisms and structures of cognition, as implemented in the human brain. For 

example, the well-known ACT-R architecture (Anderson and Lebiere 1998; Anderson et al. 

2004), discussed later, is organized as a distributed framework of modules, each devoted to 

processing a particular kind of information that is integrated and coordinated through a 

centralized production system module, which may represent the SA and decision making 

processes. A cognitive model of SA and decision making should represent the perception, 

comprehension, and projection status of the human mind, which are the pre-conditions to choice 

and decision making (Gonzalez et al. 2006). However, to build a cognitive model of cyber SA, 

more research on the particular cognitive challenges involved in the cyber world is needed. 

Research on cyber SA is relatively new (Jajodia et al. 2010), and it will require large 

amounts of collaborative work to determine how much of what is known of SA in the physical 

world is applicable to the cyber world. The dynamics in the cyber environment do not follow the 

laws of physics and are not subject to physical constraints. For example, a cyber attack does not 

utilize physical weapons (a gun, a knife, a bomb) that we can see, touch, or hear and for which 

we have good established mental models. Cyber attacks use digital weapons that are mostly 

indiscernible at the human level and for which we often do not have strong intuitions. A cyber 

attack is not limited by geography and political boundaries. In contrast to physical wars, attacks 

can be highly distributed, meaning that the attacker can initiate the attack from multiple places at 

the same time and the same cyber attack can hit multiple targets at once (Singer and Friedman 

2014). Furthermore, cyberspace is highly dynamic and it is also a distributed system, "one in 

which the failure of a computer you didn‟t even know existed can render your own computer 

unusable” (Lamport 1987). Thus, the traditional SA triad of perception, comprehension, and 

projection may have very different meanings in the cyber arena. 

This chapter aims at outlining current knowledge gaps in our understanding of cognitive 

demands in the cyber world; and to present challenges that cognitive architectures and 

computational approaches face in order to represent and support SA and decision making in the 

cyber security domain. In what follows, we discuss some particular challenges for obtaining SA 

and achieving optimal decision making in the cyber world. The gaps identified and discussed in 

the subsequent sections are: the cognitive gap, namely defining a theoretical model of cyber SA 

within a cognitive architecture; the decision gap, representing learning, experience and dynamic 

decision making in the cyberspace; the semantic gap, addressing the construction of a common 

language and a set of basic concepts about which the security community can develop a shared 

understanding; the adversarial gap, developing ways to represent adversarial behavior; and the 

                                                 

1
 Note that the distinction between „model‟ and „agent‟ when dealing with cognitive architectures is a blurred one. In 

general, an agent can be conceived as a cognitive model that dynamically interacts with the environment. 
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network gap, scaling up models of human behavior to complex networks and cyber warfare 

representations. Next, we discuss existing technology developed to support the analyst and recent 

cognitive models of cyber SA and decision making from which new research may derive.  

 

 

2 Challenges of the Cyber World and Implications for Human Cognition 

In contrast to the physical world, there are many distinct cognitive challenges that a decision 

maker confronts in the cyber world. First, the amount of data available to the analyst is unusually 

large and highly diverse. This is due to the relatively inexpensive ways of collecting data 

(network activity) and to the number and diversity of possible data sources (each network node 

or piece of equipment can serve as a sensor). 

Second, cyber attacks can take many forms, and each form might target different parts or 

services in the network. As such, an attack might be represented only in one data source or in 

combinations of several data sources, but not in all the data sources at the same time and in the 

same manner. Thus, the analyst needs to expend more effort in searching and diagnosing 

information to achieve the comprehension level of SA. 

Third, the cyber world involves rapid and constant change. In normal day-to-day 

operation, changes like the maintenance of network equipment, the addition of sub-networks, 

and changes in services or users may be legitimate operations; however, they may also resemble 

signs of an attack. Furthermore, changes in network behaviors can be abrupt, drastic, and caused 

by both internal and external factors. For example, a sudden spike in network activity on a 

retailer network can be caused by an approaching holiday (external), the retailer having a sale 

(internal), or a cyber attack. 

Fourth, the cyber SA of an analyst highly depends on the information coming from 

sensors (network monitoring equipment, logs, etc.). The analyst needs to constantly determine 

his level of trust in the sensors and whether to rely on the information coming from them; as it is 

not possible to directly evaluate the sensors‟ reliability. For example, an attacker may first 

compromise sensors to deceive the analyst about the status of the network before and during the 

attack. 

Fifth, cyber attacks are adversarial digital ways of determining who gets power, wealth, 

and resources. Thus, beyond the SA of one individual, defenders (analysts and end users) in the 

cyber world need to be aware of cyber attackers. Attackers have one important advantage over 

defenders: they know their target and decide who, when, and how to attack. Defenders face many 

difficulties in identifying the origin, attribution, and goal of these attacks. In the cyber world, it 

becomes very difficult to determine the identity, organizational affiliation, and nationality of 

those sitting behind a computer with malicious intentions. Furthermore, the defender monitors 

the network, identifies threats, and repairs each and any vulnerability, while the attacker needs to 

find a single vulnerability that can be exploited. This simplified view highlights the asymmetric 

relationship between the defender‟s SA and the attacker‟s SA. Cyber SA for a defender, thus, 

must involve awareness of the attackers' SA and intentions. This is a concept that is not currently 

well-known in the SA literature. A good amount of research has been devoted to the concept of 

Shared SA, a requirement to perform well in teams and achieve coordination and collaboration 

among team members (e.g., Gorman et al. 2006; Saner et al. 2009). Shared SA represents the 

"degree to which team members possess the same SA on shared SA requirements" (Endsley and 

Jones 2001, p. 48). While the information requirements by one individual that overlap among 
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members of a group are essential elements for shared SA in friendly situations (Saner et al. 

2009), the disparity, conflict, and disagreement of information needed to successfully deceive 

defenders and attackers is one of the most important weapons of agents involved in a cyber war.  

Thus, a concept of Adversarial SA needs to be developed to enhance the theory and models of 

theory of mind in cyber settings. 

In summary, given the challenges of the cyber world and their implications for human 

cognition outlined above, it is clear that the development of cognitive models and computational 

approaches to represent and support cyber SA and decision making of the analyst are only in 

their infancy. In the next section, we review some existing technologies aimed at representing 

and supporting cyber SA and the detection of cyber attacks. We also introduce the ACT-R 

cognitive architecture and cognitive models aimed at representing processes involved in cyber 

defense. In these descriptions, we highlight the current knowledge and outline how cognitive 

architectures and models can be used to address these gaps. 

 

 

3 Technology for Supporting an Analyst in Intrusion Detection 

A cyber analyst is mainly responsible for reviewing logs from various security tools and network 

traffic analyzers; they compile information and report incidents based on the intrusions that are 

detected. Given the cognitive challenges discussed above (e.g., large amounts of raw data 

collected by network sensors; variable speeds and workloads of events; and complex 

interrelationships of various elements of a network), the analyst‟s ability to grasp pieces of 

information as a coherent whole diminishes when dealing with a cyber environment. An 

important technology that helps support cyber SA and human decision making in the detection of 

threats and cyber attacks is the Intrusion Detection System (IDS). IDS are relatively well-

established technology, and they are widely used in different settings to automatically analyze 

packets for signs of possible incidents and to highlight those to the human analyst. A 

comprehensive review of the IDS-based methodologies and technologies that are more 

commonly used for intrusion detection and prevention are presented by Bernardi and colleagues 

(2014). IDS and their derivatives are mostly rule-based systems that require knowledge of the 

vulnerabilities in the networks. Snort (http://www.snort.org/) is probably the most well-known 

IDS: it is an open source software with millions of users, and it is considered a standard capable 

of performing packet sniffing and real-time traffic analysis. Snort rules are supported by an 

active community that improves the rules and the tool‟s capabilities. Other open source tools 

such as Bro (https://www.bro.org/) offer faster network capabilities and have also increased in 

popularity. Bro was developed as a research platform for intrusion detection and is commonly 

used by the research community. 

A main challenge for the analyst is that the IDS generates a large number of false alarms, 

from which an analyst must identify real threats. IDSs may be used in conjunction with many 

other tools that help human detection. Of particular interest is the development of correlation 

models and the estimation of relationships between suspicious events flagged by the IDS, which 

may help humans detect patterns, the paths of attacks, and the attackers‟ intentions. Attack 

graphs have also been widely used to highlight alert correlations and to improve the prediction of 

the attackers' intentions. These attack graphs highlight the dependencies between network 

components and known vulnerabilities, and they may be important in providing an analyst with 

improved SA regarding the possible attack propagation within the network. Combining attack 
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graphs with dependency graphs, which capture dependencies among assets in the network, can 

provide the analyst with a more informed decision making process (Albanese et al. 2011).  

Another way to support the analyst' cyber SA is with computational assistance tools that 

filter and visualize data and help prevent “cognitive overload” (Etoty et al. 2013). By and large, 

as Erbacher (2012) has recently pointed out, the vast majority of these state-of-the art assistance 

tools are targeted at network analysts with the common function of correlating cyber events 

within a network topology and facilitating the interpretation of low-level events (where an 

“anomaly” is essentially a cyber event that violates some pre-defined constraints and deviates 

from previously observed patterns). This kind of tool (e.g., VisAlert: http://www.visalert.com/, 

NVisionIP: Lakkaraju et al. 2004, etc.) leverages machine learning and information fusion 

techniques to extrapolate meaningful structures for the cyber analyst, but they are not designed to 

either provide a high-level representation of the data (which would include notions like risk 

management, agility handling tasks, etc.) or to factor into play the distinctive cognitive elements 

in genuine SA, such as perception, attention, memory, experience, reasoning capabilities, 

expectations, confidence, performance, etc. Hence, the aim of most existing visualizations tools 

is to make the data more accessible to the analyst and alleviate some of the effort of the 

perception phase. Such tools provide less support to the comprehension and projection phases of 

cyber SA. Furthermore, numerous pitfalls of visualizations can bias the analyst‟s SA and should 

be carefully considered when visualizing network data (Tufte and Graves-Morris 1983). For 

example, visualizations can highlight some data attributes and can lead to over-consideration of 

these attributes in the decision process while directing less attention to other relevant attributes. 

When huge amounts of network traffic need to be analyzed, Machine Learning (ML) 

methods can provide a means to instantiate IDS processes (Chauhan et al. 2011; Harshna and 

Kaur 2013). In general, ML techniques are split into two large groups, namely “classification” 

and “clustering”: the former aims at minimizing the number of false positives (normal events 

mistakenly classified as attacks) and false negatives (undetected attacks) by using labeled data 

sets as training examples; the objective of the latter is to extract clusters of similar patterns from 

a dataset, thus de facto creating multiple data subsets differentiated by some suitable distance 

measure. The main advantage of clustering is that it does not involve any training phase, which 

conversely makes classification more effective for a dataset where training data are available, but 

classification is less reusable across scenarios and less adaptive to novel situations. Among the 

ML classification techniques used for intrusion detection, we find Inductive Rule Generation 

(e.g., the Ripper system; Cohen 1995), Genetic Algorithms, Fuzzy Logics, Neural Networks, 

Immunological-based techniques, and Support Vector Machines. Concerning ML clustering 

techniques, statistical methods based on Bayes estimators and Markov models represent the most 

complex frameworks of analysis, where patterns can be computed in a variable time-scale and in 

a per-host or per-service scale. Overall, ML tools can be very efficient in handling large amounts 

of data and can provide meaningful insights regarding the state of a network. However, they rely 

on complex algorithms and intensive computational processes when detecting threats. 

Eventually, the analyst is provided with a recommendation without the ability to understand the 

details of the processes that generated that recommendation. Without the ability to acquire the 

appropriate level of SA, this can expose the analysts to various biases related to trust in 

automation and eventually harm the comprehension and projection levels of SA.   

The technology to support the analyst in intrusion detection is critical to the analyst‟s 

acquisition of cyber SA and decision making. But in order to create adaptable technology that 

accounts for the analyst's mode of thinking, the analyst's cognitive processes and limitations 
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ultimately need to be represented in this technology. Next, we discuss the ACT-R cognitive 

architecture and the instance-based learning theory (IBLT) (Gonzalez et al. 2003), a theory of 

decisions from experience in dynamic tasks, which has recently been used to create cognitive 

models of the intrusion detection process. 

 

 

4 ACT-R Cognitive Architecture 

Cognitive architectures are computational instantiations of unified theories of cognition (Newell 

1990). They represent the invariant mechanisms and structures of cognition, as implemented in 

the human brain. The ACT-R architecture (Anderson and Lebiere 1998; Anderson et al. 2004) is 

organized as a set of modules, each devoted to processing a particular kind of information that is 

integrated and coordinated through a centralized production system module (see Figure 2). Each 

module is assumed to access and deposit information into a buffer associated with the module, 

and the central production system can only respond to the contents of the buffers, not the internal 

encapsulated processing of the modules. Each module and associated buffer has been correlated 

with activation in particular brain locations (Anderson 2007). The visual module and buffer keep 

track of objects and locations in the visual field. The manual module and buffer are associated 

with control of the hands. The declarative module and retrieval buffer are associated with the 

retrieval of information from long-term declarative memory. The goal buffer keeps track of the 

goals and the internal state of the system in problem solving, while the imaginal buffer (not 

pictured) keeps track of problem information. Finally, the procedural module is charged with 

coordinating the activity of other modules by directing the flow of information between them. 

That module, implemented as a production system, includes components to pattern matching 

against buffer contents, to select a single production rule to fire at one time, and to trigger 

activity in various modules by directing information into their buffer. 
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Fig. 2 ACT-R is a production system architecture with multiple modules corresponding to 

different kinds of perception, action, and cognitive information stores. Modules have been 

identified with specific brain regions. A central procedural module synchronizes information 

flow to and from the other modules 

 

The declarative module and procedural module, respectively, store and retrieve 

information that corresponds to declarative knowledge and procedural knowledge. Procedural 

knowledge consists of the implicit skills that we display in our behavior, generally without any 

conscious awareness. Production rules represent procedural knowledge in the form of the 

strategies and heuristics used to manipulate that information and achieve problem solving. They 

specify procedures that represent and apply cognitive skill in the current context to retrieve and 

modify information in the buffers and transfer it to other modules. While those procedures could 

specify expert solutions to the problem, it is generally assumed that achieving expert levels of 

performance requires up to thousands of hours of experience in the most complex domains. 

Instead, a common hypothesis in modeling task performance is to assume that individuals rely on 

direct recognition or recall of relevant experience from declarative memory to guide their 

solution or, failing that, resort to very general problem-solving heuristics. This compute-vs-

retrieve process is a common design pattern used to structure ACT-R models (Taatgen et al. 

2006). For instance, it would apply in cyber security when a novice analyst would painstakingly 

apply a procedure to make a judgment about a new intrusion, while an expert analyst would 

simply recognize the pattern and make a snap judgment. 

Declarative knowledge is the kind of explicit knowledge that a person can attend to, 

reflect upon, and usually articulate in some way (e.g., by declaring it verbally or by gesture). 
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Declarative knowledge in ACT-R is represented formally in terms of chunks that are structured 

sets of slots and associated values, which can in turn be other chunks, thus enabling the creation 

of complex hierarchical representations. The chunks in the declarative memory module 

correspond to episodic and semantic knowledge that stores the long-term experience of the 

model. A chunk typically integrates information available in a common context at a particular 

point in time in a single representational structure. Chunks are retrieved from long-term 

declarative memory by an activation process (see Table 1 for detailed equations) that reflects the 

statistics of the environment (Anderson 1993). Each chunk has a base-level activation that 

reflects its recency and frequency of occurrence, which accounts for the power laws of practice 

and forgetting that are pervasive in human behavior. Activation spreads from the current focus of 

attention, including goal and imaginal buffers, through associations among chunks in declarative 

memory to account for phenomena such as associative priming, in which the context plays an 

implicit role in our access to information. These associations are built up from experience and 

they reflect how chunks co-occur in cognitive processing. The spread of activation from one 

cognitive structure to another is determined by combining the weight of attentional focus from 

the originating cognitive structure with its associative strength to the other structure. Chunks are 

compared to the desired pattern specified in the retrieval buffer by using a partial matching 

mechanism that subtracts its degree of mismatch to the desired pattern from the activation, 

referred to as similarity. This is done additively for each component of the pattern and 

corresponding chunk value, weighted by a mismatch penalty factor. This ability to match to 

imperfect information allows us to deal with changing, approximate, and probabilistic 

environments. Finally, noise is added to chunk activations to make retrieval a probabilistic 

process governed by a Boltzmann (softmax) distribution, accounting for the probabilistic nature 

of human cognition. While the most active chunk is usually retrieved, a blending process 

(Lebiere 1999) can also be applied; which returns a derived output encoding the consensus value 

reflecting the similarities between the values of the content of all chunks, weighted by their 

retrieval probabilities as determined by their activations and partial-matching scores. This 

blending process is often used to provide a constrained way of making decisions in continuous 

domains as proposed in IBLT (Gonzalez 2013; Gonzalez and Dutt 2011; Gonzalez et al. 2003), 

which is described next. 

 

Table 1  List of activation mechanisms in the ACT-R Architecture 
Mechanism  Equation Description 

Activation 
 
               

Bi: Base-level activation reflects the recency and frequency of use of chunk i 

Si: Spreading activation reflects the effect that buffer contents have on the retrieval 

process 

Pi: Partial matching reflects the degree to which the chunk matches the request 

i: Noise value includes both a transient and (optional) permanent component 

(permanent component not used by the integrated model) 

Base-Level i

n

j

d

ji tB  


 )ln(
1

 

n: The number of presentations for chunk i 

tj: The time since the jth presentation 

d: A decay rate (not used by the integrated model) 

βi: A constant offset (not used by the integrated model) 

Spreading 

Activation 
 

 

k: Weight of buffers summed over are all of the buffers in the model 

j: Weight of chunks which are in the slots of the chunk in buffer k  

Wkj: Amount of activation from sources j in buffer k 

Sji: Strength of association from sources j to chunk i 

)ln( jiji fanSS 
 

S: The maximum associative strength (set at 4 in the model) 

fanji: A measure of how many chunks are associated with chunk j 
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Partial 

Matching 

 

P: Match scale parameter (set at 2) which reflects the weight given to the similarity 

Mki: Similarity between the value k in the retrieval specification and the value in 

the corresponding slot of chunk i  

The default range is from 0 to -1 with 0 being the most similar and -1 

being the largest difference 

Declarative 

Retrievals 
   

 
  
 ⁄

∑  
  
 ⁄ 

 

 

Pi: The probability that chunk i will be recalled 

Ai: Activation strength of chunk i 

∑Aj: Activation strength of all of eligible chunks j  

s: Chunk activation noise 

Blended 

Retrievals 

  
2

,1min 
i

ii VVSimPV

 

Pi: Probability from declarative retrieval 

Simij: Similarity between compromise value j and actual value i  

 

 

5 Instance-Based Learning Theory and Cognitive Models 

The notion that learners have a general-purpose mechanism whereby situation-decision-utility 

triplets are stored as chunks and later retrieved to generalize solutions to future decisions 

originates from instance-based learning theory (IBLT) (Gonzalez et al. 2003). IBLT is a theory 

of decisions from experience in dynamic tasks. A simple cognitive model, derived from IBLT, 

has recently been proposed for representing individual learning and for reproducing choice 

behavior in repeated binary choice tasks (Gonzalez and Dutt 2011; Lejarraga et al. 2012). This 

model has shown to be a robust accounting of the choice and learning process in a large variety 

of tasks and environmental conditions (for a summary, see Gonzalez 2013). Its greatest strength 

is that it offers a single learning mechanism to account for behavior observable in multiple 

paradigms and decision making tasks (for a summary, see Gonzalez 2013). However, Gonzalez 

and colleagues (2003) argue that the strength of IBLT is the explanations of decision making in 

complex dynamic situations, such as cyber security. With the aim of scaling up from simple 

binary choice models to the type of complex dynamic tasks that IBLT intended to explain, 

Gonzalez and colleagues have used the cognitive model for binary choice to represent the 

detection process in cyber security.  

Dutt, Ahn, and Gonzalez (2011) proposed an IBL model to study cyber SA. The model 

represented the cognitive processes of a cyber-security analyst who needs to monitor a computer 

network and detect malicious network events that constitute a simple island-hopping cyber 

attack. In this model, the memory of a simulated analyst was pre-populated with instances 

encoding possible network events, including a set of attributes (e.g., IP address, whether the IDS 

issued an alert, etc.) that define a network event. An instance also included the analyst‟s decision 

regarding that specific combination of attributes, meaning whether the analyst decided that the 

event (i.e., set of attributes and their values) described malicious network activity or not. Finally, 

an instance also stored the outcome of that decision, indicating whether the event actually 

represented a malicious network activity or not. Controlling the representation of the analyst‟s 

memory provided the ability to manipulate situation awareness by adjusting the amount of 

instances in memory that represent malicious network activity. For example, the memory of a 

very selective analyst had 75% malicious instances and 25% non-malicious instances, while a 

less selective analyst‟s memory had 25% malicious instances and 75% non-malicious instances. 

When making a decision about whether a new network event is part of a malicious network 

activity or not, the model retrieved similar instances from memory according to the cognitive 

judgment mechanisms. Through the process of judging, the modeled analyst accumulated 

evidence that can indicate if there is an ongoing cyber attack. The risk tolerance parameter of the 
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model governed this accumulation process. The number of malicious network events that the 

model detected was constantly compared to the analyst‟s risk tolerance, and once the number of 

malicious events was equal to or higher than the risk tolerance, the modeled analyst declared that 

there is an ongoing cyber attack. Thus, risk tolerance served as a threshold for evidence 

accumulation and risk taking.  

The results from simulating different cyber analysts demonstrated that both the risk 

tolerance level and the past experiences of the analyst affect the analyst‟s cyber SA, with the 

effect of experiences (in memory) being slightly more impacting than risk tolerance. This work 

also highlighted the importance of modeling the adversary‟s behavior, by comparing the 

influence of impatient and patient attacker strategies on the performance of the defender. Patient 

attacker strategy and longer delays between the threat incursions on the network can challenge 

the security analyst and decrease her ability to detect threats. Thus, the cognitive model was 

capable of capturing the phenomenon that some attack patterns are more challenging than others 

to the simulated security cyber analyst. 

 

 

6 Research Gaps for Understanding the Cognitive Demands of the Cyber World 

Many advances need to be made in several research directions to make cognitive models useful 

and effective in representing and supporting the job of a cyber security analyst. Based on the 

current state of technology discussed above, we identified five gaps in our understandings of the 

cognitive demands of the cyber world. 

 

 

6.1 The Cognitive Gap: Mapping Cognitive Architecture Mechanisms to Cyber SA 

The general processes of a cognitive architecture such as ACT-R can be mapped systematically 

onto the concepts of cyber SA, such that the distinct levels of situation awareness can be related 

to concrete cognitive mechanisms. This mapping does not take the form of a one-to-one 

correspondence between cyber SA concepts and cognitive modules, but it instead maps those 

concepts onto modeling idioms that leverage multiple modules using common patterns. The first 

level of cyber SA corresponds to the processes involved in the direct acquisition of information 

from the environment. This perception level can be directly associated with the perceptual 

modules of the ACT-R cognitive architecture, including the visual and aural modules. However, 

those modules do not operate on their own, but through the direct supervision and control of the 

procedural module. Attention is a fundamental construct that reconciles the limited processing 

resources of our cognitive (including perceptual) modules with the considerable demands arising 

from the open-ended complexity of the external world. Attentional focus is used to decompose 

complex external scenes, like a complex cyber security display, into simple components that can 

be processed directly by our perceptual systems. 

The typical flow of control for perception in an ACT-R model (e.g., Anderson et al. 

2004) proceeds in a top-down manner. While attention can be directed by external events in the 

environment, effective performance of complex tasks in information-rich environments typical 

of cyber security requires structured, goal-directed perceptual processing of information. The 
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first step of perception is therefore a request for a location that matches a specific content 

condition.
2
 This location might already be known if the user is sufficiently familiar with his 

environment and the environment is stable enough, in which case it will be provided by retrieval 

from declarative memory. Otherwise, it is directly supplied by a production rule, if sufficient 

experience has transformed that knowledge into a skill through production compilation. If not, 

the location will be determined by searching the environment to match the specified condition. 

Once the location has been obtained, it is supplied to the visual buffer to trigger processing of 

that area of the visual field in the visual module. This will result in the chunk representing the 

object recognized at that location to be returned in the same visual buffer. That chunk is then 

transferred to the imaginal buffer holding the representation of the current situation being 

elaborated on, which is where the process of comprehension starts. Hence, in the context of 

cyber SA, this phase correspond to the process through which a cognitive model retrieves and 

encodes source and destination IP address, protocol type, and other attributes of the network. 

Comprehension corresponds to the second level of cyber SA, which results in the semantic 

representation of a perceived situation, a product of the cognitive process known as sensemaking 

(Klein et al. 2006a). According to Klein et al. (2006b), sensemaking is the process of abstraction 

that maps concrete situations to the general by using mental representations called frames, which 

correspond to structured conceptual models of the world. Lebiere et al. (2013) describe how 

sensemaking is fundamentally compatible with IBLT, and more specifically how frames can be 

mapped onto the chunk representations of situations used in that process. For instance, in the 

domain of geospatial intelligence, frames correspond to a pattern of input data, aggregating 

layers of information from independent sensors and associating them with specific hypotheses. 

“Comprehension” thus corresponds to the process of gradually aggregating the information from 

perception into hierarchical chunks implementing integrated frames. In the next section, we 

argue that “ontologies” can enhance this second level of cyber SA by mapping ACT-R 

declarative chunks to highly expressive semantic structures that formally specify the conceptual 

models encapsulated in frames. Going back to cyber SA and detection, in this comprehension 

phase, IP address obtained during the perception phase are organized into categories that reflect 

whether it is internal or external to the monitored network. This type of reasoning can also bind 

an event (e.g., an IDS alert) and the reason that the event occurred (e.g., an IDS rule regarding 

the maximal number of open connections for a communication protocol), thus generating a 

hypothesis for the observed behavior that will drive further investigations. The third level of 

cyber SA corresponds to the process of projection, or the generation of expectations about future 

states of the system. Those changes in system state can result from the actions of the decision 

maker, from those of an opponent or teammate, or from other independent parts of the system. 

Projection is essential in evaluating the effect of potential actions by including feedback from the 

outcome of past actions. Because many cyber security interactions are fundamentally adversarial, 

it is essential to also being able to generate expectations of the opponent‟s future actions, 

encompassing both independent actions and actions taken in response to one‟s own decisions. 

Finally, since the actions of third parties, such as system users, also impact the outcome of 

security measures, generating expectations of their actions is crucial to projecting future system 

states and effective system control. From the cyber SA perspective, this phase occurs after 

perceiving an IDS alert and comprehending that it was generated by a rule that limits the number 

                                                 

2
 This discussion will be focused on visual attention, though the same principles apply to other perceptual modules 

such as auditory perception. 
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of open connections. Now, when the number of open connections exceeds the limit, projection is 

used to evaluate whether this is a temporary benign spike in the demand for a service or if it is an 

indication for a cyber attack. Making such a decision requires integration of additional 

information that can be perceived and comprehended explicitly from the environment, like the 

source IP addresses of the connections, as well as consideration of implicit information like the 

consequence to the network if the number of open connections will continue to increase.     

 

6.2 The Semantic Gap: Integrating Cognitive Architectures with Ontologies of Cyber 

Security 

 

In the previously mentioned models, modelers themselves directly specified the semantics of the 

representation. In order to enable full-fledged reasoning capabilities in cognitive architectures, 

these systems need to incorporate “re-usable declarative representations that correspond to 

objects and processes of the world” (McCarthy 1980). Similarly, cognitive architectures must 

provide a way to represent world entities (Sowa 1984), i.e., an "ontology"
3
. An ontology is a 

language-dependent cognitive artifact committed to a certain conceptualization of the world by 

means of a given language
4
 (Guarino 1998). Thus, in broad terms, an ontology corresponds to a 

semantic model of the world (or of a portion of it, i.e., a “domain”): when the model is simply 

described in natural language, an ontology reduces to a dictionary, thesaurus, or terminology; 

when the model is expressed as an axiomatic theory (e.g., in first order logic), it is called a 

formal ontology. Ultimately, if logical constraints are encoded into machine-readable formats, 

formal ontologies take the form of computational ontologies, and enter de facto in the family of 

semantic technologies, which include search engines, automatic reasoners, knowledge-based 

platforms, etc. In the context of a cognitive architecture like ACT-R, computational ontologies 

can extend the semantics of the chunks stored in declarative memory. Although these extensions 

are not usually required by ACT-R models that perform relatively narrow cognitive tasks, 

declarative memory should be designed to encompass a rich spectrum of concepts when dealing 

with decision making in complex scenarios like cyber operations, including classifications of 

cyber security policies, risks, attacks, system‟s functionalities, human responsibilities, user‟s 

privileges, as well as the mutual connection among them. Widening the scope beyond ACT-R, 

state of the art work on cognitive architectures has also gone in the direction of mapping 

ontologies (like Cyc, see Lenat et al. 1985) to declarative memory (see Ball et al. 2004; Best et 

al. 2010; Edmond 2006). It aims to enhance not only the “capability” of representing the 

available knowledge of a domain but also the functionality of automatically deriving inferences 

from it, a feature that would also help to increase the “Comprehension” level in cyber SA. In this 

regard, the role of ontologies in cognitive architectures is to 1) formally characterize chunks in 

long-term memory that depict conceptual models of situations (frames) and 2) foster 

automaticity of certain cognitive tasks, “that significantly benefit SA by providing a mechanism 

for overcoming limited attention” and improve the decision making process. 

                                                 

3
 This was the genesis of using the word „ontology‟ in AI. Ontology, „the study of being as such‟ – as Aristotle 

named it – originated as a philosophical discipline.  
4
 Guarino distinguishes between „Ontology‟ as a discipline (with the capital „o‟) and „ontologies‟ as engineering 

cognitive artifacts. 
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There has been little work on ontologies for cyber security and cyber warfare. An 

ontology of IDS is discussed by Undercoffer, Joshi, and Pinkston (2003); within a broader paper, 

there is a brief discussion of an ontology for DDoS attacks (Kotenko 2005); and a general 

ontology for cyber warfare is discussed in D‟Amico et al. (2009). Obrst et al. (2012) provides the 

best sketch of a cyber warfare ontology, and the scale of the project and its difficulties are 

discussed by Dipert (2013). With regard to human users and human-computer interface, the most 

important step in understanding a complex new domain involves producing accessible 

definitions and classifications of entities and phenomena. Mundie (2013) stressed this point 

when talking about the Jason Report (The MITRE Corporation 2010). Discussions of cyber 

warfare often begin with the difficulties created by misused terminology (such as characterizing 

cyber espionage as an “attack”). The Joint Chiefs of Staff created a list of cyber term definitions 

(Joint Staff Department of Defense 2010) that has been further developed and improved in a 

classified version. Nevertheless, none of these definitions has been encoded in OWL (Staab and 

Studer 2003) or in any other computational semantic format, which is a necessary requirement to 

make them machine-understandable. Likewise, various agencies and corporations (NIST, 

MITRE, Verizon) have formulated enumerations of types of malware, vulnerabilities, and 

exploitations, sometimes expressed in XML-based semantics: but without a common vocabulary, 

their sprawling English descriptions in large, incompatible databases are not directly machine-

usable and are nearly impossible to maintain. Efforts that have been made toward developing 

computational ontologies of cyber security and cyber warfare typically do not work within any 

standard framework and do not utilize existing military reference ontologies such as UCORE-

SL, which define concepts such as the notion of “agent,” “organization,” “artifact,” “weapon,” 

etc. 

As a consequence of this general deficiency, one of the first and perhaps most generally 

useful tasks that will need to be completed to fill the “semantic gap” is to collect definitions of 

key cyber security concepts that are currently scattered across existing ontologies, controlled 

vocabularies, doctrines, and other documental resources and to suitably harmonize them in a 

homogenous computational ontology. As a second step, the capabilities of this cybersecurity 

ontology will have to be dynamically tested in cognitive models of decision making in cyber 

operations. 

 

 

6.3 The Decision Gap: Representing Learning, Experience, and Dynamic Decision 

Making in the Cyber World 

 

Given the complexity and variability of the cyber environment, there is an ongoing effort to 

provide decision makers with tools that can support their decision process and provide insights to 

manage the complex dynamics of the cyber world. To gain and maintain situation awareness, the 

decision maker is constantly required to make multiple and interdependent decisions in a highly 

dynamic environment. Dynamic decision making requires an understanding of multiple, 

interrelated attributes and the ability to anticipate the way that the environment will develop over 

time. Making the right decision and acting appropriately and in a timely manner can maximize 

the decision value (Brehmer 1992; Edwards 1962; Gonzalez 2005; Gonzalez et al. 2005).  

The modeling of human decision processes in cyber security highlights some important 

aspects of cyber SA that cognitive models need to account for. For example, pattern recognition 

under uncertainty represents a defender‟s attempt to find patterns in the attacker‟s sequence of 
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actions in order to predict the attacker‟s next operation and to provide the best response to it. 

However, if the attacker is aware of these attempts to detect sequential dependencies, one 

possible path of action is to constantly change the malicious operations and to exploit the 

sequential dependencies. Cognitive models in ACT-R (Anderson and Lebiere 1998, 2003) and 

neural networks (West and Lebiere 2001) are capable of accounting for the human ability to 

detect sequential dependencies, and they use the perceived sequence to project the next action 

that an opponent will most likely take in a strategic interaction. Through their natural 

stochasticity, those models can balance the exploitation of the opponent‟s patterns with some 

measure of deception and self-protection by avoiding becoming too predictable themselves. 

Also, cognitive models such as those derived from ACT-R and IBLT provide the capability to 

learn from experience and the ability to utilize past experiences in novel decision situations.  

Human decision makers use the same cognitive system for a vast array of divergent tasks. 

The underlying cognitive system represents a highly efficient, multipurpose mechanism that has 

evolved to be as effective as possible across a wide variety situations and conditions (West et al. 

2006). Cognitive architectures share the same flexibility and diversity, and as such can 

efficiently represent and capture human decision making in cyber security. However, continued 

efforts are needed to maintain and update the formal representation of the cyber environment that 

the architectures use. This requirement emphasizes the need for cognitive architectures to 

develop better and more efficient models of perception and information encoding. For cognitive 

architectures to serve a meaningful role in future cyber security engagements, two main aspects 

should be carefully developed: the first is the flexibility of reasoning that underlies human 

adaptivity and the second is the active and efficient perceptual processes that search, detect, and 

encode information in a dynamic environment. 

 

 

6.4 The Adversarial Gap: Representing Adversarial Cyber SA and Decision Making 

Cognitive architectures provide rich and flexible modeling environment. Using these 

architectures, it is possible to generate models that represent the analyst‟ decision making 

process and SA, as well as models of the adversary. For each of these models, there is a need to 

define knowledge base, learning processes, and decision making process. Furthermore, the 

models of the analyst and the adversary interact within a defined environment (i.e., the cyber 

world) that dictates a set of possible action each model can choose from. Thus, there is a need to 

define the possible interactions between multiple cognitive models. In addition to defining the 

possible interactions, there is a need to define how and what kind of feedback the models would 

receive regarding the outcomes of their combined decision making processes. Issues concerning 

delayed feedback and incomplete or imperfect feedback are highly relevant when modeling 

studying decision making and learning in dynamic systems. Therefore, a comprehensive formal 

representation that can bring together the analyst, the adversary, and the environment in which 

they interact is needed. Game theory has been successfully used to capture the essence of 

complex and dynamic situations that involves two or more agents that interact within a well-

defined environment. We posit that combining game theoretical perspective and cognitive 

modeling can provide a controllable, but still ecological valid, representation of interactions in 

the cyber world and serve as a potent framework for studying cyber SA. 

Game theory has been popularized as a potent approach to characterize and analyze 

decisions in situations that involve social dilemmas and conflict situations. Stackelberg games 
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have been used to model and capture the strategies of defenders and attackers in airport security, 

as well as for optimizing resources allocation in sensitive settings (Pita et al. 2008). Similarly, 

game theory has been used for decision making in cyber security (Alpcan and Baar 2011; 

Grossklags et al. 2008; Lye and Wing 2005; Manshaei et al. 2013; Roy et al. 2010). However, 

most game-theoretic approaches to security hold some limitations and assume either static game 

models or games with perfect or complete information (Roy et al. 2010). To some extent, these 

assumptions misrepresent the reality of the network security context where situations are highly 

dynamic and the decision maker must rely on imperfect and incomplete information. To 

overcome this, recent studies that apply game theory to security attempt to account for the 

bounded rationality of human actors, especially human adversaries (Pita et al. 2012). However, 

this and other game-theoretic approaches still do not fully address the cognitive mechanisms like 

memory and learning that drive the human decision making processes and can provide a first-

principled predictive account of human performance, including both capabilities and suboptimal 

biases.  

Behavioral Game Theory relaxes some of the constraints of Game Theory with the study 

of human decision makers and how they interact in strategic situations involving more than one 

decision maker (Camerer 2003). Using Behavioral Game Theory, it is possible to address some 

of the limitations imposed by game-theoretic approaches and examine how learning from 

experience and adaptation to the environment influences decision making and risk taking in 

cyber security (Gonzalez 2013). 

As discussed earlier, ACT-R and IBLT have proven to be highly beneficial to studying 

the interplay between learning and decision making processes of an individual. One ongoing 

effort aims at scaling up cognitive models to study interactions between two or more decision 

makers in social conflicts like the Prisoner‟s Dilemma (Gonzalez et al. in press) and the Chicken 

Game (Oltramari et al. 2013). However, scaling up models of human cognition and SA to cyber 

worlds with more than two agents involved is still a challenge (Gonzalez 2013). An important 

issue for all levels of SA is the availability of information regarding the other entities. Recently, 

cognitive models have been extended to study how the availability of information and the source 

of the information influence decision making and learning. 

Recent studies examine how the availability of descriptive and experiential information 

influences interactions in social dilemmas (Martin et al. 2013; Oltramari et al. 2013). The key 

findings of these studies suggest that information is needed for cooperation, and the lack of 

information fostered situations in which one decision maker tended to exploit the other. Another 

relevant finding is related to trust and its role in cooperative behavior, indicating that decision 

makers dynamically weigh the partner's information based on surprise (i.e., the gap between 

expectations or projections and the observed outcome). Learning models that incorporate 

surprise into the decision process and combine both descriptive and experiential information can 

capture the complex dynamics of iterated interaction between two decision makers in conflict 

situations (Gonzalez et al. in press; Ben-Asher et al. 2013). Overall, these finding emphasize the 

interplay between information and cognitive processes in order to achieve SA and finally making 

a decision.   
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6.5 The Network Gap: Addressing Complex Networks and Cyber Warfare 

Cyber warfare is the extension of the traditional attacker-defender concept that involves multiple 

units (individual, state-sponsored organizations, or even nations) simultaneously executing 

offensive and defensive operations through networks of computers. In a cyber war, units can 

execute attacks against targets in a cooperative and simultaneous manner. Any defending unit 

can also be attacked by multiple enemies, eventually acting as both attacker and defender at the 

same time.  

The dynamics of a cyber war, which are driven by multiple decision makers making 

simultaneous decisions, are hard to predict. Achieving and maintaining SA in such an 

environment is crucial and at the same time challenging. The fact that multiple units operate 

simultaneously in the environment might imply that a decision maker has to maintain SA in 

different levels. The decision maker has to perceive, comprehend, and make projections 

regarding interactions in which the unit itself is involved directly, interactions between other 

units which do not involve the decision maker directly, and the overall aggregated SA at the 

environment level. Scaling up cognitive models of SA from the dyad perspective (an analyst and 

an adversary) to the SA needed in an environment where large networks of units can interact 

simultaneously requires careful consideration and examination of environmental attributes and 

their relation to SA. For example, the topology of the network that connects units involved in a 

cyber conflict has an extensive impact on the availability of information, trust in information, 

and information propagation.  

To support SA and decision making in large scale cyber conflicts, simulations using 

multiple cognitive models connected in a network can provide predictions and answer what-if 

questions. Similarly, simulations that combine multiple cognitive models and human decision 

makers can train humans to acquire and maintain SA in cyber conflicts. Recently, there has been 

an increasing interest in N-Player models of social conflict that share some similarities with 

cyber warfare (Kennedy et al. 2010; Hazon et al. 2011). In parallel, there are attempts to study 

cyber attacks and cyber warfare through multi agent-based modeling (e.g., Kotenko 2005, 2007). 

However, many of these models use strategic agents and not cognitive models. Such strategic 

agents are designed to execute an optimal strategy, rather than learn the maximizing strategies 

from experience; and thus not only fail to replicate SA, human learning, and decision making 

mechanisms but are fundamentally incapable of coping with fluid, dynamic situations commonly 

encountered in cyber warfare.  

The CyberWar Game (Ben-Asher and Gonzalez 2014) is a multi-player framework that 

aims to capture some of the characteristics and the dynamics of the environment in cyber warfare 

and aspects of the decision maker. It is inspired by Hazon et al.‟s (2011) N-Player model. 

Considering important aspects of cyber warfare and conflicts in general, the CyberWar Game 

introduces two relevant concepts that characterize a player: power and assets. In the context of 

cyber warfare, power represents the ability to successfully accomplish a goal, which for a 

defender is to block an attack and for an attacker is to accomplish a malicious goal. Power can be 

seen as a representation of the robustness of cyber security infrastructure and is likely to be a 

function of investment in cyber security. An asset is an abstraction of what the defender is trying 

to protect and what the attacker wants to gain. In general, assets are the motivation for building 

both defense system and attack systems, and selfish assets maximization is the shared goal of all 

the decision makers in this environment. Power represents the potential of these systems to 

achieve this goal. 
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In this paradigm, as illustrated in Figure 3, several players simultaneously attack each 

other or defend themselves from attacks. Thus, a player is not assigned to be an attacker or a 

defender in this game, but it is the players' decision what role they play. Furthermore, this 

resembles distributed attacks over the network and also incorporates the idea that power can be 

distributed between multiple goals. A player needs SA and learning processes to identify who 

might try to attack and who can be a valuable target to attack. For example in Figure 3, Player 1 

and Player 3 are likely to attack Player 2 as she is the weakest player. However, if Player 1 

invests all her power in the attacking without defending from Player 3, Player 3 can take 

advantage and attack only Player 1, who has the highest asset's value. The decision of whether or 

not to attack an opponent is not straightforward, as the player has to incorporate additional 

aspects like the cost of attack, the cost of defense, the attack severity (i.e., what percentage of 

opponent assets it is possible to gain when winning an attack), and the effectiveness of defense. 

Frameworks like the CyberWar Game allow us to examine the role of SA at the operational level 

(who to attack and from whom to defend), as well as at the tactical and strategic levels (which 

coalition to join).  

 

 
Fig. 3 General description of a CyberWar Game 

 

7 Summary 

Human cognition is central to our understanding of the challenges of the cyber world. Cyber 

security is an extremely complex domain that stretches and challenges many of our theories and 

concepts of situation awareness and decision making. Current theories of SA have been 

developed for the physical world, and research is needed to determine whether and how much of 

what we currently know is applicable or useful for cyber security. The process of detection 

(protecting networks against illegal intrusions) illustrates the challenges involved in cyber 

security and the need for integration of information technology and computational 

representations of human situation awareness. Cognitive models are dynamic and adaptable 

computational representations of the cognitive structures and mechanisms involved in 

developing SA and processing information for decision making. Cognitive models differ from 
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purely statistical approaches, such as machine learning, that are often capable of evaluating only 

stable, long-term sequential dependencies from existing data but fail to account for the dynamics 

of human cognition, including learning processes. An important technology that helps support 

cyber SA and human decision making is the Intrusion Detection System (IDS). Other assistance 

tools are targeted at network analysts with the common function of correlating cyber events 

within a network topology and facilitating the interpretation of low-level events. The aim of most 

existing visualizations tools is to make the data more accessible to the analyst and alleviate some 

of the effort of the perception phase. Such tools provide less support to the comprehension and 

projection phases of cyber SA.  Machine Learning (ML) methods can provide a means to 

instantiate IDS processes and are often divided in two large groups, namely “classification” and 

“clustering.” Eventually, the analyst is provided with a recommendation without the ability to 

understand the details of the processes that generated that recommendation. Without the ability 

to acquire the appropriate level of SA, this can expose the analysts to various biases related to 

trust in automation and eventually harm the comprehension and projection levels of SA.  In order 

to create adaptable technology that accounts for the analyst's mode of thinking, the analyst's 

cognitive processes and limitations must be represented in a cognitive model. Cognitive models 

are often built within a cognitive architecture. Cognitive architectures are computational 

representations of unified theories of cognition and the ACT-R architecture is an example. IBLT 

is a theory of decisions from experience in dynamic tasks; the strength of IBLT is the 

explanations of decision making in complex dynamic situations, such as cyber security.  

An IBL model to study cyber SA represented the cognitive processes of a cyber-security analyst 

who needs to monitor a computer network and detect malicious network events that constitute a 

simple island-hopping cyber attack. When making a decision about whether a new network event 

is part of a malicious network activity or not, the model retrieved similar instances from memory 

according to the cognitive judgment mechanisms. The model illustrates how both the risk 

tolerance level and the past experiences of the analyst affect the analyst‟s cyber SA. The current 

knowledge gaps in our understanding of cognitive demands in the cyber world are: the cognitive 

gap, namely defining a theoretical model of cyber SA within a cognitive architecture; the 

decision gap, representing learning, experience and dynamic decision making in the cyberspace; 

the semantic gap, addressing the construction of a common language and a set of basic concepts 

about which the security community can develop a shared understanding; the adversarial gap, 

developing ways to represent adversarial behavior; and the network gap, scaling up models of 

human behavior to complex networks and cyber conflict representations. Together, the 

descriptions of these gaps present a roadmap for new research and development of cognitive-

aware technologies that would support the analyst's cyber SA and decision making process. 
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